
 

 

  
Abstract— A class of hybrid systems (HS) with modal behavior 

specified on the class of systems with partial differential equations 
(PDE) is considered. Architecture of instrumental environment for 
simulation of complex dynamic and hybrid systems is given. Syntax-
oriented facilities for the considered problems specification are 
proposed. Algorithms of finite difference method for the transition 
from PDE to ordinary differential equations system are given. 
Universal data structure for storing HS models has been designed and 
proved. Algorithms of variable step with accuracy and stability 
control of numerical scheme for solving high-dimensional Cauchy 
problems are proposed. The algorithms are based on explicit methods 
of Runge-Kutta type. Sequential and parallel implementation of 
numerical methods is presented. The example of specification and 
analysis of reaction-diffusion problem is given. 
 

Keywords— Autogenerated parsers, grammar, hybrid system, 
Runge-Kutta methods, sequential and parallel implementation, 
software architecture, system of PDE. 

I. INTRODUCTION 
ANY engineering problems are characterized by points 
of discontinuity in the first derivative of the phase 

variables. Such combined discrete-continuous problems called 
hybrid or switched systems [1], [2]. In this paper we propose a 
new system architecture of ISMA (that in Russian means 
Instrumental Facilities of Machine Analysis) based on the 
methodology of hybrid systems (HS). This article examines a 
new application of ISMA – systems of partial differential 
equations (PDE) with constraints. PDEs are used to describe 
processes in the chemical-technological systems, elasticity 
problems, etc. To achieve this goal a series of consecutive 
problems is solved: the textual specification of ISMA 
environment models expanded by constructions describing 
PDEs; a special data structure for storing the model in memory 
is developed; approximation algorithms are implemented for 
transition from a system of PDE to ODE system. In many 
cases, the problem is compounded by high dimensionality and 
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stiffness of the considered system. To solve moderately stiff 
problems integration algorithms based on the explicit methods 
to control accuracy and stability of the numerical scheme can 
be applied [3], [4]. Furthermore when problem dimension 
reaches several thousands of equations and more its 
calculation by sequential methods becomes ineffective and 
requires the use of multiprocessor computer systems. In this 
situation parallel computation of local behaviors using cluster 
technologies can significantly improve the quality and 
efficiency of calculations. This paper discusses sequential and 
parallel implementation of algorithms of variable step based 
on two-stage and three-stage schemes of Runge-Kutta type of 
respectively second and third order of accuracy. These 
integration algorithms are well suited for solving hybrid 
problems including moderately stiff problems. As an example 
for specification and comparative analysis of the considered 
algorithms the reaction-diffusion problem [5, 6] is examined. 

II. CLASS OF SYSTEMS 
There are many systems (mechanical, electrical, chemical, 

biological, etc.), the behavior of which can be conveniently 
described as a sequential change of continuous modes [1]. 
Each mode is given by a set of differential-algebraic equations 
with the following constraints: 
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The vector-function ( , , )g x y t  is referred to as event 

function or guard [2]. A predicate pr  determines the 
conditions of existence in the corresponding mode or state. 
Inequality ( , , ) 0g x y t <  means that the phase trajectory in the 
current mode should not cross the border ( , , ) 0g x y t = . 
Events occurring in violation of this condition and leading to 
transition into another mode without crossing the border are 
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referred to as one-sided. 
This class of systems is expanding by the addition of 

boundary conditions for PDEs. Continuous behavior of HS is 
determined by the systems differential-algebraic equations and 
PDEs. In the proposed implementation the equations with the 
maximal order not higher than second are considered. Applied 
algorithms do not impose a restriction on number of variables 
– i.e. their number is theoretically unlimited. Nevertheless 
should take into account that the introduction of each new 
variable leads to a tremendous increase in the number of 
equations generated as a result of the finite differences 
method. Therefore the real limit on the number of variables is 
imposed by computing resources: computer software as well as 
computer itself. The considered equations are nonlinear type. 
The linear equation are also supported and regarded as a 
narrow equations type. 

In this paper we consider the type of nonhomogeneous PDE. 
The coefficients used in partial differential equations 
considered in this paper can be either constant or variable. 
This paper discusses the parabolic type equations. Boundary 
conditions of considered problems must be rectangular area 
Ω  – rectangle, parallelepiped, etc. 

Thus, the proposed expansion of the instrumental 
environment designed for the analysis of PDE type equation 
(2): heterogeneous, non-linear, second order, with constant and 
variable coefficients, with an unlimited number of variables N 
and limited by N-dimensional rectangular grid. 
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where n  denotes the normal to the boundary and ( )z p  is a 
given function to the boundary. 

III. ISMA SIMULATION ENVIRONMENT 
Simulation environment of complex dynamical and hybrid 

systems called ISMA is developed at the department of 
Automated control systems of Novosibirsk state technical 
university (Russia) [7]. 

Specification of hybrid systems is carried out using 

graphical and symbolic languages that are the system content 
of instrumental environment. Analytical content is provided by 
numerical methods and algorithms for computer analysis 
corresponding to the chosen class of systems and methods for 
solving these models. ISMA environment is developed subject 
to simplicity of description of dynamical and hybrid models in 
the language that is maximally close to the object language. 
Main features of ISMA are the following: 
1) Composition of hybrid models is carried out in visual 

structural-textual form; 
2) Structural form of model description corresponds to the 

classical description of systems by block diagrams and 
includes all necessary components such as integrators, 
accumulators, amplifiers, signal sources, nonlinear 
elements and others; 

3) Language of symbolic specification is approached 
maximal to the language of mathematical formulas; 

4) Special module for specification of problems of chemical 
kinetics in the language of chemical reactions which 
automatically translates them into a system of differential 
equations; 

5) A variety of traditional and original numerical methods 
included methods that are intended for the analysis of 
ODE systems of medium and high stiffness; 

6) Computer simulation in real time; 
7) Graphic interpreter called GRIN provides a wide range of 

tools for analysis and visualization of simulation results 
such as scaling, tracing, optimization, displaying in the 
logarithmic scale and phase plane; 

8) Extension of system functionality by adding new typical 
components and numerical methods. 

Architecture of ISMA software package (Fig. 1) is designed 
to unify existing mathematical program software for analysis 
of problems in various object domains: chemical kinetics, 
automation, electricity, etc. Blocks that belong to this paper 
marked with a dark color. 

IV. A NEW DESCRIPTION LANGUAGE OF HS MODELS WITH 
PDES 

One of the many approaches used is ISMA to describe HS 
models is textual representation. For this purpose a special 
language LISMA (Language of ISMA) is developed [8]. 

Grammar of LISMA corresponds to the second type 
according to the Chomsky classification and is context-free. 
This means that the left side of all productions are represented 
by single nonterminals which are objects that represents an 
entity of language (eg: a formula, an arithmetic expression, a 
command) and do not have a specific character value.  

All nonterminals of LISMA grammar can be divided into 
the following groups: 

• main group is the main unit that is the body of programm 
model and includes all the remaining units; 

• expression is a number of nonterminals used to describe 
algebraic expressions, logical expressions, operators and 
operands; 
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Fig. 1. Architecture of ISMA 

 
• function is a call of embedded function which are an 

integral part of any mathematical expression(eg: tg, sin, pow, 
swrt, etc.); 

• constant is constants. Values can be defined by 
expression that is evaluated at the stage of semantic analysis; 

• algebraic equations are algebraic equations whose 
solution of is performed at each step of the model calculation; 

• differential equations and initial condition – these 
non-terminals are used for the description of the Cauchy 

problem; 
• state is a unit describing the discrete behavior of HS. 

Includes state and transition condition to this state; 
• setter are instant actions performed at the moment of HS 

state change; 
• macros is a macrounit of mathematical model, which 

substitution is performed at the preprocessing stage; 
• partial differential equations are facilities to work with PDE 
which are described in more details hereinafter. 

However existing description tools are not suitable enough 
to model boundary value problems of PDE systems. Therefore 
new language structures are introduced to describe specific 
elements. Before the development of grammar of language 
elements a comparative analysis of multiple peers was made. 
In these grammars the following characteristics were 

emphasized: flexibility and extensibility, usability, ease of 
perception, the corresponding mathematical description. Using 
these criteria multiple languages were evaluated with the 
ability to describe models with PDE equations. The main ones 
are the following: FlexPDE, Wolfram Mathematica, gPROMS, 
EMSO, ASCEND. In many languages to describe the partial 
derivative functional style is used, in which the derivative is a 
function of several arguments. Based on review and analysis of 
mentioned simulation environments LISMA has been extended 
by description of boundary value problems with PDEs. This 
extended grammar was developed in the ideology of 
inheritance. 

To describe a system of differential equations, boundary 
conditions and initial values a new LISMA language features 
are introduced. Explicit declaration of variables that should be 
subjected to discretization is introduced. For this purpose a 
special structure is used with grammar written in the Backus-
Naur form as follows: 

apx _var → 'var' var_ident ' [' 
DecimalLiteral ',' DecimalLiteral ']' 
apx_var_tail ';' 

 
apx_var_tail → 'apx' DecimalLiteral 

| 'step' (FloatingPointLiteral | DecimalLiteral) 

For example, the following expression corresponds to the 
given grammar: 

var x[0, 20] apx 30; 

var y[0, 30] step 0.5; 

In this structure boundaries of the variable are defined in 
square brackets. The following constructions are the keyword 
apx (short for approximation) or the keyword step. Keyword 
apx used if we want to break the considered domain of 
definition for a fixed number of segments, thus realizing the 
priority execution speed. We use the keyword step if step size 
is important – an accuracy priority. Number of segments and 
step size are written following the keyword. 

Several elements are introduced in the description of the 
equations. First, it is an explicit indication of variables that 
affect the equation on the left side of the equation. This record 
type is optional and can be omitted as before on the left side to 
specify variables in parentheses. Partial derivatives are 
described in a functional style. Letter D is used as function 
name – the most concise version, which is not lost in code, 
mostly lowercase. The arguments used name of a differentiable 
function, the variable on which the derivative is taken and the 
order of the derivative. If the derivative is first-order, the latter 
argument is omitted suggesting that it is taken equals to 1 by 
default. This approach to the description of the derivative 
satisfies all the previously entered criteria: it allows you to use 
all sorts of variables which should be differentiated; it does not 
contain descriptive information duplication and laconic, and 
thus it is practical and easy to perception; and finally it is easy 
to relate to mathematical description. As a result, the 
description of the PDE as follows: 
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partial_operand → 'D' '(' Identifier ',' Identifier 

(',' DecimalLiteral)? ')' 

Below is an example of this language construct: 

c1' = Kh*D(c1,x,2) + D(Kv*D(c1,z), z); 

c2' = D(c1,x,2)*pow(x,2); 

For numerical solution of PDEs by FDM is necessary to 
determine the boundary conditions – values of the derivative at 
the edges of the grid under consideration. It looks as follows: 

edge → 'edge' edge_eq 'on' Identifier edge_side ';' 

edge_eq → Identifier '=' 

(FloatingPointLiteral | DecimalLiteral) 

edge_side → 'left' | 'right' | 'both' 

Construction contains a partial derivative equation with a 
certain value on the right side. This allows you to specify a 
description for a particular variable value and the type of 
border: left, right or both. Below is an example of all three 
types of boundary conditions: 

edge D(c1, x) = 0 on left; 

edge D(c1, x) = 20 on right; 

edge D(c1, y) =0 on both; 

LISMA grammar is designed in such way that the choice of 
the inference rule requires only the two foolowing symbols of 
analyzed chain. Therefore the grammar of LISMA corresponds 
to the LL(2) type. 

Lexical and syntactic analyzers for modified language are 
developed using the library Antlr4. This library allows to build 
parser and lexer in JAVA on the description of LL(*)-
grammaer in language close to EBNF. This library is ideal for 
problems of fast and efficient automatic construction of 
parsers. Under the ISMA project it is decided to use antlr4, 
because it is quite applicable to the existing grammar and own 
work to create parsers require significant investment in the 
development and documentation. In addition, experience in 
using Antlr4 can be successfully applied in other projects. 

To work with ANTLR LISMA grammar is described in a 
special file of .g4 format containing elements of lexer 
(keywords, identifiers, numers, etc.) and elements of parser. 
ANTLR generates the classes required to java: LismaLexer is 
a lexical analyser, LismaParser is a syntax analyser, 
LismaBaseVisitor is the instrument for convenient bypassing 
of syntax tree. MacrosPreparser is the instrument 
preprocessing the input model and generating macro. It is used 
before parsing the model in ISMA. Then the model is 
partitioned to tokens by lexical analyzer and the tree obtained 
as the result of parsing is bypassed. The last stage is the 
semantic analysis in which the check, the interpretation of 
model parts and the fill of data structure in memory are made. 
For this stage a number of tools is developed that reflects 

different aspects of modeling in ISMA. Let us consider them 
in the order in which them are used in semantic analysis: 

• StateVisitor fills information about hybrid system states; 
• VariableTableAggregatorVisitor searches variables and 

fills tables of model variables in whole and for each state in 
particular; 

• PopulateExpressionVisitor generates right sides of all 
equations based on variables registered on the previous step; 

• PopulateStateInfoVisitor build the map of state changes 
(transition conditions between certain states); 

• BoundInfoVisitor forms the boundary conditions of 
model with PDE; 

• CalcConstVisitor calculates constants and initial 
conditions of Cauchy problem. 

V. UNIFIED DESCRIPTION SECTION IN ISMA ENVIRONMENT 
After the language grammar is defined, a data structure for 

storing models in memory after parsing should be developed. 
This data structure must be universal for all types of model 
specification. With several ways to describe HS – graphics, 
text or block diagrams, we should be able to lead each of them 
to a single universal form, which subsequently may be 
transmitted to solver input. This approach simplifies the task 
of unification of ISMA software. For a more specific 
application of the simulation environment ISMA it is 
necessary to develop a graphical part responsible only for 
model specification. In this description module the modules of 
calculation and graphical interpretation remain unchanged. 

When designing such a data structure many factors should 
be taken into account. This is necessary to ensure that upon 
presentation of new conditions the whole system of modeling 
was not inapplicable. Thus, the developed data structure 
should be easily expandable. Adding new elements to the 
model should not be a need to rewrite large parts of the 
system. Furthermore, the model should excludes redundancy. 
The appearance of redundancy in the description of such 
complex structures as the model of a hybrid system with a 
differential-algebraic equations and PDEs is a potential source 
of errors. In addition, the model must be easily divided into 
blocks and must be easy to use. In order to accommodate these 
properties subject-oriented approach is chosen in the design of 
the data structure for storing HS model. The implementation 
language is Java. 

The data structure represents a set of closely related classes 
which can be divided into four types (Fig. 2): 
1) equation description classes; 
2) expression description classes; 
3) discrete behavior (states and transition conditions [9]) 

description classes; 
4) entire model description classes. 

Expressions are a sequence of elements called tokens. 
Tokens are both operands and operators. Two types of 
sequences to write expressions are supported: infix and postfix 
(inverse polish notation). Postfix notation is useful for 
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Fig. 2. Common HSM structure 

 
computing values on the stack and is used for calculations in 
step semantic analysis to calculate values of the constants and 
initial conditions. Polish-inverted entry is also used in some 
versions of the solver ISMA to interpret the expression 
directly in the time of the model execution. If the expression 
contains only operators of algebraic is considered algebraic. If 
the expression contains logical operators it refers to a type of 
conditional expressions used in the description of the 
conditions of transitions between states. Algebraic expressions 
used in the description of the right sides of all considered types 
of equations: algebraic, differential, PDEs, and constants. All 
of them serve to describe continuous behavior of certain state 
of the hybrid system. 

Within each state there exists the so-called variable table 
that stores equations and variables. For description of the 
states and conditions of the transitions between them 
responsible the appropriate type of classes. Collection of 
states, conditions of transitions between them, and a set of 
instantaneous action at the entrance to a condition is called 
hybrid automaton. Hybrid automaton has an initial state, which 
corresponds to the time t = 0. Complete set of all of the above 
classes called the HS model (HSM). 

HSM also contains the table of variables which is the parent 
of the table of state variables. When calculating the right-hand 
side of the equation primarily the equations are searched in the 
table of current state variables and if the variable is not 
declared in the current state the search continues in parent 
table of variables of HSM. Therefore to change the 
mathematical model after state change it is enough to point the 
new current state. 

Work with HSM is accompanied by a number of services: 
• ConstValueCalculator is the service which calculates 

expressions in the right-hand side of constant at the stage of 
semantic analysis; 

• HSM2TextDumpTranslator is the debugger of HSM 
representing the model in the computer memnory in textual 

form; 
• Infix2PolizConverter/ Poliz2InfixConverter are 

converters of indix and postfix notation; 
• Lisma2007Converter are translators of model to previous 

version of ISMA; 
• FDMConverter, PDEInitialValueCalculator are services 

of PDE model analysis whose algorithms will be discussed 
below. 

For solving PDE in the ISMA environment approximation 
of equations for difference grid by finite differences method 
[10] is used. This method is used to solve systems with 
rectangular boundaries (ex. hydrodynamics and 
electrodynamics). In such problems FDM has a sufficiently 
high accuracy. At the same time it wins in speed other 
methods. Consider the algorithm transition from of PDE to a 
system of ordinary differential equations. 

Step 1. Construct a list of all variables for discretization. At 
this stage special structure for describing variables of storing 
type of discretization and accuracy (number of elements of 
grid) is analyzed. 

Step 2. Divide equations into two groups: permanent and 
approximated. Here you need to select the equation that must 
be converted to the difference analogue – is analyzed right-
hand sides and identifies those who are in the right part of the 
required variables. 

Step 3. Construct N-dimensional grid. For all variables for 
sampling the number of elements for which they are divided is 
defined. The product of these values is the dimension of the 
grid. 

The number of equations to be obtained by the algorithm 
corresponds to the equation: 

 
,p i

i
N n n= ∏  (3) 

 
where N  is the number of approximating equations, pn  is the 

number of PDEs, in , 1,..,i m=  is the number of grid points 
for each variable approximated. 

Numerical approximation of derivatives is performed by the 
formulas: 
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Step 4. Apply boundary conditions. For each variable 

boundary conditions under which the simulation and 
approximation takes place must be specified. At this stage the 
variables in the initial and final nodes of the grid (relative to 
the current variable) are replaced by the indicated boundary 
values. If not then the default is zero. 

Step 5. Set initial conditions for all equations. 
Step 6. Transition from the grid to the ODE system. Here 

you need to go over all grid points. Thus it is necessary to put 
a unique identifier for each new equation while maintaining a 
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connection that has been set by difference equations. As a 
result for each equation in each grid a copy of it in the system 
of ODE will be created and the initial condition (t = 0) will be 
specified. 

VI. SCHEME OF MODEL INTERPRETATION AND SOLVING 
Four basic levels of working with model can be 

destinguished: the interpretation of the input specification of 
the model, controller, solver, graphic interpreter. The Fig. 3 
presents the first two levels in more detail. 

Level of interpretation is responsible for converting the 
model described by the input specification of the universal 
representation HSM. After model is input to simulation 
environment in text specification before the numerical solution 
the model passes through a series of stages of analysis. The 
first two stages – the lexical and syntactic analysis. They are 
conducted by facilities of the parser generated library antlr4. If 
the model is correct, we have an abstract syntax tree (AST). 
Bypass AST and further retrieval of information allows you to 
fill a unified data structure a model description HS. This is 
done using a variety of services: 
1) service of sequential approach syntax tree (design pattern 

“visitor”); 
 

 
Fig. 3. Stages of interpreter and controller 

 
2) conversion service from infix into postfix notation and 

vice versa; 

3) value calculator of constants and initial conditions – a 
stack machine for the Polish-inverted notation; 

4) service of model validation – semantic analysis. 
In case the received data structure is correct in terms of 

semantics the interpretation is considered complete and can go 
to the level of controller. 

Level of the controller is responsible for preparing the 
model HSM to the view which satisfies the conditions imposed 
by a solver. Also, the controller is responsible for loading of 
numerical methods, loading of library functions and other 
simulation settings. After the HSM model was obtained from 
the interpreter the finite difference method is performed 
according to the algorithm described earlier. As a result, the 
description of the PDE in the data structure is replaced by a 
system of ODE. 

Generated data structure describing the internal 
representation of the hybrid system model based on the input 
specification of the model (text or graphics) should be counted 
and get simulation results. For this data structure is go to the 
input of the controller. The controller is a bonding layer, which 
produces all the necessary transformation and sets the 
simulation parameters. In addition, the controller is 
responsible for connection and control of library functions. 

At this stage, the model is finally formed and fed to the 
input of the controller solver. Depending on the selected model 
parameters numerical method and the method of event 
detection HS is a calculation model. It is worth mentioning 
state changes in the calculation. ISMA environment has a 
unique method of detecting events [1] that increases the 
accuracy of solutions to rigid problems. Subsequent step in the 
simulation is the calculation. It is produced using a unique 
library of numerical methods ISMA. The simulation shows the 
resulting set of points on a plane integrated graphical 
visualization tools. 

VII. SOLVERS 
This section is devoted to the integration algorithms of 

variable step based on two-stage and three-stage explicit 
methods of Runge-Kutta type that implements schemes of 
second and third accuracy order respectively. 

The algorithms are applied to numerical solving of Cauchy 
problem for ODE systems of the following form: 

 
( ) ( )0 0 0, , .ky f y y t y t t t′ = = ≤ ≤  (5) 

 
Consideration of autonomous problem does not reduce the 

generality because non-autonomous problem always can be 
cast to autonomous by introducing an additional variable. 

Particular attention should be paid to the choice of the 
integration method. Fully implicit methods cannot be used 
because they require the calculation of ( )f y  at a potentially 
dangerous area, where the model is not defined. Therefore 
here we will use explicit methods with solution: 

1 1n n n ny y h ϕ+ += + , 0, 1, 2,...n =  As a result we obtain the 
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dependence of the predicted integration step 1nh + . 
Considering that explicit methods are known by poor 

stability this paper examines integration methods with 
accuracy and stability control. Generally accuracy and stability 
control are used to limit the size of the integration step. As a 
result projected step 1nh +  is calculated as follows. 

The choice of the next integration step size is based on the 
proved theorem [4] and can be written as follows: 

 

( )1 max min ac st
n nh h h h+

 = , ,  
 (6) 

 
where ach  and sth  are step sizes obtained as a result of 
accuracy control and stability control respectively. This 
formula allows to stabilize the step behavior in the area of 
solution establishing where stability plays a decisive role. 
Because the presence of this area severely limits the use of 
explicit methods for solving stiff problems. 

A. Two-stage Runge-Kutta method 
Suppose that for numerical solving of problem (5) the 

following implicit two-stage method of Runge-Kutta type is 
used: 

 
1 1 2

1

2 1

0.5( ),
( ),
( ).

n n

n n

n n

y y k k
k h f y
k h f y k

+ = + +

=

= +

 (7) 

 
where y and f  are real N-dimensional vector-functions, t is 
an argument, h  is an integration step, 1k  and 2k  are method 
stages and 0.5 is a numerical coefficient defining accuracy and 
stability properties of (7). 

Inequality for accuracy control has the following form: 
 

2 10.5 .k k ε− ≤  (8) 
 
And inequality for stability control looks as follows: 
 

3 2 2 1
1

2 max ( / ) 2,i i i i
n

i N
v k k k k

≤ ≤
= − − ≤  (9) 

 
where length of stability interval of the scheme is 
approximately equals to 2; 1

ik , 2
ik  and 3

ik  are the components 
of vectors 1k , 2k  and auxiliary vector 3k . Stage 3k  coincides 
with vector 1k  for next step and therefore does not lead to 
computational costs increasing. 

B. Three-stage Runge-Kutta method 
Consider implicit three-stage method of Runge-Kutta type 

for solving problem (5), which has the following form: 
 

( ) ( )
( )

1 1 2 3

1 2 1

3 1 2

1 2 1 ,
6 3 6
, 0.5 ,

2 .

n n

n n

n

y y k k k

k hf y k hf y k

k hf y k k

+ = + + +

= = +

= − +

 (10) 

 
Inequality for accuracy control has the following form: 
 

1 2 32 6 .k k k ε− + ≤  (11) 
 
And inequality for stability control looks as follows: 
 

( ),3 1 2 3 2 1
1

0.5 max 2 2.5.i i i i i
n

i N
v k k k k k

≤ ≤
= − + − ≤  (12) 

 
More detailed description of the designated methods can be 

found at [4]. 

VIII. ORGANIZATION OF SEQUENTIAL COMPUTATIONS 
Let the method (7) is used for numerical solving of problem 

(5) and let the approximate solution ny  is known at moment 

nt  with step nh . Then to obtain the approximate solution 

1ny +  at moment 1nt +  we have the following common 
algorithm: 

Step 1. Calculate approximate solution 1ny +  at moment nt  
with step nh  according to performing method. 

Step 2. Calculate approximate function value 1( )nf y + . 
Step 3. Obtain integration step accuracy characteristics. 
Step 4. If solution is accurate then go to Step 5, else set 

integration step nh  equals to step ach  corrected by accuracy 
according to performing method and go to Step 1. 

Step 5. Obtain integration step stability characteristics. 
Step 6. If solution is accurate then go to Step 7, else set 

integration step nh  equals to step sth  corrected by stability 
according to performing method and go to Step 1. 

Step 7. Get size of next integration step using (6). 
Step 8. Perform next integration step. 

IX. ORGANIZATION OF PARALLEL COMPUTATIONS 
Developed parallel algorithms are based on the presented 

above sequential algorithms with the following differences. 
For definiteness we assume that computer system consists of 

p  processors, N p>  and let k  is a number of equations per 
rank. Then all of N  equations should be evenly allocated 
between computing nodes. To achieve this goal classical 
Round-Robin algorithm is chosen. Also parallel algorithm was 
designed to reuse sequential algorithm. 

Taking into consideration assumptions about beginning of 
sequential method base parallel algorithms can be defined in 
the following way: 

Step 1. Allocate equations evenly between ranks using 
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Round-Robin algorithm. 
Step 2. Calculate in each rank approximate solution 1

j
ny + , 

0 j k≤ ≤  at moment nt  with step nh  according to performing 
method. 

Step 3. Send obtained 1
j

ny +  from each rank to others. 
Step 4. Calculate in each rank approximate function value 

( )1
j

nf y + , 0 j k≤ ≤ . 
Step 5. Execute for each rank sequential algorithm from 

Step 3 corresponding to accuracy control. 

X. REACTION-DIFFUSION PROBLEM SIMULATION 
Let us consider specification features and solving of 

problem of the designated class. The model [5] is based on 
two partial differential equations in two dimensions describes 
the change in the concentration of ozone in the stratosphere 
during the day. Two variables ic  ( 1, 2i = ) describes the 
atomic concentration of oxygen ( 1O ) and ozone ( 3O ) 
[moles/cm3]. They depend on three variables: the vertical 
position z, 30 50z≤ ≤  [km], horizontal x, 0 20x≤ ≤  [km], 
and from time to time t, 0 86400t≤ ≤  [sec.]. Equations take 
into account the horizontal diffusion, advection, and non-
uniform vertical diffusion. A mathematical model has the 
following form 

( ) ( )
2

1 2
2 , ,

i i i
i

h v
c c cK K z R c c t
t z zx

 ∂ ∂ ∂ ∂
= + +  ∂ ∂ ∂∂  

, (13) 

where 1,2i = , 64 10hK −= ⋅ , ( ) 8 510 z
vK z e−= ⋅ , 

( ) ( ) ( )1 1 2 1 1 2 16 2
1 2 3 4, , 7.4 10R c c t k c k c c k t k t c= − − + ⋅ ⋅ +

( ) ( )2 1 2 1 1 2 2
1 2 4, ,R c c t k c k c c k t c= − − , 1 6.031k = , 

16
2 4.66 10k −= ⋅ , 

( )
3

exp 22.62 sin( 43200) , 43200
0, 43200

tпри t
k

при t
π − <  =  

≥  
, 

( )
4

exp 7.601 sin( 43200) , 43200
0, 43200

tпри t
k

при t
π − <  =  

≥  
. 

This system is a hybrid and has two states with the transition 
condition 43200t ≥ . 

Boundary conditions 0ic x∂ ∂ =  at 0x = , 20x = , 

0ic z∂ ∂ =  at 30z = , 50z = . Initial conditions are: 

( ) ( ) ( )1 6, ,0 10c x z x zα β= , ( ) ( ) ( )2 12, ,0 10c x z x zα β= , 

where ( ) ( ) ( )2 41 0.1 1 0.1 1 2x x xα = − − + − , 

( ) ( ) ( )2 41 0.1 4 0.1 4 2z z zβ = − − + − . 
Computer model in the ISMA is: 

// Constants 
const k1 = 6.031; 
const k2 = 4.66* pow(1, -16); 

const pi = 3.1416; 
const time = 0; 
 
// Variables to be sampling  
var z[30, 50] step 5; 
var x[0, 20] step 5; 
 
// Equations 
k3 = exp(-22.62/sin(pi*time/43200)); 
k4 = exp(-7.601/sin(pi*time/43200)); 
 
Kh = 4* pow(10, -6); 
Kv = pow(10, -8) * exp(z/5); 
 
C1 '= Kh* D(C1, x, 2) + D(DKV1, z) + R1; 
C2 '= Kh* D(C2, x, 2) + D(DKV2, z) + R2; 
 
DKV1 = Kv * D(C1, z); 
DKV2 = Kv * D(C2, z); 
R1 = -k1*C1 - k2*C1*C2 + 7.4*pow(10, 16) * k3 + k4*C2; 
R2 = k1*C1 - k2*C1*C2 - k4*C2; 
 
// Boundary conditions 
edge C1=0 on z both; 
edge C1=0 on x both; 
edge C2=0 on z both; 
edge C2=0 on x both; 
 
// Initial values 
C1 (0) = pow(10, 6) * (1 - pow(0.1*x-1, 2) + pow(0.1*x-1, 

4)/2) * (1- pow(0.1*z-4, 2) + pow(0.1*z-4, 4)/2 ); 
 
C2 (0) = pow(10, 12) * (1 - pow(0.1*x-1, 2) + pow(0.1*x-1, 

4)/2) * (1- pow(0.1*z-4, 2) + pow(0.1*z-4, 4)/2 ); 
 
// Change of state 
state st1 (time>43200) { 
 k3=0; k4=0; 
} from init; 
In this example blocks of model description are marked by 

comments: constants, variables to be sampling, algebraic 
equations, the system of PDE, boundary conditions, the initial 
value (the Cauchy problem) description of the state st1. 

Turning to the grid of size J K×  by x  and z  respectively 
we obtain ( )1 1x J∆ = −  and ( )1 1z K∆ = − are grid steps by 

x and z  coordinates, i
jkc  is approximation of ( ), ,i

j kc x z t , 

where ( )1jx j x= − ∆ , ( )1kz k z= − ∆ , 1 j J≤ ≤ , 1 k K≤ ≤ . 

Thus we obtain differential equations system of 2N JK=  
dimension. For example, variable x will be divided into 20 
parts, and the variable divided into z 40. The result is a grid 
dimension of 800. The resulting chart dynamics of the 
concentration of the reactants are presented in Fig. 4. 
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Fig. 4. Atomic nitrogen concentration diagram 

 
In this example blocks of model description are marked by 

comments: constants, variables to be sampling, algebraic 
equations, the system of PDE, boundary conditions, the initial 
value. 

The comparative analysis results of implemented algorithms 
in sequential and parallel version are given on the Table 1. 

 
Table 1. Computational Costs of the Algorithms 

Dimension 

Algorithm 
RK2ST RK3ST 

Sequential 
time (ms) 

Parallel 
time (ms) 

Sequential 
time (ms) 

Parallel 
time (ms) 

20x20 
(N = 800) 

4715 811 6839 982 

40x40 
(N=3200) 

112573 8180 199685 11254 

60x60 
(N=7200) 1214869 93471 2431526 127165 

80x80 
(N=12800) 4988536 293569 8105641 4756598 

100x100 
(N=20000) 12098653 776501 24356423 1038794 

 
Problem (13) was calculated for equations from 800 to 

20000. MPI is chosen as paralleling technology because this 
approach is focused on cluster system and in future will allow 
calculating system of much more higher dimension if needed. 

Dependence of computational time from system dimension 
is shown in Fig 5. Such a significant increase of computational 
costs (especially by sequential algorithms) is related to costs of 
construction and inversion of Jacoby matrix of increasing 
dimension. Also the higher system dimension the advantage of 
parallel algorithm becomes even more clearly. 

XI. CONCLUSION 
In this paper a new class of hybrid systems, continuous 

dynamics of which is defined by a system of DAE and PDE 
with boundary conditions, within ISMA instrumental 
environment is introduced. The architecture of ISMA is 
considered. New elements of LISMA language for description 
of PDE and boundary conditions language are presented. 

 
Fig. 5. Perfomances of implemented algortithms 

 
Grammar of new language inherited from the old language and 
is also context-free. Data structure for storing unified 
representation model is designed. Features of the considered 
hybrid systems such as the increased stiffness and high 
dimension make difficult to apply the commonly used 
sequential methods of numerical analysis. Steps of parsing and 
transition to the solver are discussed in detail. An example of 
reaction-diffusion is given, text model is obtained and 
numerical calculations are carried out. The experiments show 
that parallel algorithms based on explicit schemes with 
accuracy and stability control are more suitable for analysis of 
system of the designated class. 
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