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Abstract—When dealing with extreme values estimation, the
threshold models are often used. However, a proper threshold selec-
tion is one of the problems which have to be solved. In this paper, we
concentrate on this issue in order to compare an automated threshold
selection based on multiple-threshold model with double bootstrap
technique based on semiparametric estimation. Both estimation pro-
cedures are compared using simulations. A case study is carried out
to evaluate estimations of intensity-duration-frequency curves which
represent commonly used hydrological tool. A special attention is
also paid to the assessment of an impact of the series length on the
estimation quality.

Keywords—Extreme value, bootstrap, generalized Pareto distribu-
tion, moment estimator, peaks-over-threshold.

I. INTRODUCTION

T he interest in extreme hydrological events prediction has
lately increased in Central Europe (see e.g. [1]). To en-

sure protection of people and property from the harmful effects
of hydrological situations (see e.g. [2]), proper evaluations of
the available data should be carried out. On that account, many
authors have studied the impact of using modern statistical
methods on evaluation of hydrological data (see e.g. [3],
[4]). The most frequent statistical method used to evaluate
rainfall data (especially for design and operation of urban
drainage systems) is based on estimation of so-called intensity-
duration-frequency (IDF) curves. The IDF curves describe
a dependency between rainfall intensity and duration and give
us information about return levels of a T -year event. The T -
year return level zT is a value which is exceeded on average
once every T years. In some cases, it is more convenient to
estimate the R-observation return level zR which is a value
which is exceeded on average once every R observations. In
order to estimate return levels of hydrological events, extreme
value theory is often applied.

Let X1, X2, . . . , Xn be a sequence of independent and iden-
tically distributed (iid) random variables and let Mn be a trans-
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Czech Republic (corresponding author to provide phone: 00420-541-142-726;
e-mail: honza.holesovsky@gmail.com).

M. Fusek is with the Department of Mathematics, Faculty of Electrical
Engineering and Communication, Brno University of Technology, Technická
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formed random variable defined as Mn = max{X1, . . . , Xn}.
Fisher and Tippett [5] showed that, given suitable sequences
an > 0 and bn, the only one nondegenerate limit distribution
of properly normalized random variables (Mn−bn)/an arises
in the form of generalized extreme value (GEV) distribution
with cumulative distribution function (cdf)

G(x) = exp

[
−
{
1 + ξ

(x− µ)
σ

}−1/ξ

+

]
, (1)

where µ ∈ R, σ > 0 and ξ ∈ R are location, scale
and shape parameters respectively, and x+ = max(0, x).
The shape parameter, also referred to as the extreme value
index (EVI), plays a crucial role in relation to tail properties
of the distribution, and needs to be properly estimated.

In practice, mostly when working with observations over
time, a significant dependence structure is often present [6].
Since the estimation procedures, for example the commonly
used maximum likelihood (ML) method, are based on iid
observations, it is usually necessary to draw samples from
a series that can be considered independent. As described, for
example, in [7], two methods of drawing samples which can
be considered independent are distinguished.

When the block maxima method is used, the sequence is
divided into blocks of a given size, and the maxima from all
the blocks form a new sequence with independent members
(see e.g. [8]–[10]). As blocks get larger, the distribution of
block maxima approaches the GEV distribution (see e.g. [9],
[11]) with cdf (1). A disadvantage of the method is usually an
arbitrary choice of block size. When blocks are large, a small
sample size is obtained which usually leads to wide confidence
intervals for parametric functions’ estimates. In case of small
blocks, dependence between the maxima still may be pre-
served. It was shown that it is reasonable to select a maximum
value of the random variable in each year of the measured
period (see e.g. [7]). The samples are then called annual
maxima series. However, modelling of extremes using block
maxima is often unsuitable for practical purposes, because it
leads to an extensive reduction of information contained in
data, since other extreme values besides the maxima in given
blocks are omitted. This is problematic especially if only short
time series are available. Therefore, the extreme value analysis
is often based on threshold exceedances.

When the peaks-over-threshold (POT) approach is used,
only values above a specified threshold are considered (see
e.g. [9], [11]). The dependence in the series is removed by
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separating the series into independent events (see e.g. [8] for
more details) from which only peaks are further considered.

Pickands [12] showed that given sequences un of thresh-
olds increasing with n, the limiting distribution of threshold
exceedances of a random variable X is the generalized Pareto
(GP) distribution. In practice, a high enough threshold u is
selected and kept fixed. The variable Y = X − u conditioned
by X > u is modelled by the GP distribution with cdf

H(y) = 1−
(
1 +

ξy

σu

)−1/ξ

+

, (2)

where ξ 6= 0 and σu > 0 are shape and scale parameters, and
y = x − u > 0. In correspondence to GEV distribution (1),
the relation σu = σ + ξ(u − µ) holds (see e.g. [9], [13] for
more details).

Although the GP-analysis allows us to make use of more
observations than the GEV-analysis, selecting a proper thresh-
old can be problematic. A threshold too low leads to desired
smaller uncertainty in parameters’ estimates, however, it pro-
vides a possibly insufficient approximation by the limiting GP
distribution, and vice versa. Moreover, a suitable scheme for
drawing independent samples from the original time series
must also be determined. However, such a discussion is not
a part of this paper, and further on we follow commonly used
methods which will be briefly introduced in Sect. II.

A comprehensive review of possible threshold selection
procedures was provided by Scarott and MacDonald [14],
including several nowadays obsolete or rarely used methods.
In practice, approaches combining some of the graphical
methods with experiences in a specific scientific fields are
often applied. It is obvious that such a complex, laborious
and often subjective approach can be difficult to use when
dealing with extensive data files. Therefore, one important
question arises. Is it possible to identify the proper threshold
automatically? Here we may notice the method lately proposed
by Wadsworth and Tawn [15] being a one remarkable result
in the field of automated threshold selection. However, the
suggested approach simultaneously chooses both threshold and
also the so-called runs declustering parameter in order to draw
an independent sample from a given time series. Afterwards,
Northrop and Coleman [16] introduced a multiple-threshold
penultimate model based on piecewise constant shape parame-
ter approximation. This modified approach which concentrates
only on the proper threshold identification also reduced the
computational complexity of the approach described in [15].

The purpose of this paper is to compare the method
proposed by Northrop and Coleman [16] with a bootstrap-
based methodology developed for an optimal sample fraction
estimation [17], [18]. The properties of both approaches will
be studied using simulations and the results will be used for
estimation of the IDF curves which play an important role
in hydrological risk assessment. The extreme value theory in
combination with bootstrap is rather common and can also be
found in financial applications (see e.g. [19]).

Unknown parameters of the probability distributions will
be estimated using parametric and nonparametric methods.
Specifically, the ML method and the method of moments
which is often applied in hydrological applications will be

used. The ML method is rather commonly used in many ap-
plication areas, e.g. in biometric models of signal transduction
process [20] or in measuring service quality [21]. In this paper,
the ML theory will be implemented in a similar way. However,
using the ML theory can also bring difficulties, because in
order to obtain ML estimates, it is often necessary to find a
solution of generally rather complicated nonlinear equations.
On that account, many authors focus on numerically less de-
manding methods like method of moments or L-moments (see
e.g. [22]) when looking for estimates of unknown parameters
of particular distributions. Instead of moment estimator, Hill’s
estimator [23] can also be used. However, it suffers from
tendency to provide biased results when only small sample
is analyzed. Nevertheless, such difficulty can be overcome by
application of wavelet analysis and kernel estimate of the tail
distribution [24].

II. SAMPLE DRAWING AND PROPER SAMPLE FRACTION
IDENTIFICATION

Continuous rainfall series with the time step of 1 minute
from stations located in the South Moravian Region, Czech
Republic, were used for the analysis. Since the observations
cannot be considered independent, a preprocessing needs to be
applied before carrying on with the analysis. The separating
procedure involves identification of the independent rainfall
events from which only maxima of mean intensities over
different rainfall durations (5, 10, 15, 20, 30, 45, 60, 90, 120,
180, 240 and 360 minutes) are considered. For the purpose
of this study, the methodology of Madsen et al. [25] was
applied, and the events were separated by ceasing the rainfall
for a period equal to the considered duration but at least one
hour.

Since some of the stations were established only in the
last decades, lengths of the available series vary between
11 and 41 years of records. We aim to study the impact
of the chosen threshold estimation methodology on the IDF
curves estimates with respect to the series length which can
significantly influence the estimates [4], [8].

A. The Multiple-Threshold GP Model

The traditional diagnostic tool for a threshold identification
consists in graphical inspection of parameter estimates and
their stability. Should u0 be a proper threshold to be selected,
then parameter estimates (changing with threshold) ξ̂(u) and
σ̂(u) would follow a constant and a linear trend for u > u0
respectively [9]. Northrop and Coleman [16] proposed an au-
tomated method based on the property of the shape parameter.
In principle, they proposed a discretized version of testing the
null hypothesis H : ξ(u) = ξ(u0), for all u ≥ u0.

Let u1 < u2 < · · · < um denote an increasing threshold
sequence, Y be an excess of u1, and denote vi = ui−u1, for
i = 1, . . . ,m. The shape parameter is modelled as a piecewise
constant function ξ(y) with change-points at vi, i = 2, . . . ,m,
i.e.

ξ(y) =

 ξi ui < y < ui+1, i = 1, . . . ,m− 1,

ξm y > um.
(3)
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In order to avoid discontinuity in density of Y , the scale
parameter is considered piecewise linear with σ1 on interval
(u1, u2) (see [16] for more details). Considering the threshold
u1 first, the hypothesis whether a common GP model holds on
all intervals (ui, ui+1), i = 1, . . . ,m−1, is tested. Rejection of
the null hypothesis H : ξ1 = · · · = ξm attests to requirement of
a higher threshold. Let θ̂0 denote the sequence of ML estimates
of shape ξ1 and scale σ1 parameters estimated under the null
hypothesis, and θ̂ the sequence of ML estimates of σ1 and
ξi, i = 1, . . . ,m, estimated without additional constrains given
by (3). Northrop and Coleman proposed two tests - score test
and likelihood ratio test - which are based on the following
test statistics

S = UT (θ̂0)J
−1(θ̂0)U(θ̂0), (4)

LR = 2
[
l(θ̂)− l(θ̂0)

]
, (5)

where U(θ) is the score function, J(θ) is the expected Fisher
information matrix, and l(θ) is the log-likelihood function.
More details about derivation of the score function, the
expected Fisher information matrix, and the log-likelihood
function can be found in [16]. Provided that ξm > −1/2 [26]
in each case the asymptotic null distribution of the statistics
(4) and (5) is χ2

m−1. The advantage of the test statistic (4) is
that it requires only a fit of the null model at the threshold of
interest. The calculation of the test statistic (5) is more difficult
and time-consuming as it requires m shape parameters to be
estimated.

Let us assume now that the lowest threshold considered is
uk. The null hypothesis to be tested is H : ξk = · · · = ξm and
the asymptotic null distribution is χ2

m−k, k = 1, . . . ,m −
1. The p-values associated with the test indicates whether
a threshold higher than uk is required.

Once a proper value u0 is selected, the T -year return level
zT can be estimated from (2) as the 1 − 1/(nxT ) quantile
of the GP distribution, where nx denotes the number of
observations per year, i.e.

ẑT = u0 +
σ̂u

ξ̂

[(
λ̂uTnx

)ξ̂
− 1

]
. (6)

The estimator λ̂u := P (X > u) can be calculated as a pro-
portion of values exceeding the threshold u0, i.e. λ̂u = nu/n,
where nu denotes the number of observations above the thresh-
old u0 and n is the sample size (the length of the rain series).
The rest of the unknown parameters in (6) were replaced by
their ML estimates. The asymptotic confidence intervals for
the T -year return level ẑT can be obtained by delta method
using the asymptotic normality of the ML estimates [9].

In case the R-observation return level has to be estimated,
the quantity Tnx in equation (6) is replaced by R.

B. Bootstrap-Based Optimal Sample Fraction Selection

A different approach to optimal sample fraction identifi-
cation was studied by Draisma et al. [18]. The method is
based on k largest order statistics which should in some
sense balance the approximation by the GP distribution and

properties of the EVI. Here, we focus on moment estimator
(MoE) ξ̂M defined as

ξ̂M (k) =M (1)
n (k) + 1− 1

2

1−
(
M

(1)
n (k)

)2
M

(2)
n (k)


−1

, (7)

where

M (j)
n (k) =

1

k

k−1∑
i=0

(
logX(n−i) − logX(n−k)

)j
(8)

is the j-th moment of the GP distribution, k = 2, . . . , n − 1,
and X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics.
The choice of a proper k is accompanied by difficulties very
similar to the choice of an optimal threshold in the POT
analysis. When a high value of k is selected, we may expect
higher estimation precision but a weak approximation by the
GP distribution which may lead to a significant bias, and vice
versa. The optimal value k0 balancing the bias and the variance
can be determined only if the underlying distribution is known.
As shown for example in [13], the limiting distribution of ξ̂M
depends on a second-order parameter which is problematic
to estimate. Therefore, the double bootstrap methodology
proposed in [18] and developed in [17], [27] is used.

Hereby, the optimal value k0 is chosen to minimize the
mean square error (MSE) of the MoE, i.e.

k0 ∈ argmink E
(
ξ̂M (k)− ξ

)2
, (9)

although only in the asymptotic sense. The unknown EVI is
replaced by an auxiliary estimator ξ̂AUX(k) calculated as the
third-moment estimator (see [18], page 5).

The bootstrap methodology is used to resample B times
independently a sample X∗ = (X∗

1 , . . . , X
∗
m) of size m < n

from the underlying series X = (X1, . . . , Xn) of separated
(independent) rainfall observations (see Sect. II). For each
replication and for all k = 2, . . . ,m the estimators ξ̂∗M (k)

and ξ̂∗AUX(k) are evaluated. Finally, the MSE is replaced by
its estimator

MSE∗(n, k) =
1

B

B∑
b=1

(
ξ̂∗M (k)− ξ̂∗AUX(k)

)2
, (10)

k = 2, . . . ,m, and minimized with respect to k. Denote the
optimal value k which minimizes (10) by k∗0(m). The key
step is to apply the bootstrap methodology twice: Firstly, for
m := n1; secondly, for m := n2. As derived in [17] or
[18], we avoid estimation of the second-order parameter by
setting n2 = d(n1)2/ne. The optimal sample fraction k∗0 is
then obtained using formula

k̂∗0 =
(k∗0(n1))

2

k∗0(n2)
. (11)

From the theoretical point of view, n1 should be smaller
than n; however, simulations show better performance if n1
is set as high as possible [17]. In order to achieve better
estimation stability, the whole double bootstrap procedure is
applied repeatedly (N times) leading to N estimates k̂0,i, i =
1, . . . , N , of optimal sample fraction (11). The estimator k̂0
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of k0 is computed as median from all the bootstrapped values
of k̂0,i.

Once the optimal value k̂0 is determined, the shape param-
eter is estimated by the MoE (7), and the scale parameter is
estimated using formula (see Theorem 4.3.3 in [13])

σ̂M = X(n−k)M
(1)
n

(
1− ξ̂M +M (1)

n

)
. (12)

Standard deviations of the estimated parameters are estimated
on the basis of asymptotic normality [13]. The desired return
level estimates are obtained from formula (6) where parameter
estimates are replaced by the appropriate moment estimators
and the threshold is replaced by X

(n−k̂0).

III. SIMULATION STUDY

In this section, properties of the methods for an optimal
sample fraction identification, which were described in the
previous section, will be studied and compared using sim-
ulations. The attention will be paid to a comparison of the
double bootstrap approach with the multiple-threshold GP
(MT-GP) model based only on the score statistic (4). As
already mentioned, use of the statistic (5) requires the shape
parameter to be estimated on all threshold subintervals which
leads to enormous computational times. For this very reason,
the methodology based on the test statistic (5) is applied only
in the case study in the following section. Some restrictions
had to be also adopted because of the computational time
demands of the bootstrap-based methodology.

Input parameters for the simulations will be based on real
data set of the studied rainfall series. Specifically, attention
will be paid to rainfall series measured at two stations located
in the highly urbanized area of Brno, the second largest city
in the Czech Republic. The rainfall series from the Tuřany
station contains 41 years of records and it is the longest
series available. The rainfall series from the Jundrov station
consists of only 11 years of records and it is the shortest series
available. Independent samples were drawn from the rainfall
series according to methodology described in [25] and their
sizes vary between 1836 and 10791 for the Tuřany station, and
between 618 and 3228 for the Jundrov station considering all
rainfall durations. Therefore, in order to study the impact of
the series length on the estimation quality, simulations will be
carried out considering sample sizes in the range from 500 to
8000.

The underlying distribution was estimated from the inde-
pendent samples and among other distributions with positive
support, 4 distributions were shown to be the most appropriate
for description of the rainfall data, specifically, log-normal,
log-logistic, Weibull, and gamma distribution (see Fig. 1). In
particular, Weibull distribution is often used in practice be-
cause of its flexibility (see e.g. [28], where Weibull distribution
is fitted to the monthly wind speed frequency). Suitability of
the probability distributions was tested using the goodness-
of-fit tests (Pearson’s χ2 test, Kolmogorov-Smirnov test, and
Anderson-Darling test).

In the simulation study, M = 1000 random samples
of sizes 500, 1000, 2000, 3000, 5000, and 8000 from the
given distributions were generated. First of all, an optimal
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Fig. 1. Histograms of rainfall intensities at Jundrov station (180-minute
rainfall duration) fitted by probability density function of the considered
distributions. The estimated shape and scale parameters are 0.57 and 5.62
for gamma distribution, 0.09 and 1.56 for log-normal distribution, 0.08 and
0.94 for log-logistic distribution, and 2.40 and 0.68 for Weibull distribution.

threshold was selected by means of the MT-GP model using
the test criterion (4). In each case, the optimal threshold was
selected as the smallest value at which the null hypothesis
is not rejected. Next, the double bootstrap methodology was
applied with B = 250 sample replications. Such number
of replications should be suitable for this methodology [29].
Since this method is computationally very demanding, the
whole estimation procedure was repeated N = 100 times.

The threshold selection in the MT-GP model strongly de-
pends on the level of discretization m. On one hand, as
discussed in [16], a large value of m should be preferred taking
into consideration a set of thresholds that approximates the
range of possible thresholds. On the other hand, a balance must
be found between the level of discretization and the variability
of the estimated shape parameter in each interval (ui, ui+1),
i = 1, . . . ,m − 1. One would like to set m large in order to
achieve a dense coverage of all possible thresholds. However,
the large m leads to an increased uncertainty in parameter
estimates and differences between the estimates are detected
with a smaller probability. Moreover, if m is large, there can
also arise convergence problems of the ML method. A more
complex study could be carried out on this topic, however, here
we follow Northrop and Coleman [16] and set m = 10, 20, 40
and possible threshold values between 0.5% and 90% sample
quantiles.

In Fig. 2, there are boxplots visualizing the proportion of
nu (X, Y, and Z columns) and k0 (B columns) to the particular
sample sizes considering 4 above mentioned distributions. It
can be seen that medians of k0, i.e. optimal order statistics
estimated using the double bootstrap methodology, are smaller
than medians of nu, i.e. estimated by the MT-GP model, in all
the cases. An instability of the MT-GP methodology is visible
for intermediate sample sizes of log-normal and large sample
sizes of log-logistic distribution. In these cases the p-values
of test criterion (4) fluctuate near the significance level of
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Fig. 2. Boxplots visualizing the proportions of nu and k0 to the particular sample sizes (M = 1000 repetitions); the MT-GP model with m = 10 (X),
m = 20 (Y), m = 40 (Z), and double bootstrap methodology (B). Samples are drawn from (a) gamma, (b) log-normal, (c) log-logistic, and (d) Weibull
distribution.

0.05 with unclear boundary. In case of small and intermediate
sample sizes generated from the log-logistic distribution the
proportions of observations nu above the proper threshold u0
remain stable near 1. Since the estimated shape parameter of
the distribution is close to 1, in which case the log-logistic
distribution coincides with the GP distribution, this behaviour
was highly expected. In Fig. 2, the dependence of an optimal
threshold identification on the level of discretization m is
clearly visible. Specifically, the proportion of observations nu
above the proper threshold u0 grows higher with the higher
level of discretization m.

Moreover, a hybrid distribution with a positive support
used by Northrop and Coleman [16] was also considered in
the simulation study. This distribution’s probability density
function consists of a constant density up to 75% quantile
and the GP density with shape parameter 0.1 from the 75%
quantile upwards (not shown). Theoretical aspects imply the
null hypothesis tested by the MT-GP model is true for the
excesses of the 75% quantile. In this specific case, the double
bootstrap methodology proved to act completely in opposite

to the formerly obtained results, and the proportion of the
k0 largest order statistics approaches 1 as the sample size
increases.

IV. APPLICATION RESULTS

In this section, a behavior of the threshold selection pro-
cedures will be illustrated on Nidd River flow rates data.
Moreover, attention will be also paid to estimation of the
IDF curves considering rainfall series of various lengths as
discussed in Sect. II.

A. Nidd River Flow Rates Example

This case study was previously closely investigated by
Wadsworth and Tawn [15] and also by Northrop and Coleman
[16]. Here we show the difference between the MT-GP and the
double bootstrap approaches. In order to be able to compare
the results with previous studies, the set of flow rates measured
at Nidd River (Yorkshire, UK) [16] over the period 1934–
1969 consisting of 154 observations exceeding 65 m3s−1 will
be used. Since the data has already been preprocessed, the
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sample can be treated as independent. Fig. 3 shows shape and
scale parameter stability plots with 95% pointwise confidence
intervals. Considering the graphical methods for a threshold
selection described in [9], the optimal threshold about u0 =
100m3s−1 seems reasonable. It can be seen that the scale
parameter roughly linearly depends on the threshold value
and the shape parameter remains roughly constant above the
optimal threshold u0.
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Fig. 3. The ML estimates of shape and scale parameters of the GP distribution
considering various threshold values with 95% confidence intervals (dashed
line).

Northrop and Coleman suggested the MT-GP model with
m = 10 and thresholds between 65 and 120 m3s−1 in
equidistant steps of 5 m3s−1. Both test criteria (4) and (5)
indicate the threshold equal to 70m3s−1 to be sufficient with
nu = 138. Wadsworth and Tawn, whose method includes tests
based on goodness-of-fit of the GP distribution across various
thresholds, suggested the threshold equal to 75 m3s−1. When
the double bootstrap methodology introduced in Sect. II-B is
used (B = 250 sample replications, N = 1000 repetitions) for
estimation of a proper k0, in contrast to the foregoing results,
the number of optimal largest order statistics k̂0 = 149 is
estimated. This value corresponds to the threshold equal to
about 67 m3s−1.

In Fig. 4, there are the estimated R-observation return levels.
The heavy solid line visualizes the ML estimates obtained by
use of the threshold model with u = 70m3s−1, the regular
solid line denotes return levels estimated on the basis of
moment estimators of the parameters with k̂0 = 149. It can
be seen that both estimates are rather similar. It is also clear

that the threshold-based estimates lie in the 95% confidence
bounds for the bootstrap-based curve. However, this is not
the case if u ≥ 75m3s−1. Moreover, if u = 70m3s−1 the
confidence bounds are much narrower in case of the bootstrap-
based curve.
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Fig. 4. R-observation return levels of Nidd River flow rates estimated
using the threshold model with u = 70 m3s−1 and the double bootstrap
methodology with k0 = 149; 95% confidence intervals are denoted by dashed
lines.

B. IDF Curves Estimation

In the following case study, methods and results from the
previous sections will be applied on real data set and used for
estimation of the IDF curves. Specifically, results for stations
with the longest (Tuřany, 41 years) and the shortest (Jundrov,
11 years) rainfall series will be presented.

As discussed in Sect. III, the threshold identification in
the MT-GP model may depend on the level of discretization,
i.e. the value of m. In our case, we choose a defensive
approach regarding several proposals in [16], and we set
m = 10, 20, 40, and thresholds between 10% and 99.5%
sample quantile for all stations and rainfall durations. For
all values of m, the value u0(m) is selected as the lowest
threshold that ensures the validity of the null hypothesis at the
significance level of 0.05. Then the optimal threshold is chosen
as u0 = maxm(u0(m)). In Fig. 5, typical results obtained
from testing the null hypothesis using the score test statistic
at various thresholds are visualized, specifically, the p-values
obtained from the limiting χ2 distribution are plotted against
the considered thresholds.

TABLE I
TUŘANY STATION: NUMBER OF OBSERVATIONS OBTAINED BY THE DOUBLE BOOTSTRAP (k̂0) AND THE MT-GP MODEL WITH THE SCORE (nS

u ) AND THE
LIKELIHOOD RATIO STATISTICS (nLR

u ).

Duration [min] 5 10 15 20 30 45 60 90 120 180 240 360

k0 174 186 243 215 209 111 111 225 245 186 221 278

nS
u 423 540 418 556 725 776 804 807 777 740 725 689

nLR
u 487 471 499 498 479 496 507 535 516 500 481 482

k0/nS
u 0.41 0.34 0.58 0.39 0.29 0.14 0.14 0.29 0.32 0.25 0.30 0.40

k0/nLR
u 0.36 0.39 0.49 0.43 0.44 0.22 0.22 0.42 0.47 0.37 0.46 0.58
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TABLE II
JUNDROV STATION: NUMBER OF OBSERVATIONS OBTAINED BY THE DOUBLE BOOTSTRAP (k̂0) AND THE MT-GP MODEL WITH THE SCORE (nS

u ) AND
THE LIKELIHOOD RATIO STATISTICS (nLR

u ).

Duration [min] 5 10 15 20 30 45 60 90 120 180 240 360

k0 56 41 44 50 69 70 83 105 90 103 115 120

nS
u 192 205 210 211 207 216 191 194 197 205 206 196

nLR
u 157 147 150 150 145 149 147 146 140 141 134 131

k0/nS
u 0.29 0.20 0.21 0.24 0.33 0.32 0.43 0.54 0.46 0.50 0.56 0.61

k0/nLR
u 0.36 0.28 0.29 0.33 0.48 0.47 0.56 0.72 0.64 0.73 0.86 0.92
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Fig. 5. The calculated (using the score statistic) p-values at (a) Tuřany and (b) Jundrov station for various values of m. The horizontal dashed line denotes
significance level of 0.05.

Further, ML estimates of parameters of the GP distribution
were calculated for all determined thresholds. Their variances
were established on the basis of asymptotic normality, and
confidence intervals of return levels were calculated using the
delta method [9].

Next, an optimal sample fraction using the double bootstrap
methodology (Sect. II-B) was determined. We set B = 250
bootstrap replications and N = 1000 repetitions of the whole
procedure. As it was mentioned before, it is convenient to
set the value of n1 as high as possible providing n1 < n.
In our study, we use n1 = dn0.995e (see [17]). The optimal
sample fractions estimated using the MT-GP model and the
double bootstrap methodology are summarized in Tables I
and II. Notice that use of the MT-GP model leads to lower
‘thresholds’ implicating larger sample fraction meant for the
analysis.

Dependency of the parameter estimates on the selection
of k largest order statistics is visualized in Fig. 6. On one
hand, setting value k low provides better approximation of
the limiting GP distribution. However, it can be seen that it
is loaded with higher uncertainty. On the other hand, high k
leads to a significant bias. The standard deviations of shape
parameter estimates are presented in Table III. It can be seen
that the moment estimate is mostly burdened with higher
variability than those based on the MT-GP model. A similar
behaviour was observed in case of the scale parameter.

On the basis of estimated parameters, return levels of 5, 10,

20, 50, and 100-year events were calculated. Similar results
were obtained by both approaches in case of the Tuřany station
(long series) and lower (< 30 minutes) rainfall durations. For
higher rainfall durations, return levels estimated using the MT-
GP approach overestimate the bootstrap-based estimates. In
case of the Jundrov station (short series), the MT-GP approach
based on the score statistic gives higher estimates than the
bootstrap-based one for all rainfall durations. This mostly
applies also if the likelihood ratio test is used. The bootstrap-
based estimates provide narrower confidence intervals for the
estimated IDF curves as documented in Fig. 7.

V. CONCLUSION

In this paper, two automated threshold selection procedures
were introduced and compared using simulations. It was
shown that use of the MT-GP model implicates larger sample
fraction meant for the analysis in all the cases. However, in
some cases, there is an instability in the optimal threshold
selection procedure when using the MT-GP model. Moreover,
the procedure based on the MT-GP model also crucially
depends on the level of discretization m.

Both methods were used for real data analysis. First of
all, Nidd River flow rates data were analyzed. In was shown
that the return levels estimated using both methods are rather
comparable. However, the confidence bounds are narrower
when using double bootstrap methodology.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 100



TABLE III
PROPORTIONS OF STANDARD DEVIATIONS OF SHAPE PARAMETERS ESTIMATED USING THE MOE AND THE MT-GP MODEL WITH THE SCORE (S) AND

THE LIKELIHOOD RATIO (LR) TEST STATISTICS.

Duration [min] 5 10 15 20 30 45 60 90 120 180 240 360

Tuřany (MoE/MT-GP(S)) 1.32 1.46 1.24 1.37 1.41 1.94 2.06 1.61 1.62 1.86 1.62 1.50

Tuřany (MoE/MT-GP(LR)) 1.31 1.56 1.27 1.32 1.27 1.81 1.91 1.35 1.31 1.54 1.40 1.18

Jundrov (MoE/MT-GP(S)) 1.15 1.47 1.45 1.47 1.26 1.36 1.25 1.12 1.31 1.30 1.18 1.17

Jundrov (MoE/MT-GP(LR)) 1.15 1.18 1.24 1.20 0.90 1.07 0.94 1.00 1.15 1.15 1.11 1.10
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Fig. 6. Dependency of the moment (heavy curve) and the ML estimators (dashed curve) of (a) shape and (b) scale parameters on the sample fraction for
30-minutes rainfall at Tuřany station. The estimates obtained by the score and the likelihood ratio test statistics are denoted ML(S) and ML(LR), respectively.
Vertical lines visualize the optimal values of k (solid) and nu (dashed).
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Fig. 7. Estimated 100-year return levels at (a) Tuřany and (b) Jundrov stations with their 95 % confidence intervals; logarithmic scale on both axes. IDF
curves were obtained using nonlinear regression: MT-GP(S) (dashed line), MT-GP(LR) (dotted line), and MoE (solid line).

Next, both methods were used for IDF curves estimation.
It was shown that moment estimates of the GP distribution
parameters are burdened with higher variability than those
based on the MT-GP model. However, the bootstrap-based
estimates provide narrower confidence intervals for the IDF
curves. Readers can also get an idea about the width of the
confidence intervals when dealing with estimation of long-
time events in situations where only short rainfall series are

available. Although the automation of proper sample fraction
identifications through the double bootstrap technique is very
comfortable, it is more demanding in terms of computing.
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