
 

 

  
Abstract— An efficient and numerical algorithm is suggested for 

finding the positive definite solutions of the matrix equation 
* rX A X A I ,r 1= − ≥ , where A  is a nonsingular real matrix, if such 

solutions exist. The suggested technique is called the "Two-sided 
Iterative Process". Property of solutions is discussed thereof, 
necessary and sufficient conditions for existence of a positive definite 
solution are derived, and also the error analysis and the convergence 
rate are analyzed. Finally, two numerical examples are given to 
illustrate the effectiveness of the algorithm. 
 

Keywords—convergence rate, non linear matrix equation, 
positive definite solution, two-sided method. 

I. 0BINTRODUCTION 

N recent years, studies of various physical structures of 
nonlinear equations have attracted much attention in 

connection with the important problems that arise in scientific 
applications. These physical structures of nonlinear equations 
have many forms such as ordinary and partial differential 
equations [1],[2], matrix equations [3]-[9], and nonlinear 
programming problems [10],[11]. 

In this paper, we only focused on matrix equation. The 
importance of matrix equations and its applications were given 
in [8] and the references therein.  Also, different iterative 
methods for solving some kinds of  matrix equation were given 
, such as, fixed point iteration [6],[8],[9],[12], [13], Newton 
method [14], SDA algorithm[7], LR algorithm [15], Butterfly 
SZ algorithm [3], and  Two-sided Iterative Process[12].  

In [8], we  studied: nonlinear matrix equation of the form   
       * rX A X A I ,r 1= − ≥ ,                                                   (1) 
where  A  is a square real  matrix, and X is unknown square 

matrix. Two properties of a positive definite solution of (1) 
were discussed; first one, is related with the smallest, the 
largest eigenvalues of a solution X of (1), and an eigenvalues 
of  A. The second one, gives the relation between the terms of 
(1).  

An iterative method was proposed to compute the unique 
positive definite solution when A 1> , for * rX A X A I= −  
with real square matrices and r 1≥ . The proposed method was 
based on the fixed point theorem. Moreover, necessary and 
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sufficient conditions for the existence of the positive definite 
solutions were derived. The error estimation and  general 
convergence  results of the iterative method were also 
provided. For more convenience, we will mention all results in 
[8].  

Theorem 1.  If m and M are the smallest and the largest 
eigenvalues of a solution  X of equation (1), respectively, and 
λ  is an eigenvalues of  A, then 

1 1.r r
m M
m M

λ− −
≤ ≤  

 
Theorem 2.  If equation (1) has a positive definite solution 

X , then 
rΑ Χ Α Χ∗ > and  r 1 1Χ Α Α∗− −> . 

  
Algorithm 3. 
Take  0 0Χ = . For k 1 ,2 ,....= compute 

*r
k k 1X B ( I X )B ,−= +                                      

where   1B Α−= , * * 1B Α −= . 
 
Theorem 4. Let the sequence { }kΧ  be determined by the 

Algorithm 3,  10
2

I B B Iα ∗< < <  and  if (1) has a positive 

definite solution, then { }kΧ  converges to positive definite 
solution .Χ  Moreover, if k 0Χ >  for every k  and 

10
2

I B B Iα ∗< < < , then (1) has a positive definite solution. 

 
Theorem 5. Let kΧ  be the iterates in algorithm 3  and 

10
2

I B B Iα ∗< < < . If 1
2

r
q

r
α

α
= < , then k

k q ,Χ Χ Χ− <  

where X  is a positive definite solution of (1). 

Corollary 6. Assume that (1) has a solution. If  1
2

r
q

r
α

α
= < ,  

then { }kX , k 0,1,2,....=  converges to X  with at least the linear 
convergence  rate.  

 
Theorem 7.  If (1) has a positive definite solution and after 

k  iterative steps of Algorithm 3 and we have 
1

k k 1 ,Ι Χ Χ ε−
−− <  0 ,ε > then  
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i-
r

k 1 k  
2 r

αΧ Χ ε
α+ − < , and  

ii-
r

* r *
k kB X B X  B B  .

4 r
− + <

α ε
α

  

where kΧ is the iterates in Algorithm 3. 
This paper aims to find the positive definite solution of the 

matrix equation (1).  
 In this paper, mathematical induction technique will be 

used in the most proofs. 
The following notations are used throughout [8] and the rest 

of the paper. The notation A 0≥  A 0>( ) means that A  is 
positive semidefinite (positive definite). For matrices A  and 
B , we write A B A B≥ >( )  if A B 0 A B 0− ≥ − >( ) , and 
{ }kΧ  denotes the sequence 0 1 2, , ,...Χ Χ Χ . We denote by 

( )A A=ρ   the spectral radius of  A . The norm used in this 
paper is the spectral norm of the matrix A  unless otherwise 
noted. 

II. PROPERTY OF THE SOLUTIONS AND  THE ITERATIVE 
METHOD 

In this section, we shall discuss the property of positive 
definite solutions of the matrix equation (1).  

A two-sided algorithm for solving equation (1) is proposed 
, then, Lemma is briefly reviewed. Afterwards, it will be used 
to establish the conditions for the existence of a positive 
definite solution of (1) when the matrix A  is nonsingular 
matrix and 1B −= Α , * * 1B −= Α . 

A. 4BTheorem 2.1 
If (1) has a positive definite solution X, then 

r 1 1 I∗ ∗− −− >Α Α Α Α .    
Proof.  Let  X be a positive definite solution of equation (1), 

from Theorem 2 and Lowner-Heinz inequality [17], we get 
r r1 1 1 1I I ,∗− − ∗− −> ⇒ + > +Χ Α Α Χ Α Α  

( ) r1 1 1 1 1 1r rI X I I .Α Χ Α Α Α Α Α∗− − ∗− ∗− − − > = + > + 
 

 

Hence  
r 1 1 I∗ ∗− −− >Α Α Α Α . 

B. 5BAlgorithm 2.1 
Take  0 0X I ,Y I= =α β . For  k 0,1,2,....= compute 

*r
k 1 kX B ( I X )B ,+ = +                                                        (2) 

*r
k 1 kY B ( I Y )B ,+ = +                                                          (3)                                                                                                               

where   1B −= Α , * * 1B −= Α . 

C. 6BLemma 2.1 [16]   
Let f  be an operator monotone  function on 0 ∞( , )  and let 

A,B be two positive operators that are bounded below by 
a;i .e .,A aI≥   and  B aI≥  for the positive number a. 
Then for every spectral norm 

f ( A ) f ( B ) f ( a ) A B′− ≤ − . 

D. 7BTheorem 2.1.  
If there exist numbers α  and β  so that  0 < <α β  and the 

following conditions are satisfied  

*( ) ,
(1 ) (1 )

r r
i I B B I< <

+ +
α β

α β
 

( )
( ) 1.

1

rr
ii q

r
= <

+
α β

α β
 

Then (1) has a positive definite solution X , where X  is the 
same limit of the two sequences { }kX  and { }kY  are defined in 
the Algorithm 2.1. 

Proof. To prove the theorem, we will show that 
0 k k 1 k 1 k 0X I X X Y Y Y I ,k 1,2,...+ += < < ≤ < < = =α β and  

0k kY X− →  as  k → ∞ . 
From algorithm 2.1 

* *
1 0( ) ( )rrX B I X B B I I B= + = + α  

*     (1 ) (1 )
(1 )

r
r rB B I= + > ⋅ +

+
αα α

α
      

0 1 0         .I X X X= = ⇒ >α  
Let  i i 1X X −>  is true when k i= , thus by using   Lowner-

Heinz inequality we get 
* *

1 1( ) ( ) .r r
i i i iX B I X B B I X B X+ −= + > + =  That is   

k k 1X X ,k 0,1,2,...+< =  and { }kX  is increasing. 
Next, we will prove 1 1k kX Y+ +< , for k 0,1,2,...=  From 

algorithm 2.1 ,  0 0Y I I X= β > α = . Since I I>β α , then  
* *( ) ( )B I I B B I I B+ > +β α , then by using Lowner-Heinz 

inequality, we get 
* *

1 1( ) ( ) .r rY B I I B B I I B X= + > + =β α  Let  i iY X>  is true 
when k i= , thus by using Lowner-Heinz inequality, we get 

* *
1 1( ) ( ) .r r

i i i iY B I Y B B I X B X+ += + > + =  That is  

k kY X ,k 0,1,2,...> =   
Finally, we will prove that k 1 kY Y ,+ < k 0,1,2,...= .  From 

algorithm 2.1, we get 
* * *

1 0( ) ( ) (1 )rrrY B I Y B B I I B B B= + = + = +β β

0
(1 )     

1

r
r I I Y⋅ +

< = =
+

β β β
β

. 

Let i i 1Y Y −<  is true when k i= , thus by using   Lowner-
Heinz inequality, we get 

* *
1 1( ) ( )r r

i i i iY B I Y B B I Y B Y+ −= + < + = . That is  

k 1 kY Y ,k 0,1,2,...+ < =  and { }kY is decreasing. 
Hence, we proved 

0 k k 1 k 1 k 0X I X X Y Y Y I ,k 1,2,...+ += < < ≤ < < = =α β  
Now, we shall prove that  0n nY X− →    as n → ∞ for that 

we have  
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  * *r r
k k k 1 k 1Y X B ( I Y )B B ( I X )B− −− = + − +  

  r rP Q ,= −  

where *
k 1P B ( I Y )B−= +  and *

k 1Q B ( I X )B−= + .  By using 

lemma 2.1, with a monotone operator ( ) rf x x= , r 1≥ , and 

1 1 0k kY X X I− −> ≥ = α  for all k 1,2,...= , then  
r

* * * r
k 1

(1 )P B ( I Y )B B ( I I )B I I aI ,
(1 )−

+
= + > + > = =

+
α αα α

α
 

provided ra P aI ,= ⇒ >α  by the same manner, we prove  
Q aI> .  Then  

1 1 * *rk k k 1 k 1
1Y X B ( I Y )B B ( I X )B
r

−
− −− ≤ + − +α  

1 1 *r k 1 k 1
1 B B . Y X
r

−
− −≤ −α , 

 since  
r

*B B I
1

<
+
β

β
 , then we have 

1 r1
rk k k 1 k 1

1Y X . Y X
r 1

−
− −− < −

+
βα

β
, 

k 1 k 1                q. Y X− −< − ,   after k-steps 

( )k k
k k 0 0Y X q . Y X q− < − = −β α , 

where  
( )
r r

q 1
r 1

= <
+

β α
α β

, then 0n nY X− →   as n → ∞ , that 

is,  * r
k k

k k
lim Y lim X X A X A I 0
→∞ →∞

= = = − > .  

E. 8BTheorem 2.2. 
 If k 0>Χ  and kY 0>  for every k , 0 < <α β  and 

*
(1 ) (1 )

r r
I B B I< <

+ +
α β

α β
,  then (1) has a positive definite 

solution.  
Proof.  Suppose  0kX >  and kY 0>   for k 1,2,3,...= , we 

proved that the limits of  { }kX  and { }kY  are exist. Let 

1 0r
k kX A X A I∗

+ = − >  and 1 0,r
k kY A Y A I∗

+ = − >  by taking the 

limits as k → ∞ ,  we have 0rX A X A I∗= − >  and 

0rY A Y A I∗= − > , Consequently, equation (1) has positive 
definite solution. 

Hence the theorem is proved. 

F. 10BTheorem 2.3   
11BLet kΧ  and  kY  be the iterates in algorithm 2.1, 

*
(1 ) (1 )

r r
I B B I< <

+ +
α β

α β
 and 0 < <α β . If 

( )
r r

q 1
r 1

= <
+

β α
α β

. 

Then ( )k
k q ,− < −Χ Χ β α   and ( )k

kY Y q ,− < −β α  where 
Χ   is a positive definite solution of  (1). 

Proof. From Theorem 2.1, it follows that the sequences (2) 
and (3) are convergent to a positive definite solution X of (1). 

We compute the spectral norm of the matrix k −Χ Χ , we 
obtain 

* *
1( ) ( ) ,r rrr

k kX X B I X B B I X B R P−− = + − + = −   

where  *
1( ) ,kR B I X B−= + *( ) .P B I X B= + By using lemma 

2.1, with a monotone operator ( ) rf x x= ; 1r >  and 

1 0kX X I− ≥ = α  for k 1,2,3,...= , then 
* *

1( ) (1 ) r
kR B I X B B B I−= + ≥ + >α α , provided ,ra = α   R aI>  

and  by the same manner, we get .P aI>   

Since rf ( a ) a= ,
  

1 r
r1f ( ) ,

r

−

′ = ⋅α α  

1
*

1
1

r
rk kX X B B X X

r

−

−− ≤ ⋅ −α , 

1

1
1               

(1 )

r r
r kX X

r

−

−< ⋅ −
+
βα

β
, 

 let  
( )
r r

q 1
r 1

= <
+

β α
α β

, we have   

1k kX X q X X−− < − , after k-steps, 

0
kq X X< −  

From theorem 2.1  0 k k 1 k 1 k 0X I X X Y Y Y I ,+ += < < ≤ < < =α β  
k 0,1,2,...=   and 0 0,= =Χ αΙ Υ βΙ . Consequently, 

( )k k
k 0q q− ≤ − < −Χ Χ Χ Χ β α . 

Similarly, we can prove  ( )k k
k 0q q− ≤ − < −Υ Χ Υ Χ β α .

 
G. 12BCorollary 2.1.                                                                

Assume that (1) has a solution. If  
( )
r r

q 1
r 1

= <
+

β α
α β

 , then 

{ }kX and { }kY  are converging to Χ  with at least the linear 
convergence rate.  

Proof.  As we  have 
 

( )
r r

k k 1 
r 1 −− < −

+
β αΧ Χ Χ Χ

α β
,

( )
r r

q 1
r 1

= <
+

β α
α β

. Then 

choose a real number that satisfies 1.q θ< <  Since 

k ,→Χ Χ  as k → ∞   there exists a N, such that for any k N ,≥  

.q ≤ θ   
Hence  2

1 .k kX X X X+ − ≤ −θ  
Similarly, we can prove 

2
1 .k kY X Y X+ − ≤ −θ  

H. 13BTheorem 2.4   
If matrix equation (1) has a positive definite solution and 

after k iterative steps of Algorithm (1), the inequalities 
1

k k 1 1
−

− − <Χ Χ Ι ε , 1
k k 1 2
−

− − <Υ Ι εΥ  and 1
k 3kI Y−− < εΧ , 

imply 
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 i- ( )
r 1r

k 1 kX  ,
r 1

+

+ − <
+

α βΧ ε
α β

 

ii-  ( )
r 1r

k 1 kY Y  ,
r 1

+

+ − <
+

α β ε
α β

 

iii- 
( )

r 1r

k 1 kX  ,
r 1

+

+ −
+

α βΧ ε
α β

 

iv- 2
k k ,∗ ∗− − <Χ Β Χ Β Β Β Β βε  

v- 2
k k ,∗ ∗− − <Υ Β Υ Β Β Β βε Β   

where { }kX  and { }kY ,k 0,1,2,....=  are the iterates generated   
positive definite solution of equation (1). 

and { }1 2 3min , , 0= >ε ε ε ε . 
Proof.  i- From algorithm 2.1 and lemma 3.1, then, take the 

norms of both sides,  
* *r r

k 1 k k k 1X B ( I X )B B ( I X )B+ −− = + − +Χ ,           

 
1 1
r k k 1

1                    X
r

− ∗
−≤ ⋅ −α Β Β Χ ,  

( )

1 1 rr 1
k k k 1                     . I X .

r 1

−
−

−< −
+

α β Χ Χ
β

 

 From theorem 2.1  k <Χ β  and   k →Χ Χ , 1 1
k
− −→Χ Χ   

and k 1X X  − →  as  k → ∞ . Consequently,   1
k k 1I 0−

−− →Χ Χ  

as  k → ∞ , then  ( )
r 1r

k 1 kX  .
r 1

+

+ − <
+

α βΧ ε
α β

  

ii- From theorem 2.1, kY < β  and   kY → Χ , 

 1 1
kY − −→ Χ   and k 1Y X  − →  as  k → ∞ . By the same 

manner we can prove that  ( )
r 1r

k 1 kY Y  .
r 1

+

+ − <
+

α β ε
α β

 

 

iii- Similarly, we can prove  
( )

r 1r

k 1 k 1Y  .
r 1

+

+ +− <
+

α βΧ ε
α β

   

        
 iv- r r

k k k k
∗ ∗ ∗− + = −Β Χ Β Χ Β Β Β Χ Β Χ          

    ( )r
k 1 k k k 1 ,∗ ∗

− −− + = −Β Χ Β Χ Β Χ Χ Β  
then, take the norms of both sides,  

( )r
k k k k 1 ,∗ ∗ ∗

−− + = −Β Χ Β Χ Β Β Β Χ Χ Β   

2 1
k k k 1

2

                                     . I X ,

                                      <

−
−≤ −Β Χ Χ

Β βε
 

  v- Similarly, we can prove 
      2

k k .∗ ∗− − <Υ Β Υ Β Β Β Β βε  

III. NUMERICAL EXPERIMENTS 
In this section, we give two numerical examples to illustrate 

that the matrix sequences { }kX  and { }kY generated by iterative 

method 2.1 are converging to the unique positive definite 
solution Χ  of (1). The unique solution is computed for 
different nonsingular matrices A. All programs are written in 
MATHAMATICA. For the following examples, the practical 
stopping criterion is { } 10

k k kmax , X Y , X Y 10 ,−− − − ≤Χ Χ    

and the solution is 500=Χ Χ .  

A. 4.1 Examples 
1) Example 1 

Consider the nonlinear matrix equation 
* rX A X A I ,= − where 

3

103711 37462 6577 422228
37462 30884 21447 14129

A 10
6577 21447 6005 21733

42228 1429 21733 22782

−

− − − 
 − − − =  − −
  − 

, 

437.12=Α ,and  0.419732.=Β   
 
For  r 1.04= . Let   0.0003=α  and 2.01=β . After 10 

iterations, we  get  

2

0.0469959 0.553028 0.666889 0.476251
0.553028 6.69228 7.94655 5.75752

X 10 .
0.666889 7.94655 9.62647 6.8248
0.476251 5.75752 6.8248 4.99657

−

 
 
 =  
  
 

 

For  r 50= , Let   0.85=α and 0.965=β  After 5 iterations, 
we  get 

0.854864 0.900758 0.9003511 0.898779
0.900758 0.94985 0.952281 0.947962

X .
0.903511 0.952281 0.95523 0.950188
0.898779 0.947962 0.950188 0.946372

 
 
 =  
  
 

 

For  r 17.4= , Let   0.35=α and 0.965=β  After 7 iterations, 
we  get 

0.637573 0.740929 0.747546 0.736091
0.740929 0.862891 0.86943 0.857697

X .
0.747546 0.86943 0.877289 0.86375
0.736091 0.857697 0.86375 0.853213

 
 
 =  
  
 

 

 See Table I. 
 
For  r 100= , Let   0.0000015=α and 0.9=β  After 5 

iterations, we  get 
0.924561 0.949055 0.950498 0.948022
0.949055 .974577 0.975815 0.973624

X .
0.950498 0.975815 0.97732 0.974752
0.948022 0.973624 0.974752 0.972828

 
 
 =  
  
 

 

See Table I. 
For  r 1000.5= , Let 0.00001=α and 0.8=β  After 4 

iterations, we  get 
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0.992188 0.994784 0.994935 0.994677
0.994784 .997427 0.997552 0.997331

X .
0.994935 0.997552 0.997706 0.997445
0.994677 0.997331 0.997445 0.997251

 
 
 =  
  
 

 

See Table I. 
For  r 10000= , Let   0.99=α and 1.00098=β . After 3 

iterations, we  get 
 

0.992116 0.999477 0.999492 0.999466
0.999477 0.999742 0.999755 0.999733

X .
0.999492 0.999755 0.99077 0.999744
0.999466 0.999733 0.999744 0.999725

 
 
 =  
  
 

 

See Table I. 
 
2) Example 2 

Consider the nonlinear matrix equation * rX A X A I ,= −  
where A 50H,=  with size m and 

( )
.01 ,

50: ,
1

( ) .

ij ij

i j

H h h i j
j

i j i j

 <

= = =

+
− + >

 

 
I- For m=10, 1459.87=Α , 0.044384=Β , r 15.2= . Let   

0.6=α and 0.95=β . After 7 iterations, we  get approximate 
solution. See Table II. 

 
II-  For  m=100, 127087=Α , 0.0197004=Β , r 120.5= . 

Let   0.005=α and 1.001=β . After 7 iterations, we  get 
approximate solution. See Table II. 

 
III- For  m=500, 1.645E+6=Α , 0.0199563=Β  , r 25= . 

Let  0.9=α  and 1.09=β . After 7 iterations, we  get 
approximate solution. See Table II. 

B. 4.2 Tables 

In the following tables we denote ,x nX X= −δ  

y nX Y= −δ  and xy n nX Y= −δ . 
 

Table I: Error analysis for Example 1 for different 
values of r 

xyδ  yδ  xδ  K r 

0.369909 0.354075 1.5932E-2 1 

1.04 

1. 883069E-3 1.76403E-3 6.66571E-5 3 
7.54454E-6 7.27049E-6 2.74056E-7 5 
3.10108E-8 2.98844E-8 1.12642E-9 7 
1.3746E-10 1.2283E-10 4.6298E-12 9 
8.17153E-12* 7.8747E-12 2. 96831E-13 10 
7.03942E-2 7.08819E-2 9.73142E-3 1 17.4 1.23752E-5 1.45552E-5 2.1816E-6 3 

1.84691E-9 2.11828E-9 2.7137E-10 5 
2.30473E-12 2.64854E-11* 3.43809E-12 6 
4.50058E-3 2.89306E-2 2.45169E-2 1 

50 8.7217E-8 6.51877E-7 5.64664E-7 3 
1.49548E-12 1.07506E-11* 9.25516E-12 5 
0.0247108 0.013866 0.0114875 1 100 1.15944E-7 7.6275E-8 3.96776E-8 3 
4.8781E-13* 3.06488E-13 1.82295E-13 5 
2.34085E-3 1.23687E-3 1.1774E-3 1 

1000.5 

5.91476E-7 1.97269E-7 1.97269E-7 2 
1.06143E-10 8.4096E-11 8.4096E-11 3 
2.08354E-14* 1.24263E-14 8.4096E-16 4 
2.2002E-6 1.6578E-4 1.63614E-4 1 10000 

5.55592E-11 5.04667E-9 4.99117E-9 2 
9.83845E-16 8.62992E-14* 8.53209E-14 3 

 
 
 
 

Table II: Error analysis for Example 2 for different 
 values of r 

xyδ  yδ  xδ  K m r 

0.0828854 0.265667 0.182905 1 

10 
15.2 

4.19349E-5 1.94859E-4 1.529297E-4 3 
2.44109E-8 1.39777E-7 1.15423E-7 5 
1.93216E-11 1.13843E-10* 9.45465E-11 7 

1.08488 8.07667 6.99179 1 

100 
25 

1.87561E-6 1.43782E-5 1.25592E-5 3 
5.18404E-10 1.95518E-9 2.46831E-9 5 
9.54027E-12* 4.01735E-12 4.97063E-12 7 

.0522543 0.525154 2.61788E-3 1 

500 
100.5 

2.01066E-8 3.97474E-8 9.98343E-8 3 
5.57798E-11* 1.01759E-11 1.57493E-11 5 

 

IV. CONCLUSION 
In this paper, a two-sided iterative process for the matrix 

equation was investigated. The novel idea here is that the two 
sequences were obtained by starting  with two different 
provided values (a) an interval in which the solution is located, 
that is, k kX X Y< <  for all k; and (b) a better stopping 
criterion. Property of solution was discussed, as well, and 
sufficient solvability conditions on a matrix A were derived. 
Moreover, general convergence  results  for  the  suggested  
iteration for equation1 were given. Some numerical examples 
were presented to show the usefulness of the iterations.  

The two-sided iteration method described above possesses 
some advantages. We can compute k 1X +  and k 1Y +  in parallel 
[12] and if the conditions of Theorems 2.1 are satisfied, we 
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can calculate the solution  X  of (1) for any power of X in (1)  
as we see in examples 1  and  2, while this cannot be 
calculated for one-sided iteration method. It is also easy to 
propose a stopping  criteria, using   

{ }k k k kmax , Y X Y− − < −Χ Χ Χ , or   

{ }k k k kmax , Y X , Y tolerance− − − <Χ Χ Χ ,  

which are not applicable for one-sided iteration methods. 
Here we consider the case when A is a non singular.  
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