
 

 

  
Abstract—The article presents the techniques suitable for 

practical purposes in general insurance and reinsurance and 
demonstrates their application. It focuses mainly on modelling and 
simulations of claim amounts by means of mathematical and 
statistical methods using statistical software products and contains 
examples of their applications. Article also emphasizes the 
importance and practical use of probability models of individual 
claim amounts and simulation of extreme losses in insurance practice. 
 

Keywords—Goodness of fit tests, loss distributions, Pareto 
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I. INTRODUCTION 
LTHOGH the empirical distribution functions can be 
useful tools in understanding claims data, there is always 

a desire to “fit” a probability distribution with reasonably good 
mathematical properties to the claims data.  

Therefore this paper involves the steps taken in actuarial 
modelling to find a suitable probability distribution for the 
claims data and testing for the goodness of fit of the supposed 
distribution [1]. 

A good introduction to the subject of fitting distributions to 
losses is given by Hogg and Klugman (1984) and Currie 
(1993). Emphasis is on the distribution of single losses related 
to claims made against various types of insurance policies. 
These models are informative to the company and they enable 
it make decisions on amongst other things: premium loading, 
expected profits, reserves necessary to ensure (with high 
probability) profitability and the impact of reinsurance and 
deductibles [1]. View of the importance of probability 
modelling of claim amounts for insurance practice several 
actuarial book publications dealing with these issues, e.g. [2], 
[7], [12].  

The conditions under which claims are performed (and data 
are collected) allow us to consider the claim amounts in 
general insurance branches to be samples from specific, very 
often heavy-tailed probability distributions. As a probability 
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models for claim sizes we will understand probability models 
of the financial losses which can be suffered by individuals 
and paid under the contract by non-life insurance companies as 
a result of insurable events. Distributions used to model these 
costs are often called “loss distributions” [7]. Such 
distributions are positively skewed and very often they have 
relatively high probabilities in the right-hand tails. So they are 
described as long tailed or heavy tailed distributions. 

The distributions used in this article include gamma, 
Weibull, lognormal and Pareto, which are particularly 
appropriate for modelling of insurance losses. The Pareto 
distribution is often used as a model for claim amounts needed 
to obtain well-fitted tails. This distribution plays a central role 
in this matter and an important role in quotation in non-
proportional reinsurance [15]. 

II. CLAIM AMOUNTS MODELLING PROCESS  
We will concern with modelling claim amounts by fitting 

probability distributions from selected families to set on 
observed claim sizes. This modeling process will be aided by 
the STATGRAPHICS Centurion XV statistical analytical 
system. 

Steps of modelling process follow as below:  
1. We will assume that the claims arise as realizations from 

a certain family of distributions after an exploratory 
analysis and graphical techniques. 

2. We will estimate the parameters of the selected parametric 
distribution using maximum likelihood method based the 
claim amount records. 

3. We will test whether the selected distribution provides an 
adequate fit to the data using Kolmogorov-Smirnov, 
Anderson-Darling or χ2 test. 

A. Selecting Loss Distribution 
Most data in general insurance are skewed to the right and 

therefore most distributions that exhibit this characteristic can 
be used to model the claim amounts. For this article the choice 
of the loss distributions was with regard to prior knowledge 
and experience in curve fitting, availability of computer 
software and exploratory descriptive analysis of the data to 
obtain its key features. This involved finding the mean, 
median, standard deviation, coefficient of variance, skewness 
and kurtosis. This was done using Statgraphics Centurion XV 
package.  

The Distribution Fitting procedure of this software fits any 
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of 45 probability distributions (7 for discrete and 38 for 
continuous random variables) to a column of numeric data that 
represents random sample from the selected distribution. 
Distributions selected for our analysis are defined in 
Statgraphics Centurion as follow [7].  

Gamma Distribution 
Probability density function (PDF) is in the form 
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Lognormal Distribution 
Probability density function (PDF) ) is in the form 
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with parameters: location μ, scale 0.σ >  

Weibull Distribution 
Probability density function (PDF) ) is in the form 
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with parameters: shape 0α >  and scale 0.β >  

A good tool to select a distribution for a set of data in 
Statgraphics Centurion is procedure Density Trace. This 
procedure provides a nonparametric estimate of the probability 
density function of the population from which the data were 
sampled. It is created by counting the number of observations 
that fall within a window of fixed width moved across the 
range of the data. The estimated density function is given by 
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where h is the width of the window in units of X and W(u) is a 
weighting function. Two forms of weighting function are 
offered: Boxcar function and Cosine function.  

The Cosine function usually gives a smoother result, with 
the desirable value of h depending on the size of the data 
sample. Therefore in the application we use Cosine function  
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B. Parameters Estimation 
We will use the method of Maximum Likelihood (ML) to 

estimate the parameters of the selected loss distributions. This 
method can be applied in a very wide variety of situations and 

the estimated obtained using ML generally have very good 
properties compared to estimates obtained by other methods 
(e. g. method of moments, method of quantile). Estimates are 
obtained using ML estimation in procedure Distribution 
Fitting in Statgraphics Centurion XV package. 

The basis for ML estimation is Maximum Likelihood 
Theorem [5]: Let ( )1 2, , ..., nx x x=x  be a vector of n 
independent observations taken from a population with PDF 

( ); ,f x Θ  where ( )1 2, , ..., p′ = Θ Θ ΘΘ  is a vector of p 

unknown parameters. Define the likelihood function ( );L Θ x  
by 

 ( ) ( )
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; ;
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i
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L f x
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The ML estimate ( )ˆ ˆ=Θ Θ x  are that values of Θ  which 

maximizes ( ); .L Θ x   

C. Goodness of Fit Tests 
Various statistical tests may be used to check the fit of 

a proposed model. For all tests, the hypotheses tested are: 
H0:  The selected distribution provides the correct statistical 

model for the claims, 
H1: The selected distribution does not provide the correct 

statistical model for the claims. 
From the seven different tests that offer the procedure 

Distribution Fitting of package Statgraphics Centurion XV we 
will use the next three [18]: 

Chi-Squared test divides the range of X into k intervals and 
compares the observed counts Oi (number of data values 
observed in interval i) to the number expected given the fitted 
distribution Ei (number of data values expected in interval i). 

Test statistics is given by 
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which is compared to a chi-squared distribution with 1k p− −  
degrees of freedom, where p is the number of parameters 
estimated when fitting the selected distribution.  

Kolmogorov-Smirnov test (K-S test) compares the empirical 
cumulative distribution of the data to the fitted cumulative 
distribution. The test statistic is given by formula  
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x
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The empirical CDF ( )xFn  is expressed as follows: 
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where data are sorted from smallest to largest in sequence 

( ) ( ) ( )1 2 ...... .nx x x≤ ≤ ≤  

Anderson-Darling test is one of the modifications of K-S 
test. The test statistic is a weighted measure of the area 
between the empirical and fitted CDF’s. It is calculated 
according to: 
 

( ) ( )( ) ( ) ( )( )( )
2 1

2 1 ln 2 1 2 ln 1
n

i i
i

i z n i z
A n

n
=

− ⋅ + + − ⋅ −
= − −

∑
 

 
where ( ) ( )( ).ni iz F x=  

In all above mentioned goodness of fit tests the small P-
value leads to a rejection of the hypothesis H0. 

III. PARETO MODEL OF CLAIM AMOUNTS  
Pareto distribution is commonly used to model claim-size 

distribution in insurance for its convenient properties. 
Pareto random variable X has distribution function 
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with positive parameters α and λ and density function 
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When X is by Pareto distributed, it is readily determine the 

mean 
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and variance 
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Then method of moments to estimate parameters α, λ is easy 

to apply. To equate the first two population and sample 
moments we find estimates 
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The estimates λα ~,~  obtained by this way tend to have 

rather large standard errors, mainly because 2s  could has 
a very large variance for high probability of extreme values of 
claim amounts. We rather prefer estimates of α and λ using 
maximum likelihood method. 

We denote as ˆˆ ,α λ  the maximum likelihood estimates 
given data nxxx ...,,, 21  from the Pareto distribution [12, 13]. 

Solving equation ( ) 0=λf  using the initial estimate λ
~

, 
where 
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we obtain λ̂ . Substituting λ̂  in A or B we find ˆ .α  

IV. PARETO MODEL IN REINSURANCE 
Modelling of the tail of the loss distributions in general 

insurance is one of the problem areas, where obtaining a good 
fit to the extreme tails is of major importance. Thus is of 
particular relevance in non-proportional reinsurance if we are 
required to choose or price a high-excess layer [13].  

The Pareto model is often used to estimate risk premiums 
for excess of loss treaties with high deductibles, where loss 
experience is insufficient and could therefore be misleading. 
This model is likely to remain the most important 
mathematical model for calculating excess of loss premiums 
for some years to come [19]. 

The Pareto distribution function of the losses Xa that exceed 
known deductible a is [4], [15]. 
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The density function can be written 
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Through this paper we will assume that the lower limit a is 

known as very often will be the case in practice when the 
reinsurer receives information about all losses exceeding 
a certain limit.  

The parameter b is the Pareto parameter and we need it 
estimate. Let us consider the single losses in a given portfolio 
during a given period, usually one year. As we want to 
calculate premiums for XL treaties, we may limit our attention 
to the losses above a certain amount, the “observation point” 
OP. Of course, the OP must be lower than the deductible of 
the layer for which we wish to calculate the premium [4], [15]. 
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Let losses above this OP ,1 ,2 ,, ,...,OP OP OP nX X X  be independent 
identically Pareto distributed random variables with 
distribution function 
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The maximum likelihood estimation of Pareto parameter b 

is given by formula [4]. 
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The Pareto distribution expressed by (16) is part of the 

Distribution Fitting procedure in Statgraphics Centurion XV 
package. This allows us to use the Pareto distribution to 
calculate the reinsurance risk premium. Risk premiums are 
usually calculated using the following equation:  

risk premium = expected frequency ×  expected loss 

The expected frequency is the average number of losses 
paid by reinsurer per year. For a given portfolio we should set 
OP low enough to have a sufficient number of losses to give a 
reasonable estimation of the frequency LF(OP). 

If the frequency at the observation point OP is known than it 
is possible to estimate the unknown frequency of losses 
exceeding any given high deductible a as 
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The reinsurance risk premium RP can now be calculated as 

follows: 
 

( )RP LF a EXL= ⋅                    (21)

 
 
where  
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V. SIMULATIONS USING QUANTILE FUNCTION 

The Quantile Function, QF, denoted by ( ) ,Q p  expresses 

the p-quantile px  as a function of p: ( )px Q p= , the value of 

x for which ( ) ( ).p pp P X x F x= ≤ =  

The definitions of the QF and the CDF can by written for 
any pairs of values ( ),x p  as ( )x Q p=  and ( ).p F x=  These 
functions are simple inverses of each other, provided that they 
are both continuous increasing functions. Thus, we can also 

write ( ) ( )1 ,Q p F p−=  and ( ) ( )1 .F x Q x−=  For sample data, 

the plot of ( )Q p  corresponds to the plot of x against p [6], [9]. 
We denoted a set of ordered sampling data of losses by  

( ) ( ) ( ) ( ) ( )1 2 1
, , ..., , ..., ,

r n n
x x x x x

− . 

The corresponding random variables are being denoted by  

( ) ( ) ( ) ( ) ( )1 2 1, , ..., , ..., , .r n nX X X X X−  

Thus ( )nX  for example is the random variable representing 
the largest observation of the sample of n. The n random 
variables are referred as the n order statistics. These statistics 
play a major role in modelling with quantile distribution 

( ).Q p  
Consider first the distribution of the largest observations on 

( )nX  with distribution function denoted ( ) ( ) ( ).n nF x p=  The 
probability 

( ) ( ) ( ) ( )( )n n nF x p P X x= = ≤  

is also probability that all n independent observations on X are 
less than or equal to this value x, which for each one is p. By 
the multiplication law of probability  

( )
n

np p= so ( )
1 n
np p=  and ( ) ( )

1 .n
nF x p p= =  

Inverting ( )F x  to get the quantile function  we have 

( ) ( )( ) ( )( )1 n
n n nQ p Q p=                 (23) 

For the general r-th order statistic ( )rX  calculation becomes 
more difficult. The probability that the r-th larges observations 
is less than some value z is equal 

( ) ( ) ( ) ( )( )r r rp F z P X z= = ≤  

This is also probability that at least r of the n independent 
observations is less or equal to z. The probability of s 
observations being less than or equal to z is ,sp  where 

( )zFp =  is given by the binomial expression 
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If it can be inverted, then we can write 

( )( ), , 1 .rp BETAINV p r n r= − +  

From the last two expressions we get  

( ) ( )( ) ( )( )( ), , 1r r rQ p Q BETAINV p r n r= − +          (24) 

BETAINV ( )⋅ is a standard function in packages such 
as Excel. Thus, the quantiles of the order statistics can be 
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evaluated directly from the distribution ( )pQ  of the data. The 
quantile function thus provides the natural way to simulate 
values for those distributions for which it is an explicit 
function of p [13]. 

VI. SIMULATION OF EXTREME LOSSES 
In a number of applications of quantile functions in general 

insurance interest focuses particularly on the extreme 
observations in the tails of the data. Fortunately it is possible 
to simulate the observations in one tail without simulating 
the central values. We will present here how to do this. 

Consider the right-hand tail. The distribution of the largest 
observation has been shown to be ( )1 .nQ p  Thus the largest 

observation can be simulated as ( ) ( )( )n nx Q u= , where ( )
1 n
nnu v=  

and nv  is a random number from interval [0, 1]. If we now 
generate a set of transformed variables by 
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11
n

nn nu v u−
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( ) ( ) ( )12
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where iv , , 1, 2, ...i n n n= − −  is simply simulated set of 
independent random uniform variables, not ordered in any 
way. It will be seen from their definitions that ( )iu , 

, 1, 2, ...i n n n= − −  form a decreasing series of values with 

( ) ( )1i iu u
−

< . 

In fact, values ( )iu  form an ordering sequence from 

a uniform distribution. Notice that once ( )nu  is obtained, the 
relations have the general form 

( ) ( ) ( )

1

1
m

mm mu v u += ⋅ , 1, 2, ...m n n= − −  

The order statistics for the largest observations on X are 
then simulated by  

 

( ) ( )( )n nx Q u=  

( ) ( )( )1 1n nx Q u
− −

=                  (26) 

( ) ( )( )2 2n nx Q u
− −

=  

  
In most simulation studies of n observations are generated 

and the sample analyses m times to give an overall view of 
their behavior. A technique that is sometimes used as an 
alternative to such simulation is to use a simple of ideal 
observations, sometimes called a profile. Such a set of ideal 
observations could be the medians rM , 1, 2, ..., .r n= . 

VII. APPLICATION OF THE THEORETICAL RESULTS 

A. Data 
Practical application of theoretical results mentioned in 

previous chapters we will performed based on data obtained 
from unnamed Czech insurance company. We will use the data 
set contains 745 claim amounts (in thousands of Czech crowns 
- CZK) from the portfolio of 26 125 policyholders in 
compulsory motor third-party liability insurance. In the article 
[16] we considered 1352 claim amounts, including the reserve 
estimates. Those estimates caused in the file were high number 
of the same estimated values, which distorted results of the 
analysis. Data file in this article shall include only actually 
paid out claim amounts. 

B. Exploratory analysis 
We will start by descriptive analysis of sample data of the 

variable X, which represents the claim amounts in the whole 
portfolio of policies.  

 
Table 1 Summary statistics for X 

Count 745 
Average 1220,95 
Median 739,84 
Standard deviation 1521,07 
Coeff. of variation 124,581% 
Minimum 24,42 
Maximum 22820,0 
Skewness 5,72352 
Kurtosis 60,6561 

 

0 4 8 12 16 20 24
(X 1000,0)x  

Fig. 1 Box-and-Whisker plot of claim amounts data 
 

Tab.1 shows summary statistics for X. These statistics and 
Box-and-Whisker plot confirm the skew nature of the claims 
data. Also by density trace by (5) for X in Fig. 2 can be 
concluded that loss distribution in our case is skew and long or 
heavy tailed.   
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Fig. 2 Density Trace for X  
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C. Selected loss distributions 
The results of exploratory analysis justify us to assume that 

gamma, lognormal or Weibull distributions would give 
a suitable model for the underlying claims distribution. We 
will now start to compare how well different distributions fit to 
our claims data. The best way to view the fitted distributions is 
through the Frequency Histogram. Fig. 3 shows a histogram of 
the data as a set of vertical bars, together with the estimated 
probability density functions. 

From Fig. 3 it seems that lognormal distribution follows the 
data best. It is hard to compare the tail fit, but clearly the all 
distributions have discrepancies at middle claims intervals. 
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Fig. 3 Histogram and estimated loss distributions 
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Fig. 4 Quantile-Quantile plot of selected distributions 

 
The Quantile-Quantile (Q-Q) plot shows the fraction of 

observations at or below X plotted versus the equivalent 
percentiles of the fitted distributions. In Fig. 4 the fitted 
lognormal distribution has been used to define the X-axis and 
is represented by the diagonal line. The fact that the points lay 
the most close to the diagonal line confirms the fact that the 
lognormal distribution provides the best model for the data in 
comparison with other two distributions. Gamma and 
lognormal distributions deviates away from the data at higher 
values of X, greater than 4000 CZK of X. Evidently, the tails 
of these distributions are not fat enough. 

Despite the adverse graphic results we will test whether the 
selected distributions fit the data adequately by using 
Goodness-of-Fit Tests of Statgraphics Centurion XV. 

 
The ML parameters estimation of the fitted distributions by 

minimizing (6) is shown in Table 2. 
 

Table 2 Estimated parameters of the fitted distributions  
Gamma Lognormal Weibull 
shape = 1,30953 mean = 1201,77 shape = 1,0647 
scale = 0,001073 standard deviation = 1360,07 scale = 1257,15 
 Log scale: mean = 6,67928  
 Log scale: std. dev. = 0,9080  

 
Table 3 Anderson-Darling Goodness-of-Fit Tests for X 
 Gamma Lognormal Weibull 
A^2 13,4802 1,58638 15,1049 
Modified Form 13,4802 1,58638 15,1049 
P-Value <0.01 >=0.10 <0.01 
 
Table 3 shows the results of tests run to determine whether 

X can be adequately modelled by gamma, lognormal or 
Weibull distributions. P-values less than 0,01 would indicate 
that X does not come from the selected distributions with 99% 
confidence.  

Table 4 shows the results of chi-squared test by (7) run to 
determine whether X can be adequately modelled by lognormal 
distribution with parameters estimated by ML. Since the 
smallest p-value = 0,520495 amongst the tests performed is 
greater than or equal to 0,05, we cannot reject the hypothesis 
that x comes from a lognormal distribution with 95% 
confidence, contrary to the result of the chi-squared test in 
article [16].  

 
Table 4 Chi-Squared test with lognormal distribution 

 Upper 
Limit 

Observed 
Frequency 

Expected 
Frequency 

Chi-
Squared 

at or below 1000,0 466 446,50 0,85 
 2000,0 165 182,98 1,77 
 3000,0 53 61,93 1,29 
 4000,0 28 25,53 0,24 
 5000,0 14 12,06 0,31 
 6000,0 8 6,29 0,47 
 7000,0 4 3,52 0,07 
 8000,0 2 2,09 0,00 
above 8000,0 5 4,11 0,19 
Chi-Squared = 5,18357 with 6 d.f.   P-Value = 0,520495 
 
Figure 5 and Tab. 4 lead to the conclusion that the fitted 

lognormal model undervalues the losses which exceed the 
4000 CZK.. We need to find a distribution with rather more 
weight in upper tail than the lognormal distribution provides. 
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Fig. 5 Quantile-Quantile plot for lognormal distribution of  X 
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Fig. 6 Quantile-Quantile plot for Pareto distribution of X4000 

 
In the Fig. 6 we can see that the Pareto model (16) for the 

variable X4000 gives an better fit and is a considerable 
improvement over lognormal model. Pareto distribution has 
been used to define the X-axis at Fig. 6. The fact that the 
points lay close to the diagonal line confirms the fact that this 
distribution provides a good model for the claim amounts data 
above 4 million CZK and we can assume that a good model for 
losses above 4 million CZK can be Pareto distribution with 
PDF expressed by the formula (17). 
 

Table 5 Estimated parameters by ML  
Pareto (2-Parameter) 
shape = 2,80078 
lower threshold = 4000,0 

 
Table 6 K-S goodness-of-fit tests for X4000 

 Pareto (2-Parameter) 
DPLUS 0,0985791 
DMINUS 0,0758859 
DN 0,0985791 
P-Value 0,895778 

 
There are 34 values ranging from 4000 to 22 820 thousand 

CZK. Table 5 and Table 6 show the results of fitting a 2-
parameters Pareto distribution (16) to the data on X4000. The 
estimated parameters of the fitted distribution using maximum 
likelihood method are shown in Table 5. The results of K-S 
test whether the 2-parameter Pareto distribution fits the data 
adequately is shown in Table 6. Since the p-value = 0,895778  
is greater than 0,05, we cannot reject the null hypothesis that 
sampling values of the variable X4000 comes from a 2-
parameters Pareto distribution with 95% confidence. 

We check yet hypothesis that the distribution with a good fit 
on the claim amounts empirical data is a Pareto distribution in 
the form (5). Since this probability model is not part of the 
offer distributions for Distribution Fitting procedure of 
Statgraphics Centurion XV package, we will perform a χ2 
goodness of fit test on Pareto distribution in the form (16) in 
the usual way using Excel spreadsheet. 

We suppose the random variable X, with values of the claim 
amounts in the whole portfolio of policies, is Pareto distributed 
with distribution function (16). Using the method of moments 
to estimate the parameters α, λ of a Pareto distribution to solve 
the equations (14) we find estimators by method of moments 
that are 5,6229,α = 5644,402.λ =  Of course, maximum 

likelihood estimators we have preferred. We will obtain 
estimates of parameters α and λ using more efficient maximum 
likelihood method. Using the initial estimate 5644,402λ = we 
find non-linear equation (15) as ( )5644,402 0,03533f = and  

using tool Solver of Excel we find ( ) 1014745,8 8,2746 10 ,f −= ⋅  
hence the maximum likelihood estimator 
ˆ 14745,8.λ = Substituting λ̂  into A or B in equation (15) we 

find α̂ = 13,19543. 
Now we can check whether the Pareto distribution with 

maximum likelihood estimators provides an adequate fit to the 
data using 2χ  goodness-of-fit test. The 2χ  statistic is 
computed by (7). The result of goodness of fit test presents 
tab. 7. 

 
Table 7 Chi-Squared test for Pareto distribution 

 Upper 
Limit 

Observed 
Frequency 

Expected 
Frequency 

Chi-
Squared 

at or below 1000 466 431,5745 2,746026 
 2000 165 174,3427 0,500663 
 3000 53 74,38566 6,148315 
 4000 28 33,31204 0,847073 
 5000 14 15,5765 0,159557 
 6000 8 7,571378 0,024265 
 7000 4 3,811341 0,009338 
above 7000 7 4,425835 1,497192 
Total    11,93243 

 
By comparing the calculated value 2 11,93243χ =  with 

quantile 2
0,95 11,0705χ = on 5 degrees of freedom (since there are 

two estimated parameters), we have to reject null hypothesis 
that the Pareto distribution with parameters estimated by 
maximum likelihood provides an adequate fit to the data. 

Paradoxically, if we repeat 2χ  goodness-of-fit test for 
Pareto model with parameters estimated by method of 
moments, we get result 2 2

0,954,69 11,0705.χ = <χ =   
Therefore Pareto distribution define by (10) with parameters 

5,6229,α = 5644,402λ = gives an excellent fit and is a 
considerable improvement over lognormal and Pareto model 
with parameters estimated by the maximum likelihood method.  

D. Using results in non-proportional reinsurance 
Let's now suppose the insurance company wants to reduce 

technical risk by non-proportional XL reinsurance with 
priority (deductible) a = 8 000 (thousand CZK). We will use 
the Pareto distribution for variable X4000 with parameters from 
Table 5 to determine reinsurance risk premium by (21). As OP 
we put value 4000. To calculate LF(a) by (20) we need to 
know ( )OPP X a〉 . We can use Tail Areas pane for the fitted 2-
parameters Pareto distribution of the Statgraphics Centurion 
XV package. The software will calculate the tail areas for up 
to 5 critical values, which we may specify. The output 
indicates that the probability of obtaining a value above 8 000 
for the fitted 2-parameter Pareto distribution of X4000 is 
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0,143509, as we can see in Table 8. The value of LF(OP) we 
can estimate by relative frequency of the losses above 4000: 

 
33( ) =

74
,0 43

5
0 4LF OP =  

 
Table 8 Tail Area for X4000 Pareto (2-Parameter) distribution 
X Lower Tail Area (<) Upper Tail Area (>) 
8000,0 0,856491 0,143509 

 
Then by (20) we get  
 
( ) ( ) ( ) 0,0443 0,143509 0,006357OPLF a LF OP P X a= ⋅ 〉 = ⋅ =  

 
So that we can use the formulas (21) and (22) to calculate 

the reinsurance premium RP we will fit the 6 values ranging 
from 8 000,0 to 22 820,0 of the variable X8000 by Pareto (2-
Parameters) distribution using Statgraphics Centurion XV 
Goodnes of fit procedure.  The results are listed in the Table 9 
and Table 10.  
 

Table 9 Estimated Pareto parameters by ML  
Pareto (2-Parameter) 
shape = 3,74093 
lower threshold = 8000,0 

 
Table 10 K-S goodness-of-fit tests for X8000 

 Pareto (2-Parameter) 
DPLUS 0,384835 
DMINUS 0,14685 
DN 0,384835 
P-Value 0,339047 

 
Table 10 shows the results of tests run to determine whether 

X8000 can be adequately modelled by a 2-parameter Pareto 
distribution (16) with ML estimated parameters from Table 9. 
Since the p-value = 0,339047 is greater than 0,05, we cannot 
reject the null hypothesis that values of X8000 come from the 2-
parameter Pareto distribution with 95% confidence. 

By the values of estimated parameters in Table 9 we can 
calculate  

 

( ) 8000 3,74093 10918,72
1 2,74093a

a bE X
b

⋅ ⋅
= = =

−
 

 
Then by formula (21) we get reinsurance premium in 

thousand CZK: 
 

( ) 0,006357 1091 69,41.8,72RP LF a EXL= ⋅ = ⋅ =  

E. Simulation of extreme losses 
By the result in part VI-C Pareto model define by (10) with 

parameters 5,6229,α = 5644,402λ =  fit well to the claim 
amounts data. Pareto quantile function ( )Q p  or the inverse of 
the Pareto distribution function (10) has the form 

( ) ( ) ( ) 11 1 1Q p F x p − α−  = = λ − −  ,  0 1.p< <    (27) 

That is in our case  

( ) ( ) ( ) 1 5,62291 5644,402 1 1Q p F x p −−  = = − −       (28) 

We use results of parts V. and VI. to simulate 10 the largest 
claim amounts by (28) in case of number 1000 claim amounts. 
Table 11 contains the results of simulation step by step by part 
VI using formulas (25) and (26). 
 
Table 11 Steps of simulation of 10 the largest claim amounts 

ν n u Q(u) Q(BETAINV(0,5)) 
0,235493 1000 0,99855 12 415,58 14 937,50 
0,331321 999 0,99745 10 682,07 11 942,23 
0,743843 998 0,99716 10 366,40 10 544,10 
0,993465 997 0,99715 10 359,85  9 656,27 
0,493922 996 0,99644  9 742,37  9 015,37 
0,997123 995 0,99644  9 740,15  8 518,55 
0,665588 994 0,99603  9 446,11  8 115,47 
0,503882 993 0,99535  9 023,41  7 777,94 
0,943984 992 0,99529  8 991,23  7 488,61 
0,761040 991 0,99501  8 844,77  7 236,14 

 

 
Fig. 7 Graphical result of simulation of 10 the largest claim amounts  
 

On the Fig. 7 we can see simulated 10 values of ( )x Q u=  

and the quantiles 0,5x , 0,995 ,x  0,005x  of the order statistics 

( )1000 ,X ( )999 ,X  ... , ( )991 .X  Quantiles 0,005x  and 0,995x  give the 

bounds for 10 largest values which the Pareto distributed claim 
amounts would exceed with probability only 0,01. 

Simulation of p the largest claim amounts in non-life 
insurance portfolio is useful in non-proportional reinsurance of 
the types of LCR(p), when insurance company cedes p the 
largest claim amounts to reinsurer, and ECOMOR, when 
reinsurance company pay losses that exceed p-th largest value 
in decreasing sequence of the claim amounts [4]. 

VIII. CONCLUSION 
Probability models of claim amounts create the basis for 

solving of many substantial problems in general insurance 
practice. When trying to fit a distribution to claims data using 
traditional classic methods and classic loss distribution such as 
gamma, lognormal, Weibull and Pareto, as in this article, there 
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are many situations where classical parametric distributions 
may not be appropriate to model claims. Mixture distributions 
[10], [20] or quantile models [9] might be good tools in such 
cases. 

In the article we mentioned more examples of using 
probability models of claim amounts in general insurance. We 
consider should be emphasized that the individual amount is 
one of the components of the total claim amount [14]. The 
total amount of claims in a particular time period is a 
fundamental importance to the proper management of an 
insurance company [3], [11], [17]. The key assumption in 
various models for this total or aggregate claim amount is that 
we know distribution describing the claim amounts together 
with the model for events occurring in time. 
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