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Abstract— This article presents a comparison of the performance 

of a Mathematical Expression Parser in Heat Load Modelling for a 
District Heating System. Many simulation problems are connected to 
dynamic function compositions. We have developed a simulation tool 
for heat load prediction with a user interface build as an excel add-in. 
A composition pattern and a mathematic math expression parser are 
compared in this article. 
 

Keywords— District Heating, Heat Load, Modelling, Composite 
pattern, Math Parser, Dynamic Compilation.  

I. INTRODUCTION 
HIS paper compares the performance of a composite 
pattern, a math parser using dynamic compilation. The 

problem is demonstrated in the case study of an Excel add-in 
application for Heat load modelling [1]. 

The automatic recognition of mathematic expressions is a 
complex problem that consists of two major stages, symbol 
recognition and structural analysis [2][3]. This article only 
deals with mathematical expressions in text format and its 
structural analysis and its dynamic compilation in .NET 
framework. 

The main aim is to compare the performance of parsed and 
dynamically compiled expressions to a static complied 
expression using a classic composite pattern.  

II. PROBLEM FORMULATION 
District heating networks have dynamic properties such as 

water flow and the propagation of heat from a combined heat 
and power plant to consumers and back again. Such networks 
can be mathematically modelled. Some of these methods are 
computationally intensive and require full physical modelling 
of the networks but there are also simplified methods. 

 Typical methods for heat load modelling are Time-series 
analyses, such as Autoregressive Moving Average with 
Extraneous Input, modelling the physical structure and the 
behavior of the system and neural networks [4][5][6][7][8][9].  

Heller [6] in his work presents these approaches, a top-
down approach which describes the individual sink by an 
analysis of heat load data for a whole system or plant and a 
bottom-up approach which attempts to estimate the total heat 
load by describing the individual sink. Werner [7] presents a 
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model in which heat load is modelled as a sum of an 
independent model variable element (e.g. external 
temperature, wind speed) and corresponding coefficients that 
adjust the element. These elements can be grouped into load 
components [7]:  

Heller also estimated component significances as you can 
see in Table 1. 
 
Table 1: Heat load components significance [6] 
Load Component Significance estimations in % 
Space heating for 
buildings 

60 

Domestic hot water 
preparation. 

30 

Distribution loss 6-8 
Additional workday loads 4-2 

 
Dotzauer [10], in contrast to Heller’s components, presents 

a simple model that consists of a sum of the temperature 
dependent component and the remaining part (mostly 
dependent on time). 

We have developed a model similar to the Dotzauer, 
wherein heat load consists of a sum of the temperature 
dependent and the remaining part, mostly dependent on time. 

There are two variants of a total heat load model, the 
additive and the multiplicative model. The former uses a sum 
of two components and the latter uses a components product. 
In some cases, the multiplicative model provides more precise 
results than the additive [1]. For the purpose of heat load 
modelling, a simple model can be used. The district heating 
system can be approximated by the load centre of the mass of 
the system [11]: 

𝑃𝑃(𝑡𝑡) = 𝑚𝑚
̇

(𝑡𝑡)𝑐𝑐 �𝜗𝜗1 �𝑡𝑡 −
𝑇𝑇𝐷𝐷1

2
� − 𝜗𝜗0 �𝑡𝑡 +

𝑇𝑇𝐷𝐷0

2
�� (1) 

where 
𝑃𝑃(𝑡𝑡) represents the heat load, 
𝑚𝑚
̇

(𝑡𝑡) represents the measured mass flow, 
𝑐𝑐 represents the specific heat capacity, 
𝜗𝜗1 represents supply  temperature, 
𝜗𝜗0 represents return temperature, 
𝑇𝑇𝐷𝐷1  represents the supply line transport time, 
𝑇𝑇𝐷𝐷0  represents the transport time of return line, 
𝑡𝑡 represents time. 

We can simplify the model so that the transport time is only 
dependent on the mass flow and the total mass volume of a 
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district heating network. Transport times can be calculated 
based on [11]:  

𝑅𝑅 = � �̇�𝑚(𝜏𝜏)
𝑡𝑡

𝑡𝑡−𝑇𝑇𝐷𝐷1

𝑑𝑑𝜏𝜏 
(2) 

𝑅𝑅 = � �̇�𝑚(𝜏𝜏)

𝑡𝑡+𝑇𝑇𝐷𝐷0

𝑡𝑡

𝑑𝑑𝜏𝜏 (3) 

where 
𝑅𝑅 represents  the known mass volume, 

𝑇𝑇𝐷𝐷1  represents the unknown transport time of the 
supply line, 

𝑇𝑇𝐷𝐷0  represents the unknown transport time of the 
return line. 

 
 
The heat load is approximated by the sum of time 

dependent and temperature dependent components: 
𝑓𝑓𝑃𝑃(𝑡𝑡,𝜗𝜗𝑒𝑒𝑒𝑒 ) = 𝑓𝑓𝑡𝑡𝑡𝑡𝑚𝑚𝑒𝑒 (𝑡𝑡) + 𝑓𝑓𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡 (𝜗𝜗𝑒𝑒𝑒𝑒 ) (4) 

where  
𝑓𝑓𝑡𝑡𝑡𝑡𝑚𝑚𝑒𝑒 (𝑡𝑡) represents the time dependent, 

component, 
𝜗𝜗𝑒𝑒𝑒𝑒  represents the outdoor temperature, 
𝑓𝑓𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡 (𝜗𝜗𝑒𝑒𝑒𝑒 ) represents the outdoor temperature, 

dependent component. 
 

A. Temperature Dependent Component 
 The temperature dependent component is at certain periods 
inversely proportional to the external temperature and we have 
chosen the Piecewise linear function, Unified-Richards 
function defined as [12]: 
 

𝑓𝑓𝑈𝑈𝑅𝑅𝑈𝑈 (𝜏𝜏) =  �1 + (𝑑𝑑 − 1)𝑒𝑒
−𝐾𝐾�𝜏𝜏−𝑇𝑇𝑡𝑡�

𝑑𝑑
𝑑𝑑

(1−𝑑𝑑) �

1
(1−𝑑𝑑)

 (5) 

where 
𝐴𝐴 is upper asymptote, 
𝐾𝐾 is slope at inflection, 
𝑇𝑇𝑡𝑡  is time at inflection, 

𝑑𝑑
𝑑𝑑

(1−𝑑𝑑) 
is proportion of upper asymptote at inflection. 

  
And fourth degree polynomial: 
𝑓𝑓𝑃𝑃4(𝜗𝜗𝑒𝑒𝑒𝑒 ) = 𝑎𝑎0 + 𝑎𝑎1𝜗𝜗𝑒𝑒𝑒𝑒 + 𝑎𝑎2𝜗𝜗𝑒𝑒𝑒𝑒 2 + 𝑎𝑎3𝜗𝜗𝑒𝑒𝑒𝑒 3 + 𝑎𝑎4𝜗𝜗𝑒𝑒𝑒𝑒 4 (6) 

 

B. Time Dependent Component 
The daily heat load pattern is typified by its morning and 

evening peaks. Thus, the time dependent component is 
approximated by the sum of the two peak functions. The 
Hourly coefficients and Hybrid of Gaussian and truncated 
exponential function (EGH) were selected as most the 
convenient functions. The EGH function has the capability to 
incorporate asymmetric peaks and its fast convergence [13]. 
The Hybrid of Gaussian and truncated exponential function is 
defined as: 

𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) = 

�
𝐸𝐸 𝑒𝑒𝑒𝑒𝑡𝑡 �

−(ℎ − ℎ𝑚𝑚 )2

2𝜎𝜎2 + 𝜏𝜏(ℎ − ℎ𝑚𝑚 )� , 2𝜎𝜎2 + 𝜏𝜏(ℎ − ℎ𝑚𝑚 ) > 0

0, 2𝜎𝜎2 + 𝜏𝜏(ℎ − ℎ𝑚𝑚 ) ≤ 0

� (7) 

 
And the 𝑓𝑓𝑡𝑡𝑡𝑡𝑚𝑚𝑒𝑒 (𝑡𝑡) function is then the sum of two EGH 

functions. Because the function is periodical and describes a 
24hour daily pattern we have to shift time by using a time 
offset and modulo function to match the daily minimum 
around 1 am.  

There are two variants of model approximation, the 
combination of the Gaussian and truncated exponential 
function and Unified-Richards: 
 

𝑓𝑓1�𝜏𝜏,𝜗𝜗𝑒𝑒𝑒𝑒� = 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) + 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) +  𝑓𝑓𝑈𝑈𝑅𝑅𝑈𝑈(𝜗𝜗𝑒𝑒𝑒𝑒) 
 (8) 

And the combination of the Gaussian and truncated 
exponential function and Fourth degree polynomial: 

 
𝑓𝑓2�𝜏𝜏,𝜗𝜗𝑒𝑒𝑒𝑒� = 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) + 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) + 𝑓𝑓𝑃𝑃4(𝜗𝜗𝑒𝑒𝑒𝑒) 

 (9) 

C. Particle Swarm Algorithm 
The Particle swarm algorithm (PSO) [14][15] was chosen as 

the numeric optimisation algorithm suitable for problems 
without the explicit knowledge of the gradient of the function 
to be optimised. Traditional PSO (TPSO), should be written in 
this form: 

 
𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘 + 1) = 𝜔𝜔𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘) + 𝑐𝑐1𝑟𝑟1�𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑 (𝑘𝑘) − 𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘)�

+ 𝑐𝑐2𝑟𝑟2�𝐸𝐸𝑃𝑃𝑑𝑑 (𝑘𝑘) − 𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘)� 
(10) 

𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘 + 1) = 𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘) +  𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘) (11) 
 
where 

𝑡𝑡 represents the particle index  
i = 1,2, …𝑁𝑁𝑃𝑃, 

NP represents the number of particles in swarm, 
d represents the dimension index 𝑑𝑑 = 1,2, …𝐷𝐷, 
𝐷𝐷 represents the dimension of the solution 

space, 
𝑘𝑘 represent the index of iteration, 
𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘) represents the particle position, 
𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘) represents particle velocity 
𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑 (𝑘𝑘) represents the particle best position, 
𝐸𝐸𝑃𝑃𝑑𝑑(𝑘𝑘) represents the swarm best position, 
𝜔𝜔 represents the inertia component, 
𝑐𝑐1  represents the social component, 
𝑐𝑐2  represents the cognitive component, 
𝑟𝑟1, 𝑟𝑟2  are uniformly distributed random numbers in 

interval [0, 1]. 
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The particle velocity is limited to 𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘) ∈  [−𝑉𝑉𝑚𝑚𝑎𝑎𝑒𝑒 ,  𝑉𝑉𝑚𝑚𝑎𝑎𝑒𝑒 ], 

where  𝑉𝑉𝑚𝑚𝑎𝑎𝑒𝑒  is the maximum particle velocity. The number of 
particles NP is usually set at two times more than the 
dimension 𝐷𝐷. The inertia component ω is set at about 0.8, the 
social component c1 is set at about 1.4 and the cognitive 
component c2 is set at about 0.6. We use MaxDistQuick as a 
stopping criterion as described in [16]. The optimization is 
stopped when the maximum distance of the majority of the 
particles is below the threshold eps or the maximum number 
of iteration is reached. 

III. EXCEL ADD-IN 
We developed an excel add-in for a user friendly prediction 

of heat load wherein a user can independently select: 
 

• Additive or multiplicative variant 
• Temperature dependent function 
• Time dependent function 

 
Users can select these temperature dependent functions [1]: 
 

• Unified-Richards model [11] 
• Fourth degree polynomial 
• Piecewise linear function 

 
And these time dependent functions: 

• Gaussian and truncated exponential function [12] 
• Hourly coefficients 

 
 
 

 
In total there can be 18 combinations of functions and in the 

future a user may want use new functions. These functions are 
quite complex and can consume a lot of CPU power. The 
model parameters are estimated using the Standard Particle 
Swarm Optimization [13]. The predictions are measured using 
the data from the week following the identification period. 
The models are compared using Mean Absolute Percentage 
Error (MAPE). 

We used a composite-like pattern for heat load function 
representation as depicted in Figure 1 and 3. Each component 
is represented by reference to interface IFunction1, which 
represents the function of one parameter. The class 
Function3Power describes the function of three parameters 
time, function and day category and has three fields: 

 
• TemperatureDepended 
• TimeDependentFree 
• TimeDependentWorking 

 
And each of these field types of interface IFunction1 and 

concrete implementation is injected in constructor. 
The problem is that the function must be statically compiled 

as a .NET assembly and installed on a user’s computer. Our 
aim is to use a mathematic expression parser and a compiler so 
users can input any function at the run time without the need 
for changes in source code. In addition, the mathematic parser 
could decrease the overall performance. 
  

Fig. 1: Function class diagram 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 11



 

 

IV. PROBLEM SOLUTION 
 
We measured five functions and function combinations: 

1. Unified-Richards function. 
2. Hybrid of Gaussian and truncated exponential 

function. 
3. Fourth degree polynomial. 
4. Combination of the Gaussian and truncated 

exponential function and Unified-Richards. 
5. Combinations of the Gaussian and truncated 

exponential function and Fourth degree 
polynomial. 

 
The Dynamic Expresso [17] tool was selected after the 

performance comparison [2] as the standard expression 
interpreter with good performance. Dynamic Expresso is an 
expression interpreter for C#. It interprets C# statements by 
converting it into .NET delegates that can be invoked as the 
standard delegate [17]. 

We ran each function 1000 times and computed the average 
time of execution. Firstly, we tested the function as the 
composition of a compiled function and later using a delegate 
generated by the Dynamic expresso.  

The testing machine has the Intel i7 processor. The results 
are shown in Table 2. As you can see in Table 1, the 
expression interpreter provides the same or in some cases even 
better results than the composition of the native function in 
Figure 1. 

 
Table 2: Measurement results in milliseconds 
Id Function Composition Expresso 
1 𝑓𝑓𝑈𝑈𝑅𝑅𝑈𝑈 (𝜏𝜏) 1.295 1.272 
2 𝑓𝑓𝑃𝑃4(𝜗𝜗𝑒𝑒𝑒𝑒 ) 1.325 0.994 
3 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) 1.229 0.456 
4 𝑓𝑓1(𝜏𝜏,𝜗𝜗𝑒𝑒𝑒𝑒 ) 2.238 1.464 
5 𝑓𝑓2(𝜏𝜏,𝜗𝜗𝑒𝑒𝑒𝑒 ) 2.282 1.231 
 
 

 
Fig. 2: Comparison of average time 

 
 

 

 
Fig. 3: Approximation function implementation 
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V. CONCLUSION 
The main aim of this article is to compare the performance 

of parsed and dynamically compiled expressions with a static 
complied expression using a classic composite pattern.  

The results were evaluated using the case example of heat 
load modelling. Users use this application as an excel add-in 
and the application is built using C# language and the .NET 
framework.  Users can select combinations of different 
functions now or in the future. We compared the performance 
of two representations of functions used for heat load 
modelling. The former is a composition of a precompiled 
functions and the latter is a standard delegated using 
expression interpreter. The results show that the expression 
interpreter can performs better than the composition of 
precompiled functions. 
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