

Abstract— This work aims to investigate how to use the process

of a dynamic compilation as a very fast mathematic parser. Firstly, it
focuses on describing the process of a standard compilation in .NET
platform and describing how a parser engine works. The core of this
work is the implementation of our own mathematic parser which is
based on a dynamic compilation to provide a very fast mathematic
parser engine. This implementation is compared to existing
mathematic parser libraries using various benchmarks.

Keywords—.NET, math parser, dynamic compilation,
computing, benchmark

I. INTRODUCTION
N the world of science, you very often complain about the
evaluation of some mathematic formulas. You have some

data and you need to apply functions to this data. Small
amounts of data can be calculated by hand but for large
amounts of data you need to use the power of computer.

 For simple calculations you can use a type of spreadsheet
software which allows you to easily modify functions
expression if you need to. For complex data processing you
very often need to create and compile you own program. [1]
[2] For example compiling process of .NET framework used 2
way compilations as is shown in Fig. 1.

In some cases, there is a requirement to give users abstract
control to change the mathematic expression in a program
without recompiling or reinstalling the program. If your
program uses a method of data processing with formulas that
can be changed, you need to choose the right techniques to
allow users to do that.

 One of the solutions is to provide a predefined set of
functions for users so a user can choose a function formula
from it.

 Another solution is to provide the ability for users to
design and use their own formulas.
 In the latter option you must implement some sort of
mathematic parser engine which allows users to enter new
formulas into the software.

All authors are with Faculty of Applied Informatics, Tomas Bata

University in Zlín, Nad Stráněmi 4511, 760 05 Zlín (phone: +420-57-603-
5188; fax: +420 57-603-2716; e-mail: ekral@ fai.utb.cz

Fig. 1 Principe of .NET code execution

II. PROBLEM DESCRIPTION
A Parser engine is a complex system which has specific
phases [3] [4] [5] [6] [7]. In general, we can describe the
principle of parsing as in Fig. 2.

When we want to implement our own parser system we
need to know each component of the parser system. It can be
hard to implement it without bugs and implement it to achieve
a comparable performance in relation to the native code.

 We compared an existing mathematic expression
parser and we also compared it to our solution. We chose an
alternative approach to implement a mathematic parser system
to simplify the complexity of parser engine. There is a
similarity between the compilation C# code and the process of
expression parsing. Our solution is a string replacement engine
based on processing Regex expressions which translate the
mathematic expression into C# code. Finally, the .NET
dynamic code compilation is used to “revive” this code.

Dynamic compilation as a very fast mathematic
parser in .NET

Petr Čápek, Erik Král

I

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 21

Fig. 2 Principle of parsing [3]

A. Description of parser libraries

1) NCalc

NCalc is a mathematical expressions evaluator in .NET.
NCalc can parse any expression and evaluate the result,
including static or dynamic parameters and custom functions.
[8]

2) Sprache.Calc

This library provides an easy-to-use extensible expression
evaluator based on the LinqyCalculator sample. The evaluator
supports arithmetic operations, custom functions and
parameters. It takes the string representation of an expression
and converts it into a structured LINQ expression instance
which can easily be compiled to an executable delegate. In
contrast to interpreted expression evaluators such as NCalc,
compiled expressions perform just as fast as native C#
methods. [9]

3) Flee

Flee is an expression parser and evaluator for the .NET
framework. It allows you to compute the value of string
expressions at runtime. It uses a custom compiler, strongly-
typed expression language, and a lightweight codegen to
compile expressions directly to IL. This means that the
expression evaluation can be fast and efficient. [10]

4) Jace.NET

Jace.NET is a high performance calculation engine for the
.NET platform. It stands for "Just Another Calculation
Engine".

Jace.NET can interpret and execute strings containing
mathematical formulas. These formulas can rely on variables.
If variables are used, the values can be provided for these
variables at the execution time of the mathematical formula.

Jace can execute formulas in two modes: in an interpreted
mode and in a dynamic compilation mode. If the dynamic
compilation mode is used, Jace creates a dynamic method at
runtime and generates the necessary MSIL opcodes for native
execution of the formula. If the formula is re-executed with
other variables, Jace takes the dynamically generated method
from its cache. It is recommended to use Jace in the dynamic
compilation mode. [11]

5) Mathos Parser

Mathos Parser is a mathematical expression parser, built on
top of the .NET Framework, which allows you to parse all
kinds of mathematical expressions, and in addition, add your
own customised functions, operators, and variables. [12]

6) xFunc

xFunc is a simple and easy-to-use application that allows
you to build mathematical and logical expressions. It is written
in C#. This project consists of two libraries and an execution
file. The libraries include a code that converts strings into
expressions. [13]

7) muParser

muParser is an extensible high performance math
expression parser library written in C++. It works by
transforming a mathematical expression into bytecode and
precalculating the constant parts of the expression.

The library was designed with portability in mind and
should compile on every standard compliant C++ compiler.
There is a wrapper for C and C#. The parser archive contains a
ready-to-use project and makefiles files for a variety of
platforms. The code runs on both 32 bit and 64 bit
architectures and has been tested using Visual Studio 2013 and
GCC V4.8.1. Code samples are provided in order to help you
understand its usage. The library is open source and
distributed under the MIT license. [14]

8) Expression Evaluator

Expression Evaluator is a fast-growing, lightweight, simple
and free library capable of parsing and compiling simple to
medium complexity C# expressions.

Expression Evaluator can take a string that contains C#
code, compile it and return the value of the expression, or a
function that executes the compiled code. You can also
register types or instances of classes to access their properties
and methods, essentially allowing you to dynamically interact
with those objects at runtime. [15]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 22

9) Dynamic Expresso
Dynamic Expresso is an expression interpreter for simple

C# statements. Dynamic Expresso embeds its own parsing
logic, and really interprets C# statements by converting it into
.NET delegates that can be invoked as any standard delegate.
It does not generate assembly but it creates dynamic
expressions/delegates on the fly.

By using Dynamic Expresso developers can create
scriptable applications and execute .NET codes without
compilation. The statements are written using a subset of C#
language specifications. Global variables or parameters can be
injected and used inside expressions. [16]

B. Dynamic compilation
Our approach is not to make a whole parser engine but

instead to try using a kind of hybrid technique.
Our technique can be described like this:

• Take the input string
• Find incompatible tokens and replace it with C# code
• Insert the string into a pre-prepared class
• Use C# feature, dynamic compilation, to compile the

code “on-fly”
• Load this compiled class into a current program and

load “evaluation” function into the cache
Our approach is trying to achieve maximum performance

for evaluating a large amount of data against a small number
of functions.

III. BENCHMARK DESCRIPTION
Due to the varied complexity of expressions, we categorized

the expressions depending on the complexity of the
expressions. There are categories based on expression
complexity, in which the complexity is defined by the number
of operators, operands and variables:

• Simple expressions – up to 5 operands and 5
operators

• Medium expressions – up to 10 operands and 10
operators, up to 3 function nesting

• Complex expressions – more than 10 operands and
operators, more than 3 function nesting

There are two test scenarios for evaluating expressions
because there are two main factors that influence the test
performance, the expression processing time and expression
evaluation time. Let the N is the number of different
expressions which are used in the test and M is the number of
expression evaluation with given input variables.

 The first scenario is focused on measuring the
performance of processing different expressions (N >> M). In
this case it is the measured time of the evaluation.

 The second scenario is focused on measuring the
performance of evaluating the same expression against
different input variable values (N << M). In this case, the
measured time represents the expression processing.

High level scheme of benchmark is described in Figure 3.

Fig. 3 Benchmark class diagram

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 23

Table 1 List of used function in benchmark [17]

Category Function name Expression

Simple Constant 𝑓𝑓 = 10 + 750

Simple Second constant 𝑓𝑓 = 10 + 𝜋𝜋 + 29
Simple Sum 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥 + 𝑦𝑦
Simple Linear 𝑓𝑓(𝑥𝑥) = 55𝑥𝑥 − 150

Simple Sphere, n = 2 𝑓𝑓(𝑥𝑥) = � 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

Medium Quadratic 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 55𝑥𝑥2 − 150𝑥𝑥 + 44 + 12𝑦𝑦2 − 22 − 4

Medium Rosenbrock, n = 2 𝑓𝑓(𝑥𝑥) = � [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖 − 1)2]
𝑛𝑛−1

𝑖𝑖=1

Medium Beale’s 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = (1.5 − 𝑥𝑥 + 𝑥𝑥𝑥𝑥)2 + (2.25 − 𝑥𝑥 + 𝑥𝑥𝑦𝑦2)2
Medium Booth’s 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥 + 2𝑦𝑦 − 7)2 + (2𝑥𝑥 + 𝑦𝑦 − 5)2
Medium Bukin N.6 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 100�|𝑦𝑦 − 0.01𝑥𝑥2| + 0.01|𝑥𝑥 + 10|
Medium Matyas 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 0.26(𝑥𝑥2 + 𝑦𝑦2) − 0.48𝑥𝑥𝑥𝑥

Medium Three-hump 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 2𝑥𝑥2 − 1.05𝑥𝑥4 +
𝑥𝑥6

6
+ 𝑥𝑥𝑥𝑥 + 𝑦𝑦2

Medium Easom 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = − cos(𝑥𝑥) cos(𝑦𝑦) exp(−((𝑥𝑥 − 𝜋𝜋)2 + (𝑦𝑦 − 𝜋𝜋)2))
Medium McCormick 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = sin(𝑥𝑥 + 𝑦𝑦) + (𝑥𝑥 − 𝑦𝑦)2 − 1.5𝑥𝑥 + 2.5𝑦𝑦 + 1
Complex Ackley’s 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = −20 exp(−0.2�0.5(𝑥𝑥2 + 𝑦𝑦2)) − exp(0.5(cos(2𝜋𝜋𝜋𝜋) + cos(2𝜋𝜋𝜋𝜋))) + 20 + 𝑒𝑒
Complex Goldstein-Price 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = (1 + (𝑥𝑥 + 𝑦𝑦 + 1)2(19 − 14𝑥𝑥 + 3𝑥𝑥2 − 14𝑦𝑦 + 6𝑥𝑥𝑥𝑥 + 3𝑦𝑦2))
Complex Lévi 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = sin2(3𝜋𝜋𝜋𝜋) + (𝑥𝑥 − 1)2(1 + sin2(3𝜋𝜋𝜋𝜋))

Complex Cross-in-tray 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = −0.0001(| sin(𝑥𝑥) sin(𝑦𝑦) exp(|100 −
�𝑥𝑥2 + 𝑦𝑦2

𝜋𝜋
|) | + 1)0.1

Complex Eggholder

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = −(𝑦𝑦 + 47) sin(�|𝑦𝑦 +
𝑥𝑥
2

+ 47|) − 𝑥𝑥 sin(�|𝑥𝑥 − (𝑦𝑦 + 47)|)

Complex Hölder table 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = −| sin(𝑥𝑥) cos(𝑦𝑦) exp(|1 −
�𝑥𝑥2 + 𝑦𝑦2

𝜋𝜋
|) |

Complex Schaffer N.4 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 0.5 +
cos(sin(|𝑥𝑥2 − 𝑦𝑦2|)) − 0.5

(1 + 0.001(𝑥𝑥2 + 𝑦𝑦2))2

The Main class in benchmark is the Benchmark class which

contains two test scenarios. Also, this class has a constructor
which searches and registers all mathematical parsers (class
implementing IEvaluator interface) and all testing functions
(class derived from ExpressionBase) via reflection.

 The Interface IEvaluator provides the abstraction for
mathematic parsers. A parser engine is usually loaded in the
constructor and then a parsing string expression into tree
structure is carried out in the method SetExpression. An
evaluating tree structure against input data is carried out in the
method Evaluate. This class also contains the property
PreferSecondExpression which indicates which string
expression should be used for the current parser. This is
because some parsers do not allow define operators like ‘^’
power or ‘%’ modulo and those formulas which have these
operators must be rewritten without using these operators and
stored as SecondaryExpression in the Expression class.

The Abstract class ExpressionBase provides a base class for

all tested mathematical formulas. It provides the following
attributes:

• Dimension – the number of input arguments for a
function

• Expression – the string expression of a mathematical
formula

• Level – the number which indicates the complexity of
an expression

• SecondaryExpression – the string expression of a
mathematical formula which has replaced any
incompatible operators

In addition, this contains the method NativeCall which
contains mathematic formulas expressed in C# code.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 24

IV. RESULT
We compiled our test program under the .NET 4.5 platform,

“Any CPU” platform setting and release configuration. We ran
it on a laptop with Intel i7 3517 CPU, 10 GB RAM, SSD disk
with Windows 8.1 Pro.

 For the first scenario we used 24 different expressions as
shown in table 1 and each has been evaluated 1 000 000 times.
The evaluation time of the measured functions has been
summarized for each category and divided by the total number
of functions in the category.

Table 2 Result for scenario 1 in milliseconds

Library name
Complexity of expressions

Simple Medium Complex
Native 32 146 162

D. Expresso 51 170 213

muParser 89 244 360

Dynamic 93 202 220

Sprache 610 892 855

EE 838 1149 1184

Flee 875 1339 1374

Jace 1553 2415 3137

NCalc 2105 4565 6561

Xfunc 2297 5425 5158

Mathos 11311 29053 FAILED

In the results table 2, our developed test solution is called
“dynamic” and its function evaluation performance is the best
of all libraries for function evaluating. However, it must be
taken into account that our approach has a relative high
starting overheat because of a compilation time of about 50
milliseconds. If a simple function and a small amount of
evaluation is used, our approach cannot currently be faster
than 50 milliseconds due to the compilation time overheat.

Fig. 4 Benchmark result for scenario 1

In the second scenario, the 1000 function was used (the

function set was created by random choice from 24 function
sets as shown in table 1). Each of these functions was
evaluated only once.

10 100 1000 10000

Mathos

Xfunc

NCalc

Jace

Flee

EE

Sprache

Dynamic

muParser

D. Expresso

Native

Average parsing time in milliseconds

Scenario 1, n=1M, m=24

Complex expression Medium expressions

Simple expressions

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 25

Table 3 Result for scenario 2 in milliseconds

Library name
Complexity of expressions

Simple Medium Complex

Native 0 0 1

Mathos 41 71 FAILED

Xfunc 93 199 247

NCalc 129 186 263

muParser 145 215 283

Sprache 801 1822 2527

Jace 910 2004 2480

Flee 2536 2961 3269

EE 4526 9425 13441

D. Expresso 5532 5258 6699

Dynamic 48605 51703 52713

In the results table 3, our library is also called “dynamic”

and we can see our approach has the worst result against the
other libraries. This bad result is due to the .NET compilation
time overheat.

Fig. 5 Benchmark result for scenario 2

V. IMPROVEMENTS
Dynamic compilation is significantly penalised by a bug in

the current C# class which is responsible for dynamic
compilation. This bug causes an impossibility to create an in-
memory assembly [18].

Currently there is only one workaround and it is to switch
from the old process of dynamic compilation to the new
compilation service “Roslyn”.

The .NET Compiler Platform, better known by its
codename "Roslyn", is a set of open-source compilers and
code analysis APIs for C# and Visual Basic.NET languages
from Microsoft.

The project notably includes self-hosting versions of the C#
and VB.NET compilers – compilers written in the languages
themselves. The compilers are available via the traditional

10 100 1000 10000

Dynamic

D. Expresso

EE

Flee

Jace

Sprache

muParser

NCalc

Xfunc

Mathos

Native

Total parsing time in milliseconds

Scenario 2, n=1, m=1k

Complex expression Medium expressions

Simple expressions

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 26

command-line programs but also as APIs available natively
from within .NET code. Roslyn exposes modules for a
syntactic (lexical) analysis of codes, semantic analysis,
dynamic compilation to CIL, and code emission. [19]

Currently there is only a preview version of Roslyn but it
should be usable for our requirements.

We rewrote our codes using this new Roslyn API and
compared the results.

Fig. 6 Benchmark result for scenario 1 with Roslyn

For scenario 1 we can see significant improvements and in

the expression category medium and complex we got
overhead less than 5% over the native code.

As we can see there is performance drop when we was
measuring dynamic compilation of simple expressions with
Roslyn. This is because the first time we call the Roslyn
compilation service, it must load necessary assemblies in
memory.
We are expecting that in the full release of Roslyn this
performance drop will be reduced.

Fig. 7 Benchmark result for scenario 2 with Roslyn

As in scenario 1 there are also significant improvements

against the original implementation with the old C# compiler.
However, compared to other mathematical parsers there is still
low performance. In respect to the way a dynamic compilation
works, it will be very difficult or maybe even impossible to
achieve a better result than the current one. It is because, now,
one dynamic compilation takes about 3 milliseconds, in which
the following tasks are included:

• loading the assemblies required for compilation
• creating the compilation service
• parsing the C# code
• compiling the code
• loading the dynamic generated library

VI. CONCLUSION
The main aim of this work was to investigate how we can

use a dynamic compilation for the implementation a very fast
mathematical expression parser/evaluator engine. We
undertook an investigation into existing mathematical parsers
and focused on how they work with parsing mathematical
formulas.

 As result of our investigation we are able to create an
alternative approach to existing mathematical parsers which is
based on a dynamic compilation.

We also created benchmarks to measure how efficient our
approach is against existing mathematical parsers. The results
from those benchmarks were great even though there is a bug
in the C# compiler which did not allow us to create only in the
memory assembly and we were penalised because of this.

By using the new unfinished Roslyn compiler services we
were able to get even more impressive results which ranked us
among one of the best mathematical parser engines.

85

69

30

192

148

143

207

158

153

D Y N A M I C (O L D)

D Y N A M I C (R O S L Y N)

N A T I V E

AVERAGE PARSING TIME IN MILLISECONDS

Scenario 1, n=1M, m=24

Simple expressions Medium expressions

Complex expression 49640

2080

0

55869

3649

1

55897

4634

1

0 20000 40000 60000

Dynamic (old)

Dynamic (Roslyn)

Native

Total parsing time in milliseconds

Scenario 2, n=1, m=1k

Complex expression Medium expressions

Simple expressions

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 27

The results of this work were used in heat load modelling.
Users can use this application as an excel add-in and the
application is built using c# language and the .net
framework. [20]

VII. FUTURE WORK
For our next research we plan to mainly focus on these

points.

A. User specific functions
So far we have created a closed system which does not

allow users to define user specific functions. This is big
limitation for wider application.

B. Use Roslyn compiler
We are also looking forward to the stable release of the C#

compiler ‘Roslyn’ which has a significantly faster dynamic
code compilation as we have proven in our benchmarks.
Currently Roslyn is in the beta phase and could have some
bugs so it is necessary to wait for its full release.

C. Use optimization service
We are also planning to implement an optimization service

for mathematic formulas which will modify and simplify
mathematic expressions to achieve some more performance.

Because we are investigating using Wofram Mathematica as
an optimization service, we are also considering implementing
the application as web service using Service Oriented
Architecture. [21]

REFERENCES
[1] M. P. Radha Thangaraj, "Differential Evolution Algorithm for Solving

Multi-objective Optimization Problems," in Proceedings of the 7th
International Conference on Applied Mathematics, Simulation,
Modelling (ASM '13), 2013.

[2] R. A. Rahmat, "Application of Genetic Algorithm in Optimizing
Traffic Control," in Proceedings of the 7th International Conference on
Applied Mathematics, Simulation, Modelling (ASM '13), 2013.

[3] Compilers Principles Techniques and Tools (2nd Edition), Boston:
Pearson Education, Inc, 2007.

[4] J. A. Farrell, "Compiler Basics," 1995. [Online]. Available:
http://www.cs.man.ac.uk/~pjj/farrell/compmain.html.

[5] K. MAEDA, "Quick Parser Development Using Modified Compilers
and Generated Syntax Rules," in Recent Advances in Applied
Mathematics and Computational and Information Sciences - Volume II,
Houston, 2009.

[6] P. M. RICCHETTI, "A Practical Method for the Implementation of
Syntactic Parsers," in Proceedings of the 6th WSEAS international
conference on Automation & information, Argentina, 2005.

[7] S. I. SOLODUSHKIN, "Access to the Solver of Functional Differential
Equations Through," in Recent Advances in Applied & Biomedical
Informatics and Computational Engineering in Systems Applications,
Florence, 2011.

[8] "NCalc - Mathematical Expressions Evaluator for .NET," 2014.
[Online]. Available: https://ncalc.codeplex.com/.

[9] "Sprache.Calc," 2014. [Online]. Available:
https://github.com/yallie/Sprache.Calc.

[10] "Fast Lightweight Expression Evaluator," 2014. [Online]. Available:
http://flee.codeplex.com/.

[11] "Jace.NET," 2014. [Online]. Available:
https://github.com/pieterderycke/Jace.

[12] "Mathos Parser," 2014. [Online]. Available:
http://mathosparser.codeplex.com/.

[13] "xFunc," 2014. [Online]. Available: http://xfunc.codeplex.com/.

[14] "muparser - Fast Math Parser Library," 2014. [Online]. Available:
http://muparser.beltoforion.de/.

[15] "C# Expression Evaluator," 2014. [Online]. Available:
https://csharpeval.codeplex.com.

[16] "Dynamic Expresso," 2014. [Online]. Available:
https://github.com/davideicardi/DynamicExpresso.

[17] S. F. University, "Test Functions and Datasets," 2014. [Online].
Available: http://www.sfu.ca/~ssurjano/optimization.html.

[18] Microsoft, "MSDN Forum," 2007. [Online]. Available:
https://social.msdn.microsoft.com/Forums/en-US/8e839652-894d-
4891-911b-621c89f1c7f7/compilerparametersgenerateinmemory-
property-doesnt-really-work?forum=netfxbcl.

[19] Microsoft, ".NET Compiler Platform ("Roslyn")," 2014. [Online].
Available:
https://roslyn.codeplex.com/wikipage?title=Overview&referringTitle=
Documentation#INTRODUCTION.

[20] P. Č. Erik Král, "A Comparison of the Performance of a Composite
Pattern and a Mathematic Expression Parser and Interpreter," in Recent
Advances in Applied Mathematics, Modelling and Simulation,
Florence, 2014.

[21] S. KAMBHAMPATY, "Service Oriented Architecture for Enterprise
Applications," in Proceedings of the 5th WSEAS Int. Conf. on
Software Engineering, Madrid, 2006.

Petr Čápek is currently a Ph.D. student at The Department of Informatics and
Artifical Intelligence at Tomas Bata University in Zlin. His master’s thesis
was focused on the State-of-the-Art Methods for Designing Native
Multiplatform Mobile Applications. Hi is interested in modern software
architectures and evolution algorithms.

Erik Král, Ph.D. is a senior lecturer at The Department of Computer and
Communication Systems at The Tomas Bata University in Zlin. Between
2003 and 2006 he worked as a software developer (MS Navision DB, CRM
system, .NET, c#). Between 2006 and 2011 he worked as a researcher on the
National Research Program II, The intelligent system controlling an energetic
framework of an urban agglomeration (successfully finished in 2011).

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 28

