

Abstract— A class of hybrid systems (HS) with modal behavior

specified on the class of systems with partial differential equations
(PDE) is considered. Architecture of instrumental environment for
simulation of complex dynamic and hybrid systems is given. Syntax-
oriented facilities for the considered problems specification are
proposed. Algorithms of finite difference method for the transition
from PDE to ordinary differential equations system are given.
Universal data structure for storing HS models has been designed and
proved. Algorithms of variable step with accuracy and stability
control of numerical scheme for solving high-dimensional Cauchy
problems are proposed. The algorithms are based on explicit methods
of Runge-Kutta type. Sequential and parallel implementation of
numerical methods is presented. The example of specification and
analysis of reaction-diffusion problem is given.

Keywords— Autogenerated parsers, grammar, hybrid system,
Runge-Kutta methods, sequential and parallel implementation,
software architecture, system of PDE.

I. INTRODUCTION
ANY engineering problems are characterized by points
of discontinuity in the first derivative of the phase

variables. Such combined discrete-continuous problems called
hybrid or switched systems [1], [2]. In this paper we propose a
new system architecture of ISMA (that in Russian means
Instrumental Facilities of Machine Analysis) based on the
methodology of hybrid systems (HS). This article examines a
new application of ISMA – systems of partial differential
equations (PDE) with constraints. PDEs are used to describe
processes in the chemical-technological systems, elasticity
problems, etc. To achieve this goal a series of consecutive
problems is solved: the textual specification of ISMA
environment models expanded by constructions describing
PDEs; a special data structure for storing the model in memory
is developed; approximation algorithms are implemented for
transition from a system of PDE to ODE system. In many
cases, the problem is compounded by high dimensionality and

This work was supported by grant 14-01-00047-a from the Russian

Foundation for Basic Research, RAS Presidium project № 15.4
“Mathematical modeling, analysis and optimization of hybrid systems”.

Yu.V. Shornikov is with the Design Technological Institute of Digital
Techniques Siberian Branch of Russian Academy of Science, Novosibirsk,
Russia (e-mail: shornikov@inbox.ru).

A.V. Bessonov, M.S. Myssak, D.N. Dostovalov is with the Department of
Automated Control Systems, Novosibirsk State Technical University,
Novosibirsk, Russia (e-mails: abv.poste@gmail.com,
maria_myssak@mail.ru, dostovalov.dmitr@mail.ru).

stiffness of the considered system. To solve moderately stiff
problems integration algorithms based on the explicit methods
to control accuracy and stability of the numerical scheme can
be applied [3], [4]. Furthermore when problem dimension
reaches several thousands of equations and more its
calculation by sequential methods becomes ineffective and
requires the use of multiprocessor computer systems. In this
situation parallel computation of local behaviors using cluster
technologies can significantly improve the quality and
efficiency of calculations. This paper discusses sequential and
parallel implementation of algorithms of variable step based
on two-stage and three-stage schemes of Runge-Kutta type of
respectively second and third order of accuracy. These
integration algorithms are well suited for solving hybrid
problems including moderately stiff problems. As an example
for specification and comparative analysis of the considered
algorithms the reaction-diffusion problem [5, 6] is examined.

II. CLASS OF SYSTEMS
There are many systems (mechanical, electrical, chemical,

biological, etc.), the behavior of which can be conveniently
described as a sequential change of continuous modes [1].
Each mode is given by a set of differential-algebraic equations
with the following constraints:

() ()
()

[] () ()0 0 0 0 0

, , , , , ,

: , , 0,

, , , ,

, , ,

: ,

: ,

: .

k
NN yx

N NN y yx

NN Nxyx

NN Syx

y f x y t x x y t

pr g x y t

t t t x t x y t y

x R y R t R

f R R R R

R R R R

g R R R R

ϕ

ϕ

′ = =

<

∈ = =

∈ ∈ ∈

× × →

× × →

× × →

 (1)

The vector-function (, ,)g x y t is referred to as event

function or guard [2]. A predicate pr determines the
conditions of existence in the corresponding mode or state.
Inequality (, ,) 0g x y t < means that the phase trajectory in the
current mode should not cross the border (, ,) 0g x y t = .
Events occurring in violation of this condition and leading to
transition into another mode without crossing the border are

Instrumental Analysis of Hybrid Systems
with PDE

Yu.V. Shornikov, A.V. Bessonov, M.S. Myssak, D.N. Dostovalov

M

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 85

referred to as one-sided.
This class of systems is expanding by the addition of

boundary conditions for PDEs. Continuous behavior of HS is
determined by the systems differential-algebraic equations and
PDEs. In the proposed implementation the equations with the
maximal order not higher than second are considered. Applied
algorithms do not impose a restriction on number of variables
– i.e. their number is theoretically unlimited. Nevertheless
should take into account that the introduction of each new
variable leads to a tremendous increase in the number of
equations generated as a result of the finite differences
method. Therefore the real limit on the number of variables is
imposed by computing resources: computer software as well as
computer itself. The considered equations are nonlinear type.
The linear equation are also supported and regarded as a
narrow equations type.

In this paper we consider the type of nonhomogeneous PDE.
The coefficients used in partial differential equations
considered in this paper can be either constant or variable.
This paper discusses the parabolic type equations. Boundary
conditions of considered problems must be rectangular area
Ω – rectangle, parallelepiped, etc.

Thus, the proposed expansion of the instrumental
environment designed for the analysis of PDE type equation
(2): heterogeneous, non-linear, second order, with constant and
variable coefficients, with an unlimited number of variables N
and limited by N-dimensional rectangular grid.

()
()

() ()
[] []

()

2

2

0 0 0 0

0 0

2

, , , , , ,

, ,

: , 0,

, , , ,

, , , ,

,

, , , ,

: ,

: ,

: ,

k m

p
NN N px z

N Nx x

N NN N Np px z z

N Sx

z z zx z t p
t p p

x x t

pr g x t

x t p x z t p z

t t t p p p

z z p
n

x R z R t R p R

R R R

R R R R R R

g R R R

ψ

ϕ

ϕ

ψ

 ∂ ∂ ∂
=   ∂ ∂ ∂ 

=

<

= =

∈ ∈

∂
=

∂

∈ ∈ ∈ ∈

× →

× × × × →

× →



 (2)

where n denotes the normal to the boundary and ()z p is a
given function to the boundary.

III. ISMA SIMULATION ENVIRONMENT
Simulation environment of complex dynamical and hybrid

systems called ISMA is developed at the department of
Automated control systems of Novosibirsk state technical
university (Russia) [7].

Specification of hybrid systems is carried out using

graphical and symbolic languages that are the system content
of instrumental environment. Analytical content is provided by
numerical methods and algorithms for computer analysis
corresponding to the chosen class of systems and methods for
solving these models. ISMA environment is developed subject
to simplicity of description of dynamical and hybrid models in
the language that is maximally close to the object language.
Main features of ISMA are the following:
1) Composition of hybrid models is carried out in visual

structural-textual form;
2) Structural form of model description corresponds to the

classical description of systems by block diagrams and
includes all necessary components such as integrators,
accumulators, amplifiers, signal sources, nonlinear
elements and others;

3) Language of symbolic specification is approached
maximal to the language of mathematical formulas;

4) Special module for specification of problems of chemical
kinetics in the language of chemical reactions which
automatically translates them into a system of differential
equations;

5) A variety of traditional and original numerical methods
included methods that are intended for the analysis of
ODE systems of medium and high stiffness;

6) Computer simulation in real time;
7) Graphic interpreter called GRIN provides a wide range of

tools for analysis and visualization of simulation results
such as scaling, tracing, optimization, displaying in the
logarithmic scale and phase plane;

8) Extension of system functionality by adding new typical
components and numerical methods.

Architecture of ISMA software package (Fig. 1) is designed
to unify existing mathematical program software for analysis
of problems in various object domains: chemical kinetics,
automation, electricity, etc. Blocks that belong to this paper
marked with a dark color.

IV. A NEW DESCRIPTION LANGUAGE OF HS MODELS WITH
PDES

One of the many approaches used is ISMA to describe HS
models is textual representation. For this purpose a special
language LISMA (Language of ISMA) is developed [8].

Grammar of LISMA corresponds to the second type
according to the Chomsky classification and is context-free.
This means that the left side of all productions are represented
by single nonterminals which are objects that represents an
entity of language (eg: a formula, an arithmetic expression, a
command) and do not have a specific character value.

All nonterminals of LISMA grammar can be divided into
the following groups:

• main group is the main unit that is the body of programm
model and includes all the remaining units;

• expression is a number of nonterminals used to describe
algebraic expressions, logical expressions, operators and
operands;

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 86

Fig. 1. Architecture of ISMA

• function is a call of embedded function which are an

integral part of any mathematical expression(eg: tg, sin, pow,
swrt, etc.);

• constant is constants. Values can be defined by
expression that is evaluated at the stage of semantic analysis;

• algebraic equations are algebraic equations whose
solution of is performed at each step of the model calculation;

• differential equations and initial condition – these
non-terminals are used for the description of the Cauchy

problem;
• state is a unit describing the discrete behavior of HS.

Includes state and transition condition to this state;
• setter are instant actions performed at the moment of HS

state change;
• macros is a macrounit of mathematical model, which

substitution is performed at the preprocessing stage;
• partial differential equations are facilities to work with PDE
which are described in more details hereinafter.

However existing description tools are not suitable enough
to model boundary value problems of PDE systems. Therefore
new language structures are introduced to describe specific
elements. Before the development of grammar of language
elements a comparative analysis of multiple peers was made.
In these grammars the following characteristics were

emphasized: flexibility and extensibility, usability, ease of
perception, the corresponding mathematical description. Using
these criteria multiple languages were evaluated with the
ability to describe models with PDE equations. The main ones
are the following: FlexPDE, Wolfram Mathematica, gPROMS,
EMSO, ASCEND. In many languages to describe the partial
derivative functional style is used, in which the derivative is a
function of several arguments. Based on review and analysis of
mentioned simulation environments LISMA has been extended
by description of boundary value problems with PDEs. This
extended grammar was developed in the ideology of
inheritance.

To describe a system of differential equations, boundary
conditions and initial values a new LISMA language features
are introduced. Explicit declaration of variables that should be
subjected to discretization is introduced. For this purpose a
special structure is used with grammar written in the Backus-
Naur form as follows:

apx _var → 'var' var_ident ' ['
DecimalLiteral ',' DecimalLiteral ']'
apx_var_tail ';'

apx_var_tail → 'apx' DecimalLiteral

| 'step' (FloatingPointLiteral | DecimalLiteral)

For example, the following expression corresponds to the
given grammar:

var x[0, 20] apx 30;

var y[0, 30] step 0.5;

In this structure boundaries of the variable are defined in
square brackets. The following constructions are the keyword
apx (short for approximation) or the keyword step. Keyword
apx used if we want to break the considered domain of
definition for a fixed number of segments, thus realizing the
priority execution speed. We use the keyword step if step size
is important – an accuracy priority. Number of segments and
step size are written following the keyword.

Several elements are introduced in the description of the
equations. First, it is an explicit indication of variables that
affect the equation on the left side of the equation. This record
type is optional and can be omitted as before on the left side to
specify variables in parentheses. Partial derivatives are
described in a functional style. Letter D is used as function
name – the most concise version, which is not lost in code,
mostly lowercase. The arguments used name of a differentiable
function, the variable on which the derivative is taken and the
order of the derivative. If the derivative is first-order, the latter
argument is omitted suggesting that it is taken equals to 1 by
default. This approach to the description of the derivative
satisfies all the previously entered criteria: it allows you to use
all sorts of variables which should be differentiated; it does not
contain descriptive information duplication and laconic, and
thus it is practical and easy to perception; and finally it is easy
to relate to mathematical description. As a result, the
description of the PDE as follows:

User interface

LISMA_EPS

Diagnostics

Structure language

Language of
diagrams Harel

Equations of
chemical reactions

LISMA+

Editor with
input language

Interpreter

Software models LISMA

Harel diagrams

Block diagrams ACS

Schemas EPS

Solver

Graphic interpreter

Solver
library

Controller

Method of
event detection

LISMA
(with PDEs)

Finite difference
method Unified model HSM

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 87

partial_operand → 'D' '(' Identifier ',' Identifier

(',' DecimalLiteral)? ')'

Below is an example of this language construct:

c1' = Kh*D(c1,x,2) + D(Kv*D(c1,z), z);

c2' = D(c1,x,2)*pow(x,2);

For numerical solution of PDEs by FDM is necessary to
determine the boundary conditions – values of the derivative at
the edges of the grid under consideration. It looks as follows:

edge → 'edge' edge_eq 'on' Identifier edge_side ';'

edge_eq → Identifier '='

(FloatingPointLiteral | DecimalLiteral)

edge_side → 'left' | 'right' | 'both'

Construction contains a partial derivative equation with a
certain value on the right side. This allows you to specify a
description for a particular variable value and the type of
border: left, right or both. Below is an example of all three
types of boundary conditions:

edge D(c1, x) = 0 on left;

edge D(c1, x) = 20 on right;

edge D(c1, y) =0 on both;

LISMA grammar is designed in such way that the choice of
the inference rule requires only the two foolowing symbols of
analyzed chain. Therefore the grammar of LISMA corresponds
to the LL(2) type.

Lexical and syntactic analyzers for modified language are
developed using the library Antlr4. This library allows to build
parser and lexer in JAVA on the description of LL(*)-
grammaer in language close to EBNF. This library is ideal for
problems of fast and efficient automatic construction of
parsers. Under the ISMA project it is decided to use antlr4,
because it is quite applicable to the existing grammar and own
work to create parsers require significant investment in the
development and documentation. In addition, experience in
using Antlr4 can be successfully applied in other projects.

To work with ANTLR LISMA grammar is described in a
special file of .g4 format containing elements of lexer
(keywords, identifiers, numers, etc.) and elements of parser.
ANTLR generates the classes required to java: LismaLexer is
a lexical analyser, LismaParser is a syntax analyser,
LismaBaseVisitor is the instrument for convenient bypassing
of syntax tree. MacrosPreparser is the instrument
preprocessing the input model and generating macro. It is used
before parsing the model in ISMA. Then the model is
partitioned to tokens by lexical analyzer and the tree obtained
as the result of parsing is bypassed. The last stage is the
semantic analysis in which the check, the interpretation of
model parts and the fill of data structure in memory are made.
For this stage a number of tools is developed that reflects

different aspects of modeling in ISMA. Let us consider them
in the order in which them are used in semantic analysis:

• StateVisitor fills information about hybrid system states;
• VariableTableAggregatorVisitor searches variables and

fills tables of model variables in whole and for each state in
particular;

• PopulateExpressionVisitor generates right sides of all
equations based on variables registered on the previous step;

• PopulateStateInfoVisitor build the map of state changes
(transition conditions between certain states);

• BoundInfoVisitor forms the boundary conditions of
model with PDE;

• CalcConstVisitor calculates constants and initial
conditions of Cauchy problem.

V. UNIFIED DESCRIPTION SECTION IN ISMA ENVIRONMENT
After the language grammar is defined, a data structure for

storing models in memory after parsing should be developed.
This data structure must be universal for all types of model
specification. With several ways to describe HS – graphics,
text or block diagrams, we should be able to lead each of them
to a single universal form, which subsequently may be
transmitted to solver input. This approach simplifies the task
of unification of ISMA software. For a more specific
application of the simulation environment ISMA it is
necessary to develop a graphical part responsible only for
model specification. In this description module the modules of
calculation and graphical interpretation remain unchanged.

When designing such a data structure many factors should
be taken into account. This is necessary to ensure that upon
presentation of new conditions the whole system of modeling
was not inapplicable. Thus, the developed data structure
should be easily expandable. Adding new elements to the
model should not be a need to rewrite large parts of the
system. Furthermore, the model should excludes redundancy.
The appearance of redundancy in the description of such
complex structures as the model of a hybrid system with a
differential-algebraic equations and PDEs is a potential source
of errors. In addition, the model must be easily divided into
blocks and must be easy to use. In order to accommodate these
properties subject-oriented approach is chosen in the design of
the data structure for storing HS model. The implementation
language is Java.

The data structure represents a set of closely related classes
which can be divided into four types (Fig. 2):
1) equation description classes;
2) expression description classes;
3) discrete behavior (states and transition conditions [9])

description classes;
4) entire model description classes.

Expressions are a sequence of elements called tokens.
Tokens are both operands and operators. Two types of
sequences to write expressions are supported: infix and postfix
(inverse polish notation). Postfix notation is useful for

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 88

Fig. 2. Common HSM structure

computing values on the stack and is used for calculations in
step semantic analysis to calculate values of the constants and
initial conditions. Polish-inverted entry is also used in some
versions of the solver ISMA to interpret the expression
directly in the time of the model execution. If the expression
contains only operators of algebraic is considered algebraic. If
the expression contains logical operators it refers to a type of
conditional expressions used in the description of the
conditions of transitions between states. Algebraic expressions
used in the description of the right sides of all considered types
of equations: algebraic, differential, PDEs, and constants. All
of them serve to describe continuous behavior of certain state
of the hybrid system.

Within each state there exists the so-called variable table
that stores equations and variables. For description of the
states and conditions of the transitions between them
responsible the appropriate type of classes. Collection of
states, conditions of transitions between them, and a set of
instantaneous action at the entrance to a condition is called
hybrid automaton. Hybrid automaton has an initial state, which
corresponds to the time t = 0. Complete set of all of the above
classes called the HS model (HSM).

HSM also contains the table of variables which is the parent
of the table of state variables. When calculating the right-hand
side of the equation primarily the equations are searched in the
table of current state variables and if the variable is not
declared in the current state the search continues in parent
table of variables of HSM. Therefore to change the
mathematical model after state change it is enough to point the
new current state.

Work with HSM is accompanied by a number of services:
• ConstValueCalculator is the service which calculates

expressions in the right-hand side of constant at the stage of
semantic analysis;

• HSM2TextDumpTranslator is the debugger of HSM
representing the model in the computer memnory in textual

form;
• Infix2PolizConverter/ Poliz2InfixConverter are

converters of indix and postfix notation;
• Lisma2007Converter are translators of model to previous

version of ISMA;
• FDMConverter, PDEInitialValueCalculator are services

of PDE model analysis whose algorithms will be discussed
below.

For solving PDE in the ISMA environment approximation
of equations for difference grid by finite differences method
[10] is used. This method is used to solve systems with
rectangular boundaries (ex. hydrodynamics and
electrodynamics). In such problems FDM has a sufficiently
high accuracy. At the same time it wins in speed other
methods. Consider the algorithm transition from of PDE to a
system of ordinary differential equations.

Step 1. Construct a list of all variables for discretization. At
this stage special structure for describing variables of storing
type of discretization and accuracy (number of elements of
grid) is analyzed.

Step 2. Divide equations into two groups: permanent and
approximated. Here you need to select the equation that must
be converted to the difference analogue – is analyzed right-
hand sides and identifies those who are in the right part of the
required variables.

Step 3. Construct N-dimensional grid. For all variables for
sampling the number of elements for which they are divided is
defined. The product of these values is the dimension of the
grid.

The number of equations to be obtained by the algorithm
corresponds to the equation:

,p i

i
N n n= ∏ (3)

where N is the number of approximating equations, pn is the

number of PDEs, in , 1,..,i m= is the number of grid points
for each variable approximated.

Numerical approximation of derivatives is performed by the
formulas:

()

2
1 1 1 1

2 2

2
, , 1 .

2
j j j j j j ju u u u u u u

j N
ζ ζ ζ ζ

+ − − +∂ − ∂ − +
= = ≤ ≤

∂ ∆ ∂ ∆
 (4)

Step 4. Apply boundary conditions. For each variable

boundary conditions under which the simulation and
approximation takes place must be specified. At this stage the
variables in the initial and final nodes of the grid (relative to
the current variable) are replaced by the indicated boundary
values. If not then the default is zero.

Step 5. Set initial conditions for all equations.
Step 6. Transition from the grid to the ODE system. Here

you need to go over all grid points. Thus it is necessary to put
a unique identifier for each new equation while maintaining a

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 89

connection that has been set by difference equations. As a
result for each equation in each grid a copy of it in the system
of ODE will be created and the initial condition (t = 0) will be
specified.

VI. SCHEME OF MODEL INTERPRETATION AND SOLVING
Four basic levels of working with model can be

destinguished: the interpretation of the input specification of
the model, controller, solver, graphic interpreter. The Fig. 3
presents the first two levels in more detail.

Level of interpretation is responsible for converting the
model described by the input specification of the universal
representation HSM. After model is input to simulation
environment in text specification before the numerical solution
the model passes through a series of stages of analysis. The
first two stages – the lexical and syntactic analysis. They are
conducted by facilities of the parser generated library antlr4. If
the model is correct, we have an abstract syntax tree (AST).
Bypass AST and further retrieval of information allows you to
fill a unified data structure a model description HS. This is
done using a variety of services:
1) service of sequential approach syntax tree (design pattern

“visitor”);

Fig. 3. Stages of interpreter and controller

2) conversion service from infix into postfix notation and

vice versa;

3) value calculator of constants and initial conditions – a
stack machine for the Polish-inverted notation;

4) service of model validation – semantic analysis.
In case the received data structure is correct in terms of

semantics the interpretation is considered complete and can go
to the level of controller.

Level of the controller is responsible for preparing the
model HSM to the view which satisfies the conditions imposed
by a solver. Also, the controller is responsible for loading of
numerical methods, loading of library functions and other
simulation settings. After the HSM model was obtained from
the interpreter the finite difference method is performed
according to the algorithm described earlier. As a result, the
description of the PDE in the data structure is replaced by a
system of ODE.

Generated data structure describing the internal
representation of the hybrid system model based on the input
specification of the model (text or graphics) should be counted
and get simulation results. For this data structure is go to the
input of the controller. The controller is a bonding layer, which
produces all the necessary transformation and sets the
simulation parameters. In addition, the controller is
responsible for connection and control of library functions.

At this stage, the model is finally formed and fed to the
input of the controller solver. Depending on the selected model
parameters numerical method and the method of event
detection HS is a calculation model. It is worth mentioning
state changes in the calculation. ISMA environment has a
unique method of detecting events [1] that increases the
accuracy of solutions to rigid problems. Subsequent step in the
simulation is the calculation. It is produced using a unique
library of numerical methods ISMA. The simulation shows the
resulting set of points on a plane integrated graphical
visualization tools.

VII. SOLVERS
This section is devoted to the integration algorithms of

variable step based on two-stage and three-stage explicit
methods of Runge-Kutta type that implements schemes of
second and third accuracy order respectively.

The algorithms are applied to numerical solving of Cauchy
problem for ODE systems of the following form:

() ()0 0 0, , .ky f y y t y t t t′ = = ≤ ≤ (5)

Consideration of autonomous problem does not reduce the

generality because non-autonomous problem always can be
cast to autonomous by introducing an additional variable.

Particular attention should be paid to the choice of the
integration method. Fully implicit methods cannot be used
because they require the calculation of ()f y at a potentially
dangerous area, where the model is not defined. Therefore
here we will use explicit methods with solution:

1 1n n n ny y h ϕ+ += + , 0, 1, 2,...n = As a result we obtain the

Controller

Interpreter

Text

Tokens

AST

HSM (ODE+PDE)

finite difference method

Executable code

Simulation results

simulation

lexical analysis

parsing

 semantic Analysis
 building of unified model (HSM)

HSM (ODE)

code generation

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 90

dependence of the predicted integration step 1nh + .
Considering that explicit methods are known by poor

stability this paper examines integration methods with
accuracy and stability control. Generally accuracy and stability
control are used to limit the size of the integration step. As a
result projected step 1nh + is calculated as follows.

The choice of the next integration step size is based on the
proved theorem [4] and can be written as follows:

()1 max min ac st
n nh h h h+

 = , ,  
 (6)

where ach and sth are step sizes obtained as a result of
accuracy control and stability control respectively. This
formula allows to stabilize the step behavior in the area of
solution establishing where stability plays a decisive role.
Because the presence of this area severely limits the use of
explicit methods for solving stiff problems.

A. Two-stage Runge-Kutta method
Suppose that for numerical solving of problem (5) the

following implicit two-stage method of Runge-Kutta type is
used:

1 1 2

1

2 1

0.5(),
(),
().

n n

n n

n n

y y k k
k h f y
k h f y k

+ = + +

=

= +

 (7)

where y and f are real N-dimensional vector-functions, t is
an argument, h is an integration step, 1k and 2k are method
stages and 0.5 is a numerical coefficient defining accuracy and
stability properties of (7).

Inequality for accuracy control has the following form:

2 10.5 .k k ε− ≤ (8)

And inequality for stability control looks as follows:

3 2 2 1
1

2 max (/) 2,i i i i
n

i N
v k k k k

≤ ≤
= − − ≤ (9)

where length of stability interval of the scheme is
approximately equals to 2; 1

ik , 2
ik and 3

ik are the components
of vectors 1k , 2k and auxiliary vector 3k . Stage 3k coincides
with vector 1k for next step and therefore does not lead to
computational costs increasing.

B. Three-stage Runge-Kutta method
Consider implicit three-stage method of Runge-Kutta type

for solving problem (5), which has the following form:

() ()
()

1 1 2 3

1 2 1

3 1 2

1 2 1 ,
6 3 6
, 0.5 ,

2 .

n n

n n

n

y y k k k

k hf y k hf y k

k hf y k k

+ = + + +

= = +

= − +

 (10)

Inequality for accuracy control has the following form:

1 2 32 6 .k k k ε− + ≤ (11)

And inequality for stability control looks as follows:

(),3 1 2 3 2 1
1

0.5 max 2 2.5.i i i i i
n

i N
v k k k k k

≤ ≤
= − + − ≤ (12)

More detailed description of the designated methods can be

found at [4].

VIII. ORGANIZATION OF SEQUENTIAL COMPUTATIONS
Let the method (7) is used for numerical solving of problem

(5) and let the approximate solution ny is known at moment

nt with step nh . Then to obtain the approximate solution

1ny + at moment 1nt + we have the following common
algorithm:

Step 1. Calculate approximate solution 1ny + at moment nt
with step nh according to performing method.

Step 2. Calculate approximate function value 1()nf y + .
Step 3. Obtain integration step accuracy characteristics.
Step 4. If solution is accurate then go to Step 5, else set

integration step nh equals to step ach corrected by accuracy
according to performing method and go to Step 1.

Step 5. Obtain integration step stability characteristics.
Step 6. If solution is accurate then go to Step 7, else set

integration step nh equals to step sth corrected by stability
according to performing method and go to Step 1.

Step 7. Get size of next integration step using (6).
Step 8. Perform next integration step.

IX. ORGANIZATION OF PARALLEL COMPUTATIONS
Developed parallel algorithms are based on the presented

above sequential algorithms with the following differences.
For definiteness we assume that computer system consists of

p processors, N p> and let k is a number of equations per
rank. Then all of N equations should be evenly allocated
between computing nodes. To achieve this goal classical
Round-Robin algorithm is chosen. Also parallel algorithm was
designed to reuse sequential algorithm.

Taking into consideration assumptions about beginning of
sequential method base parallel algorithms can be defined in
the following way:

Step 1. Allocate equations evenly between ranks using

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 91

Round-Robin algorithm.
Step 2. Calculate in each rank approximate solution 1

j
ny + ,

0 j k≤ ≤ at moment nt with step nh according to performing
method.

Step 3. Send obtained 1
j

ny + from each rank to others.
Step 4. Calculate in each rank approximate function value

()1
j

nf y + , 0 j k≤ ≤ .
Step 5. Execute for each rank sequential algorithm from

Step 3 corresponding to accuracy control.

X. REACTION-DIFFUSION PROBLEM SIMULATION
Let us consider specification features and solving of

problem of the designated class. The model [5] is based on
two partial differential equations in two dimensions describes
the change in the concentration of ozone in the stratosphere
during the day. Two variables ic (1, 2i =) describes the
atomic concentration of oxygen (1O) and ozone (3O)
[moles/cm3]. They depend on three variables: the vertical
position z, 30 50z≤ ≤ [km], horizontal x, 0 20x≤ ≤ [km],
and from time to time t, 0 86400t≤ ≤ [sec.]. Equations take
into account the horizontal diffusion, advection, and non-
uniform vertical diffusion. A mathematical model has the
following form

() ()
2

1 2
2 , ,

i i i
i

h v
c c cK K z R c c t
t z zx

 ∂ ∂ ∂ ∂
= + +  ∂ ∂ ∂∂  

, (13)

where 1,2i = , 64 10hK −= ⋅ , () 8 510 z
vK z e−= ⋅ ,

() () ()1 1 2 1 1 2 16 2
1 2 3 4, , 7.4 10R c c t k c k c c k t k t c= − − + ⋅ ⋅ +

() ()2 1 2 1 1 2 2
1 2 4, ,R c c t k c k c c k t c= − − , 1 6.031k = ,

16
2 4.66 10k −= ⋅ ,

()
3

exp 22.62 sin(43200) , 43200
0, 43200

tпри t
k

при t
π − <  =  

≥  
,

()
4

exp 7.601 sin(43200) , 43200
0, 43200

tпри t
k

при t
π − <  =  

≥  
.

This system is a hybrid and has two states with the transition
condition 43200t ≥ .

Boundary conditions 0ic x∂ ∂ = at 0x = , 20x = ,

0ic z∂ ∂ = at 30z = , 50z = . Initial conditions are:

() () ()1 6, ,0 10c x z x zα β= , () () ()2 12, ,0 10c x z x zα β= ,

where () () ()2 41 0.1 1 0.1 1 2x x xα = − − + − ,

() () ()2 41 0.1 4 0.1 4 2z z zβ = − − + − .
Computer model in the ISMA is:

// Constants
const k1 = 6.031;
const k2 = 4.66* pow(1, -16);

const pi = 3.1416;
const time = 0;

// Variables to be sampling
var z[30, 50] step 5;
var x[0, 20] step 5;

// Equations
k3 = exp(-22.62/sin(pi*time/43200));
k4 = exp(-7.601/sin(pi*time/43200));

Kh = 4* pow(10, -6);
Kv = pow(10, -8) * exp(z/5);

C1 '= Kh* D(C1, x, 2) + D(DKV1, z) + R1;
C2 '= Kh* D(C2, x, 2) + D(DKV2, z) + R2;

DKV1 = Kv * D(C1, z);
DKV2 = Kv * D(C2, z);
R1 = -k1*C1 - k2*C1*C2 + 7.4*pow(10, 16) * k3 + k4*C2;
R2 = k1*C1 - k2*C1*C2 - k4*C2;

// Boundary conditions
edge C1=0 on z both;
edge C1=0 on x both;
edge C2=0 on z both;
edge C2=0 on x both;

// Initial values
C1 (0) = pow(10, 6) * (1 - pow(0.1*x-1, 2) + pow(0.1*x-1,

4)/2) * (1- pow(0.1*z-4, 2) + pow(0.1*z-4, 4)/2);

C2 (0) = pow(10, 12) * (1 - pow(0.1*x-1, 2) + pow(0.1*x-1,

4)/2) * (1- pow(0.1*z-4, 2) + pow(0.1*z-4, 4)/2);

// Change of state
state st1 (time>43200) {
 k3=0; k4=0;
} from init;
In this example blocks of model description are marked by

comments: constants, variables to be sampling, algebraic
equations, the system of PDE, boundary conditions, the initial
value (the Cauchy problem) description of the state st1.

Turning to the grid of size J K× by x and z respectively
we obtain ()1 1x J∆ = − and ()1 1z K∆ = − are grid steps by

x and z coordinates, i
jkc is approximation of (), ,i

j kc x z t ,

where ()1jx j x= − ∆ , ()1kz k z= − ∆ , 1 j J≤ ≤ , 1 k K≤ ≤ .

Thus we obtain differential equations system of 2N JK=
dimension. For example, variable x will be divided into 20
parts, and the variable divided into z 40. The result is a grid
dimension of 800. The resulting chart dynamics of the
concentration of the reactants are presented in Fig. 4.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 92

Fig. 4. Atomic nitrogen concentration diagram

In this example blocks of model description are marked by

comments: constants, variables to be sampling, algebraic
equations, the system of PDE, boundary conditions, the initial
value.

The comparative analysis results of implemented algorithms
in sequential and parallel version are given on the Table 1.

Table 1. Computational Costs of the Algorithms

Dimension

Algorithm
RK2ST RK3ST

Sequential
time (ms)

Parallel
time (ms)

Sequential
time (ms)

Parallel
time (ms)

20x20
(N = 800)

4715 811 6839 982

40x40
(N=3200)

112573 8180 199685 11254

60x60
(N=7200) 1214869 93471 2431526 127165

80x80
(N=12800) 4988536 293569 8105641 4756598

100x100
(N=20000) 12098653 776501 24356423 1038794

Problem (13) was calculated for equations from 800 to

20000. MPI is chosen as paralleling technology because this
approach is focused on cluster system and in future will allow
calculating system of much more higher dimension if needed.

Dependence of computational time from system dimension
is shown in Fig 5. Such a significant increase of computational
costs (especially by sequential algorithms) is related to costs of
construction and inversion of Jacoby matrix of increasing
dimension. Also the higher system dimension the advantage of
parallel algorithm becomes even more clearly.

XI. CONCLUSION
In this paper a new class of hybrid systems, continuous

dynamics of which is defined by a system of DAE and PDE
with boundary conditions, within ISMA instrumental
environment is introduced. The architecture of ISMA is
considered. New elements of LISMA language for description
of PDE and boundary conditions language are presented.

Fig. 5. Perfomances of implemented algortithms

Grammar of new language inherited from the old language and
is also context-free. Data structure for storing unified
representation model is designed. Features of the considered
hybrid systems such as the increased stiffness and high
dimension make difficult to apply the commonly used
sequential methods of numerical analysis. Steps of parsing and
transition to the solver are discussed in detail. An example of
reaction-diffusion is given, text model is obtained and
numerical calculations are carried out. The experiments show
that parallel algorithms based on explicit schemes with
accuracy and stability control are more suitable for analysis of
system of the designated class.

REFERENCES
[1] E.A. Novikov, Yu.V. Shornikov, “Computer simulation of stiff hybrid

systems: monograph”, Novosibirsk, Russia: Publishing house of NSTU,
2012.

[2] J. Esposito, V. Kumar, G.J. Pappas “Accurate event detection for
simulating hybrid systems”, Hybrid Systems: Computation and Control
(HSCC), Springer-Verlag, vol. LNCS 2034, 1998.

[3] E.A. Novikov, Yu.V. Shornikov “Numerical simulation of hybrid
systems by Runge-Kutta method of second accuracy order”, Computing
technologies, vol. 13 #2, pp. 98-104, 2008.

[4] E.A. Novikov “Explicit methods for stiff systems”, Novosibirsk: Nauka,
1997.

[5] Peter N. Brown, Alan C. Hindmarsh, Matrix Free Methods in the
Solution of Stiff systems of ODEs, Lawrence Livermore National
Laboratory, 1983. – 38p.

[6] Qinghua Feng, Bin Zheng, “Application of the Alternating Group
Explicit Method for Convection-Diffusion Equations”, WSEAS
Transactions on Mathematics, Issue 3, Volume 8, March 2009.

[7] Yu.V. Shornikov “Instrumental facilities of machine analysis”
Yu.V. Shornikov, V.S. Druzhinin, N.A. Makarov, K.V. Omelchenko,
I.N.Tomilov. Certificate of official program registration # 2005610126,
Moscow: Rospatent, 2005.

[8] Yu.V. Shornikov, I.N. Tomilov, “The Program of Language Processor
from Language LISMA”. Certificate of official program registration #
2007611024, Moscow: Rospatent, 2007.

[9] Benjamin De Leeuw, Albert Hoogewijs, “Statechart Normalizations”,
WSEAS Transactions on Information Science & Applications, Issue 11,
Volume 7, November 2010.

[10] Bin Zheng, Qinghua Feng, “Finite Difference Methods with Intrinsic
Parallelism for Parabolic Equations”, WSEAS Transactions on
Mathematics, Issue 4, Volume 8, April 2009.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 93

