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A two-sided Iterative Method for Solving
A Nonlinear Matrix Equation X =A™ X "A —1

Sana'a A. Zarea

Abstract— An efficient and numerical algorithm is suggested for
finding the positive definite solutions of the matrix equation
X=AX"A-l ,r>1, where A is a nonsingular real matrix, if such

solutions exist. The suggested technique is called the "Two-sided
Iterative Process". Property of solutions is discussed thereof,
necessary and sufficient conditions for existence of a positive definite
solution are derived, and also the error analysis and the convergence
rate are analyzed. Finally, two numerical examples are given to
illustrate the effectiveness of the algorithm.

Keywords—convergence rate, non linear matrix equation,
positive definite solution, two-sided method.

I. INTRODUCTION

N recent years, studies of various physical structures of

nonlinear equations have attracted much attention in
connection with the important problems that arise in scientific
applications. These physical structures of nonlinear equations
have many forms such as ordinary and partial differential
equations [1],[2], matrix equations [3]-[9], and nonlinear
programming problems [10],[11].

In this paper, we only focused on matrix equation. The
importance of matrix equations and its applications were given
in [8] and the references therein. Also, different iterative
methods for solving some kinds of matrix equation were given
, such as, fixed point iteration [6],[8],[9],[12], [13], Newton
method [14], SDA algorithm[7], LR algorithm [15], Butterfly
SZ algorithm [3], and Two-sided Iterative Process[12].

In [8], we studied: nonlinear matrix equation of the form

X=AX'A-1r>1, (1)

where A is a square real matrix, and X is unknown square

matrix. Two properties of a positive definite solution of (1)

were discussed; first one, is related with the smallest, the

largest eigenvalues of a solution X of (1), and an eigenvalues

of A. The second one, gives the relation between the terms of
D).

An iterative method was proposed to compute the unique
positive definite solution when |A|>1, for X =A"X TA -1

with real square matrices and r >1 . The proposed method was
based on the fixed point theorem. Moreover, necessary and
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sufficient conditions for the existence of the positive definite
solutions were derived. The error estimation and general
convergence results of the iterative method were also
provided. For more convenience, we will mention all results in
[8].

Theorem 1. If m and M are the smallest and the largest
eigenvalues of a solution X of equation (1), respectively, and
A is an eigenvalues of A, then

<|a)< /'V'M‘rl.

Theorem 2. If equation (1) has a positive definite solution
X, then

A*X"A>xand x>VYAatal,

Algorithm 3.
Take X, =0.For k =1,2,...compute

X, =B (1+X,_1)B,

where B=A41,B" =4"1.

m-1

mr

Theorem 4. Let the sequence {Xk} be determined by the

Algorithm 3, 0<al <B*B <%I and if (1) has a positive

definite solution, then {X,} converges to positive definite

solution X. Moreover, if X, >0 for every k and

O<al <B™B <%| , then (1) has a positive definite solution.

Theorem 5. Let X, be the iterates in algorithm 3 and

(/—

o 1
0<al <B'B < I If q:ﬁ<l, then |lx, - x|<q* x|,

where X is a positive definite solution of (1).

a

<1,
2ar

Corollary 6. Assume that (1) has a solution. If g

then {X,},k=0,12,... converges to X with at least the linear
convergence rate.

Theorem 7. If (1) has a positive definite solution and after
k iterative steps of Algorithm 3 and we have

“1— Xt x, ,1“ <&, £>0, then
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r
Xyt - X <2 o, and
2ar

Ya
4ar

where X, is the iterates in Algorithm 3.

This paper aims to find the positive definite solution of the
matrix equation (1).

In this paper, mathematical induction technique will be
used in the most proofs.

The following notations are used throughout [8] and the rest
of the paper. The notation A>0 (A >0) means that A is
positive semidefinite (positive definite). For matrices A and
B, we writt A>B(A>B) if A-B>0(A-B>0), and
{X,} denotes the sequence X;,X;,X,,... We denote by

ii-“B*ka—x;+ B*B” Yo

p(A)=||A| the spectral radius of A. The norm used in this

paper is the spectral norm of the matrix A unless otherwise
noted.

Il. PROPERTY OF THE SOLUTIONS AND THE ITERATIVE

METHOD

In this section, we shall discuss the property of positive
definite solutions of the matrix equation (1).

A two-sided algorithm for solving equation (1) is proposed
, then, Lemma is briefly reviewed. Afterwards, it will be used
to establish the conditions for the existence of a positive
definite solution of (1) when the matrix A is nonsingular

matrixand B=A1, B =A™,

A. Theorem 2.1
If (1) has a positive definite solution X, then

AA-Yatat s,
Proof. Let X be a positive definite solution of equation (1),
from Theorem 2 and Lowner-Heinz inequality [17], we get

X>VA a1 x> 140414t
I >X :f/A*’l(I +x)A™t >r\/A*’1(I +\r/A*’1A’l)A’l.

Hence
AA-Yatat s,
B. Algorithm 2.1
Take Xg=alYy=p1.For k=0,112,...compute

X1 =B (1 +X)B, 2
Vi1 =4 B (1+Yy)B, (3)

where B=A"1 B =4"1.
C. Lemma 2.1[16]

Let f be an operator monotone function on (0,) and let

AB be two positive operators that are bounded below by
aj;i.e,A>al and B >al for the positive number a.
Then for every spectral norm
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[f(A)-f(B)|< f'(a)|A-B].

D. Theorem 2.1.
If there exist numbers o and p so that 0<a < B and the
following conditions are satisfied
ﬂr
1+ p)

a

(i)(1+a)|<B B < l,

Nap'_
ra (l+ ﬁ)
Then (1) has a positive definite solution X , where X is the

same limit of the two sequences {X,} and {Y,} are defined in

the Algorithm 2.1.
Proof. To prove the theorem, we will show that
XO =al < Xk < xk+l SYkJrl <Yk <Y0 Zﬂl ,k:1,2,...and

[V = Xi| >0 as k —>o0.

(ii)q = <1.

From algorithm 2.1
X, =1/B"(1+ Xo)B ={/B"(1 +a1)B

_ e+ a)BB 51 (ﬁra) A+a)l

=al =X0:>X1>X0.
Let X;>X;_; is true whenk=i, thus by using Lowner-
Heinz inequality we get

Xin={B(1+X)B>{B (1 +X;, )B=X;.  That s
X < Xys1,k=0,1,2,... and {X,} is increasing.

Next, we will prove X,,;<Y,;, for k=0,12,.. From
algorithm 2.1 Yo =Bl >al =X,. Since gl >«l, then

B"(I+B1)B>B"(1+al)B, then by using Lowner-Heinz
inequality, we get

Y =YB 1+ 1B > B (1 +al)B =X, Let v;>x; is true
when k =i, thus by using Lowner-Heinz inequality, we get

Yot ={/B"(1+Y)B > B (1 + X{)B = X;.1. That s
Yk > Xk,k =0,1,2,...
Finally, we will prove that Y,,;<Y,,k=0.12,.. From

algorithm 2.1, we get
Y, =1[B"(1+Yo)B ={/B"(1 + 1B = {1+ 5)B'B

JBQxB) |
Ny I =Bl=Y,.

Let Y, <Y;_, is true when k=i, thus by using Lowner-
Heinz inequality, we get

Vi =B (1 +Y)B <{B"(1+YB = ;.
i1 <Ye.k=0,12,.. and {Y,} is decreasing.

That is

Hence, we proved
Xo=al <Xy < Xy <Y1 <Ye <Yo=Bl,k=12,..

Now, we shall prove that |V, - X,|| >0 as n— o for that
we have
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IV = Xl = | /B (1 +Yi1)B —§/B" (1 + X, _1)B H

|5~

where P=B"(1+Y,_;)B and Q=B"(I1+X,_;)B. By using

lemma 2.1, with a monotone operator f(x)=%x, r>1, and
Y > Xga = Xg=ol forall k=1,2,..., then
ar(1+a)| B

a"l =al,
(1+a)

P=B"(1+Y,{)B>B (I +al)B" >

provided a=a" = P>al, by the same manner, we prove
Q>al. Then

1 12
Ve = Xi[<Zar ‘

B (1+Y,_1)B-B"( +Xk_1)BH

1 L,
< af HB BH.HYk,l—xk,1 ,
* i
since B B< 1 , then we have
1+4

1
1 -1 8
e~ Xi < perr £ s =X

<0 Y = Xy
[Yi =X [ <0 JYo = Xo | =0 (8 -a),
SNa_
ra(l+ﬁ)
is, limY, = lim X, =X = A'X"A-1>0.

k—o0 k—o0

, after k-steps

where q= <1, then |Y, - X,|—>0 as n—, that

E. Theorem 2.2.
If X, >0 and Y, >0 forevery k, 0<a<g and

r r
% | <BB<-L 1, then (1) has a positive definite
1+ a) @+p
solution.
Proof. Suppose X, >0 and Y >0 for k=12_3,., we

proved that the limits of {X,} and {Y,} are exist. Let

Xip1 = A"XFA-1>0 and Y, =AY A-1>0, by taking the

limits as k— o, we have X=A'X"A-1>0 and

Y =A"Y"A-1>0, Consequently, equation (1) has positive

definite solution.
Hence the theorem is proved.

F. Theorem 2.3

Let X, and Y, be the iterates in algorithm 2.1,
r r rr
% | <BB<—L—1 and 0<a<p. If q:ﬂd.
(l+a) 1+p) ra(1+pB)

Then ||Xk—X||<qk(/3—a), and ||Yk—Y||<qk(/3—a), where

X is a positive definite solution of (1).
Proof. From Theorem 2.1, it follows that the sequences (2)
and (3) are convergent to a positive definite solution X of (1).
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We compute the spectral norm of the matrix x, — x, we
obtain

X =x]=

¢r-F],

where R=B"(I + X,_4)B, P=B"(I + X)B. By using lemma

{/B*(I +Xk-1)B —(/B*(I + X)B“:

2.1, with a monotone operator f (Xx) = {x;r>1and
Xk > Xg=al for k=1,23,..., then
R=B"(I +X,_4)B>(1+a)B'B>a'l, provided a=c", R>al

and by the same manner, we get P > al.
1-r
Since f(a)=Ya, f'(a)zé.a r

1-r
1 - *
X<t v o8] fxics -],
1-r
1 r
<rar (1»_’iﬂ)||xk,1_x||,
let q=L V¢ _ 1, we have
ra(1+p)

[Xk = X[ < aXk1—X], after k-steps,
<qfxo-x|
From theorem 2.1 Xy =al < Xy < Xypq < Yiyr <Ye <Yo = BI,
k=01.2,.. and X,=al Y,=pI.Consequently,

¥ - x1< "% - X <a* (- ).
Similarly, we can prove [y, - X|<q* ¥, - X||<d*(8-a).

G. Corollary 2.1.

Ve
ra(1+p)
{Xy}and {v,} are converging to X with at least the linear

Assume that (1) has a solution. If q= <1, then

convergence rate.
Proof. Aswe have

B ﬂr(/z B B ﬂr{/;
X X||<m||)(k,1 X||,q—7m(l+ﬁ)<l. Then

choose a real number that satisfies /g <&<1. Since

X, — X, as k> oo there exists a N, such that for any k>N,
Ja<e.

Hence |X.;—X|<6?||Xy - X].

Similarly, we can prove

Mieia = X[ < 0% = X].

H. Theorem 2.4

If matrix equation (1) has a positive definite solution and
after k iterative steps of Algorithm (1), the inequalities

X xa-t)<e, [viici-1]<z and ”I ~ X, “ <&,

imply

155
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I1l. NUMERICAL EXPERIMENTS

(/;ﬂwl
i- | X=X _ . . . . .
! " k+1 k||< ra(1+,b’) & In this section, we give two numerical examples to illustrate
) a st that the matrix sequences {X,} and {Y,} generated by iterative
Ii- ||Yk+l_Yk"<m € method 2.1 are converging to the unique positive definite
solution Xx of (1). The unique solution is computed for
- "X _x " Yap™t . different nonsingular matrices A. All programs are written in
krl ™k ra(l1+p) MATHAMATICA. For the following examples, the practical
i . . ; sapion i _ _ _ -10
iv- | X - B* x5 - B"B| < |B]” pe, stopping criterion s max{|.X —Xic| [ X =YX - ¥} <207,
i i ) and the solution is X = Xgq9.
v- vy~ BB~ B'B| < pe|BI?

where {X,} and {Y,} k=0,12,... are the iterates generated A 41 Examples

. L . . 1) Example 1
positive definite solution of equation (1). Consider the nonlinear matrix equation

and ¢=min{z; &5} >0. X =A"X"A—1.where

Proof. i- From algorithm 2.1 and lemma 3.1, then, take the 108711 —37462 —6577 422278
norms of both sides, - - B

I A<10-3 -37462 30884 21447 -14129
[ s =X = |{B" (1 + x,0)B ~§/B (|+Xk_1)B“, - 6577 -21447 6005 21733 |’
1, 42228 1429 21733 22782
1 T *
<=ar B B||x - X4l | 4] =437.12 ,and |B]=0419732.

1

at g 4 For r=104. Let «=00003 and B=201. After 10
<Z i - i K-

r(1+ﬂ) iterations, we get
o 0.0469959 0.553028 0.666889 0.476251
From theorem 2.1 |lXi|<f and X >x, X' > X~ 0553028 6.60228 7.94655 5.75752
« _102| © . . .
and X, ; > X as k—»c.Consequently, “l ka*Xk_lﬂeo 0.666880 7.04655 9.62647  6.8248
Yag 0476251 575752 6.8248  4.99657
as k — oo, then ||Xk+1_xk"<m 2 For r=50, Let «=0.85and B=0.965 After 5 iterations,
- we get
ii- From theorem 2.1, [ <4 and v, - x, 0.854864 0.900758 0.9003511 0.898779
viosx?t and v, ,>X as k-wo. By the same . _| 0900758 004985 0952281 0947962
a s 0903511 0.952281 0.95523 0.950188
manner we can prove that ||Yk+1_Yk"<m . 0.898779 0.947962 0.950188 0.946372
For r=17.4,Let «=0.35and B=0.965 After 7 iterations,
o Yapt we get
iii- Similarly, we can prove ||Xk+1—Yk+1||<m €. 0.637573 0.740929 0.747546 0.736091
0740929 0862891 0.86943 0.857697
T 0747546 0.86943 0.877289 0.86375
iv- B*X B~ X +B*B=B"X,B~- Xy 0.736091 0.857697 0.86375 0.853213
-B* X\ 1B+ Xy =B" (X - Xy_1)B, See Table I.

then, take the norms of both sides,

. For r=100, Let a =0.0000015and £ =0.9 After 5
‘:HB (X - X¢1)B “

iterations, we get
0.924561 0.949055 0950498 0.948022

<HBH2/”€ _|0.949055 974577  0.975815 0.973624.

o 0950498 0.975815 0.97732 0.974752
v- Similarly, we can prove 0.948022 0.973624 0.974752 0.972828

[V~ BvB-B"B|<|B[ pe. See Table I.

For r=10005, Let «=0.00001and £=0.8 After 4
iterations, we get

HB*XKB - X! +B'B

<|8 X |1 - Xt )i
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0.992188
0.994784
| 0994935
0.994677
See Table I.
For r=10000, Let
iterations, we get

0.994784 0.994935

997427  0.997552
0.997552 0.997706
0.997331 0.997445

0.994677
0.997331
0.997445 |
0.997251

a=0.99and £ =1.00098. After 3

0.992116
0.999477
0.999492
0.999466

See Table I.

0.999477 0.999492
0.999742 0.999755
0.999755  0.99077

0.999733 0.999744

0.999466
0.999733
0.999744 |
0.999725

2) Example 2
Consider the nonlinear matrix equation X =A"X'A-1,
where A=50H, with size m and

.01 <],

. 50 L
H:(hlj) hij: m |=j,
—(i+1]) i>]

I- For m=10, |A|=1459.87, |B|=0.044384, r=152. Let

a=06and 5=0.95. After 7 iterations, we get approximate
solution. See Table II.

Il- For m=100, |A4|=127087, |B|=0.0197004, r=1205.

Let a=0.005and B=1.001. After 7 iterations, we
approximate solution. See Table II.

get

Il- For m=500, |4 =1.645E+6 , |B]|=0.0199563 , r=25.

Let «=09 and pB=1.09. After 7 iterations, we
approximate solution. See Table II.

B. 4.2 Tables

In the following tables we denote &y =X —X,],

get

Volume 9, 2015

5 2.7137E-10 2.11828E-9 1.84691E-9
6 3.43809E-12 2.64854E-11*| 2.30473E-12
1 2.45169E-2 2.89306E-2 4.50058E-3
3 3 5.64664E-7 6.51877E-7 8.7217E-8
5 9.25516E-12 1.07506E-11*[ 1.49548E-12
1 0.0114875 0.013866 0.0247108
§ 3 3.96776E-8 7.6275E-8 1.15944E-7
5 1.82295E-13 3.06488E-13 4.8781E-13*
1 1.1774E-3 1.23687E-3 2.34085E-3
§ 2 1.97269E-7 1.97269E-7 5.91476E-7
& 3 8.4096E-11 8.4096E-11 1.06143E-10
4 8.4096E-16 1.24263E-14 2.08354E-14*
1 1.63614E-4 1.6578E-4 2.2002E-6
g 2 4.99117E-9 5.04667E-9 5.55592E-11
° 3 8.53209E-14 8.62992E-14*| 9.83845E-16

Table II; Error analysis for Example 2 for different

values of r
rim|K Sy 5)/ 5xy
1 0.182905 0.265667 0.0828854
2 5 3 1.529297E-4 1.94859E-4 4.19349E-5
n 5 1.15423E-7 1.39777E-7 2.44109E-8
7 9.45465E-11 1.13843E-10* 1.93216E-11
1 6.99179 8.07667 1.08488
= 3 1.25592E-5 1.43782E-5 1.87561E-6
15 2.46831E-9 1.95518E-9 5.18404E-10
7 4.97063E-12 4.01735E-12 9.54027E-12*
. 1 2.61788E-3 0.525154 .0522543
8 a 3 9.98343E-8 3.97474E-8 2.01066E-8
71 5 1.57493E-11 1.01759E-11 5.57798E-11*

Sy =X —Yal a0 5 = Xy o]

Table I: Error analysis for Example 1 for different

values of r
ri K 2 dy Oy
1 1.5932E-2 0.354075 0.369909
3 6.66571E-5 1.76403E-3 1. 883069E-3
~| 5 2.74056E-7 7.27049E-6 7.54454E-6
S 1.12642E-9 2.98844E-8 3.10108E-8
9 4.6298E-12 1.2283E-10 1.3746E-10
10 | 2.96831E-13| 7.8747E-12 8.17153E-12*
sl 1 9.73142E-3 7.08819E-2 7.03942E-2
>3 2.1816E-6 1.45552E-5 1.23752E-5
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IV. CONCLUSION

In this paper, a two-sided iterative process for the matrix
equation was investigated. The novel idea here is that the two
sequences were obtained by starting with two different
provided values (a) an interval in which the solution is located,
that is, X, <X <Y, for all k; and (b) a better stopping

criterion. Property of solution was discussed, as well, and
sufficient solvability conditions on a matrix A were derived.
Moreover, general convergence results for the suggested
iteration for equationl were given. Some numerical examples
were presented to show the usefulness of the iterations.

The two-sided iteration method described above possesses
some advantages. We can compute X,,; and Y, in parallel

[12] and if the conditions of Theorems 2.1 are satisfied, we
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can calculate the solution X of (1) for any power of X in (1)
as we see in examples 1 and 2, while this cannot be
calculated for one-sided iteration method. It is also easy to
propose a stopping criteria, using

max{[|X = XY = X[} <[ - X, ] or
max{"Xk = X = X v - X ||} <tolerance,

which are not applicable for one-sided iteration methods.
Here we consider the case when A is a non singular.

REFERENCES

[1] A. Karbalaie, M. M. Montazeri, M. Shabani and, B. Erlandsson,
”Application of homo-separation of variables method on nonlinear
system of PDEs,” WSEAS Transactions on Mathematics, Vol. 13, pp.
992-1000, 2014.

[2] L. H.You,P.Comninos, and J. J. Zhang, "Solid Modelling with Fourth
Order Partial Differential Equation,” International Journal of
Computers, Vol. 2, No.4, pp. 452— 461, 2008.

[3] P.Benner, and H. Fasshender, ” On the solution of the rational matrix

equation X =Q+L*X~IL,” EURASIP Journal on Advances in

Signal Processing, Vol.27, pp. 1-10, 2007.

[4] T. Cimen, "Recent advances in nonlinear optimal feedback control
design,” Proceedings of the 9" WSEAS International Conference on
Applied Mathematics, pp. 460-465, 2006.

[5] A. Khamis, and D. Naidu, "Nonlinear optimal tracking using finite
horizon state dependen Riccati equation (SDRE), ” Proceedings of the
4™ International Conference on Circuits, Systems, control, Signals
(WSEAS), pp. 37-42, 2013.

[6] I G. lvanov, V. I. Hasanov, and F. Unlig, ” Improved methods and

starting values to solve the matrix equation X +A* X A=1
iteratively,” Mathematics of Computation, Vol. 74, pp. 263-278, 2004.
[71 W. W. Lin, and S. F. Xu, ” Convergence analysis of structure-
preserving doubling algorithms for Riccati-type matrix equation,” SIAM
Journal on Matrix Analysis and Applications ,Vol. 38, pp. 26-39,

2006.
[81 S. A. Zarea, "On positive definite solutions of the nonlinear matrix
equation X =A*X"A-1," Proceedings of the 3% WSEAS

International conference on  Mathematical, Computational and
Statistical Sciences, pp. 427-432, 2015.
[91 S. A. Zarea, and S. M. El-Sayed, ” On positive definite solutions of the

nonlinear matrix equation X —A*X"A=1," Applied Mathematical
Sciences, Vol. 9, No. 3, pp. 107-120, 2015.

[10] M. Ettaouil, M. Lazaar, K. Elmoutaouakil, and K. Haddouch,” A new
algorithm for optimization of the kohonen network architectures using
the continuous hopfield networks,” WSEAS TRANSACTIONS on
COMPUTERS, Vol. 12, No. 4, pp. 155-163, 2013.

[11] B. Qiao, X. Chang, M. Cui, K. Yao, ” Hybrid particle swarm
algorithm for solving nonlinear constraint optimization problems,”
Wseas Transactions on Mathematics, Vol. 12, No.1, pp. 76-84, 2013.

[12] S. M. El-Sayed, ”A Two-Sided iterative method for computing positive
definite solutions of a nonlinear matrix equation,” ANZIAM Journal,
Vol. 44, pp. 145-152, 2003.

[13] S. Fital, and C. H. Guo, ” A note on the fixed point iteration for the
matrix equations X +A* X *A=1," Linear Algebra and its
Applications, Vol. 429, pp. 2098-2112, 2008.

[14] C. H. Guo, and W. W. Lin, "The matrix equation X + A* X *A=Q
and its application in nano research,” SIAM Journal on Scientific
Computing, Vol. 32, No. 5, pp. 3020-3038, 2010.

[15] B. Meini, “Efficient computation of the extreme solutions of
X +A* X IA=Q and X - A* X 1A=Q ,” Mathematics of Computat-
ion, Vol. 71, pp. 1189-1204, 2001,.

[16] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics 169,
Springer Verlag New York Inc., New York, 1997.

[17] G. K. Pedersen, "Some operator monotone functions, Proceedings of
the American Mathematical Society,” Vol. 36, pp. 309-310, 1972.

ISSN: 1998-0159

158

Volume 9, 2015


http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fepubs.siam.org%2Fjournal%2Fsjmael&ei=2rzKVPeKN8urU6Tlg-gG&usg=AFQjCNEgtlzYNw5TeF6Zol6-_2tlWZDo-w&sig2=EVUndYB1keMQPFX7Tjracg
http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fepubs.siam.org%2Fjournal%2Fsjmael&ei=2rzKVPeKN8urU6Tlg-gG&usg=AFQjCNEgtlzYNw5TeF6Zol6-_2tlWZDo-w&sig2=EVUndYB1keMQPFX7Tjracg
http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fepubs.siam.org%2Fjournal%2Fsjmael&ei=2rzKVPeKN8urU6Tlg-gG&usg=AFQjCNEgtlzYNw5TeF6Zol6-_2tlWZDo-w&sig2=EVUndYB1keMQPFX7Tjracg
http://www.wseas.org/wseas/cms.action?id=3930



