

Abstract— Test suite reduction is a critical activity which
takes a place before or after test cases generation process. As
software keeps growing large amounts of new test cases will
be generated and added to the test pool and others will be
updated, accordingly test suite size will keep increasing. Test
suite reduction techniques have been proposed to eliminate
redundant or irrelevant test cases based on variant criteria,
while seeking to maintain the total effectiveness of the
reduced test suite. This paper presents a systematic literature
review to classify some existing techniques and perform sort
of comparison in terms of pros and cons. A major result of
this paper is a categorization of the test suite reduction which
could provide a guideline for software testers in choosing the
best technique based on the test requirements.

Keywords— Systematic Literature Review; Test suite

reduction techniques.

I. INTRODUCTION
One of the most important phases of SDLC (Software

development life cycle) is Software Testing. It is an important
component of software quality assurance. There are many
definitions available for Software Testing, but one can shortly
define that as: A process of executing a program with goal of
finding errors [2]. Some people get confused about the goal of
testing, thinking that the goal is to check if a program is free
from errors, while the goal is finding errors. So tests show the
presence not the absence of defects. Miller gives a good
description of testing in [3]: “The general aim of testing is to
affirm the quality of software systems by systematically
exercising the software in carefully controlled circumstances”.

Dr. IyadAlazzam, Computer Information Systems, Yarmouk
University, Jordan, eyadh@yu.edu.jo

 Dr. Mohammed Akour, Computer Information Systems,
Yarmouk University, Jordan, mohammed.akour@yu.edu.jo

Dr. Feras Hanandeh, Computer Information System,
Hashemite University, Jordan, feras@hu.edu.jo

Dr. Iman Akour, University of Sharja, iakour@sharjah.ac.ae

Testing typically consumes 40–50% of development

efforts, and consumes more effort for systems that require
higher levels of reliability [4]. Although it is often impossible
to find all errors in the program, the selection of right strategy
at the right time will make the software testing efficient and
effective [5].

The tester may or may not know the inside details of the
software module under test, therefore either white-box testing
or black-box testing can be used against the software module
by generating a set of test cases [6]. A set of test cases is a set
of (inputs, execution preconditions, and expected outcomes).

This means that test cases check if a program for specified

inputs gives the expected results. While a Test-Suite is a set of
requirements and subsets of test cases, each requirement must
be satisfied be at least one test case [1].

Our paper is organized as follows: in section 2, we present
the problem under investigation. Section 3 demonstrates the
related works. Section 4 gives details about the systematic
review process and its application. In section 5, we describe
each reduction technique and provide a comparison between
them, and finally we conclude the paper in section 6.

II. PROBLEM UNDER INVESTIGATION
With a tremendous number of possible test cases available,

especially in case of complex programs, testers have to
generate appropriate test cases in a way that reduces the cost,
time and efforts of executing and validating tests [8]. Another
important aspect of software testing is the number of test cases
that have a direct effect on the cost of testing, particularly that
of regression testing [7] (testing activity that is performed to
provide confidence that the changes made don’t harm the
existing behavior of the software), it means the process of
retesting the software after changes. So when tests must be run
repeatedly for every change in the program, it is advantageous
to have as small set of test cases as possible. Thus test case
reduction aims to finding a minimal subset of the test-suite
that can cover all requirements [7]. Many techniques are
available and have their own advantages and disadvantages
and we can classify them into two types:

A systematic Literature Review to Classify Pre
and Post Test Suite Reduction Techniques

Mohammed Akour, Iyad Alazzam, Feras Hanandeh and Iman Akour

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 181

mailto:mohammed.akour@yu.edu.jo
mailto:***@sharjah.ac.ae

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 182

• Pre-process Reduction techniques (techniques
reduce the test-suite before generation).

• Post-process Reduction techniques (techniques
reduce the test-suite after generation).

 The main goal of this article is to expose some of
available pre and post test case reduction techniques and
briefly manifest the mechanism for each technique. We
compare these techniques by considering their advantages and
disadvantages.

III. RELATED WORKS
Test suite minimization techniques (post-process) reduce

the size of the test suite based on removing redundant test
cases(unnecessary test cases) from it. There are many
researchers who proposed a method to reduce unnecessary test
cases, like Rothermel [17], McMaster [18] and Sampath [19].
These techniques intend to get rid of and minimize a size of
test cases while maintaining the ability to detect faults.
Previous works on test case minimization can be regarded as
the development of different heuristics for the minimal hitting
set problem. Horgan and London applied linear programming
to the test case minimization problem in their implementation
of a data-flow based testing tool, ATAC [21, 22]. Akour et al
[33] provide test case reduction technique for adaptive
software system. Their approach employed Change
propagation theme to synchronizing component models and
runtime test models and then removed the test cases that
associated with a component targeted in reductive changes.

Employing model-checker facilitates the detection of
equivalent mutants. Therefore, only non-equivalent mutants
are used for the evaluation of a mutant score. Heimdahl and
Devaraj [25] proposed a minimization approach which is
applied to the model-checker scenario. A reduced subset of
the test-suite fulfilling a criterion can be identified by
calculating the covered properties for each test-case, and then
repetitively picking the test case that covers the most yet
uncovered properties. Black [24] proposed a test-case
generation approach based on mutation of the reflected
transition relation. The mutated, reflected properties can be
utilized to catch properties for test-case generation, to specify
mutant score and for minimization as well.

A domain of a program with mutually independent
parameters is a set of all combinations of all values of these
parameters. The input domain can be very big, so the main
goal of domain testing methods is to achieve a test suite in
which the size is considerably smaller than the count of all
inputs of the program, and which effectively reveals failures
of the program as much as possible [26]. There are two groups
of domain testing methods – equivalence class testing (ECT)
methods and boundary value testing (BVT) methods [26].

There are many methods that different authors call domain
testing methods or domain analysis methods that take into

account dependencies or interactions between input
parameters [7, 27, and 28]. By these methods, the input
domain often is seen as a geometrical shape and its edges – as
boundaries. In most cases the domains with linear boundaries
can be examined [7, 27], but there are some methods that
allow to test nonlinear boundaries, too [29, 30].

IV. RESEARCH METHOD
This review included the following steps:

1. Formulate a review protocol.
2. Conduct the review (identify and evaluate

primary studies, extract and synthesize data to
produce a concrete result).

3. Analyze the results.
4. Report the results.
5. Discuss the findings.

The review protocol specified the questions to be

addressed, the databases to be searched and the methods to be
used to identify, assemble, and assess the evidence. To reduce
researcher bias, the protocol, described in the remainder of this
section, was developed by one author, reviewed by another
author and then finalized through discussion, review, and
iteration among the authors and their research group.

V. RESEARCH QUESTION
The main goal of this systematic review is to identify,

estimate and classify the Approaches, techniques, methods,
and tools in test suite reduction techniques, to concentrate well
on the systematic review, as of research questions are needed.
The high-level question addressed by this review is:

What types of techniques and approaches in test suite
reduction can be identified from the literature. The high-level
research question was decomposed into four specific research
questions, which guided the literature review. The first
question tries to assess and measure the usefulness and
importance of estimation of test case coverage .The second
question looks for identify types of test cases that can remove
or retain in the test suite reduction and which kinds of test
cases are removed more frequently in the test suite reduction
process. The third question focus on identifying test suite
reduction methods. The final question concerns with the
taxonomy of techniques in test suite reduction that will help in
selecting which test cases should be removed or retained in the
test suite based on its classification and type.

Table 1 – Source List
Databases Other Journals and

Conference
Other
Sources

IEEExplore • Transactions on
Autonomous and
Adaptive Systems (TAAS)

• International Conference
on Autonomic
Computing (ICAC)

Reference
lists from
primary
studies

INSPEC

ACM Library

SCIRUS

Science
Citation Index

VI. SOURCE SELECTION AND SEARCH
Prior to conducting the search, the correct set of databases

must be selected to optimize the likelihood of finding the most
complete and relevant sources. In this review, the following
criteria were used to select the source databases:

The databases were chosen to include journals and
conference proceedings that cover: test suite reduction, test
case selection, test case prioritization, test case prioritization,
and empirical studies.

The databases had to have a search engine with an
advanced search mechanism that allowed keyword searches;

The list of databases was reduced where possible to
minimize the redundancy of journals and proceedings across
databases. The final source list appears in Table 1.

Based on the criteria for selecting database sources
(mentioned earlier in this section), an initial list of sources was
developed. To search these databases, a set of search strings
was created for each research question based on keywords
extracted from the research questions and augmented with
synonyms. In developing the keyword strings to use when
searching the source databases, the following principles were
applied:

The major terms were extracted from the review questions
and augmented with other terms known to be relevant to the
research;

A list of meaningful synonyms, abbreviations, and
alternate spellings were then generated.

The following global search string was constructed
containing all of the relevant keywords and their synonyms:

((suite OR set OR group OR collection) AND (testing
OR investigation OR check OR analysis OR inspection OR
assessment OR evaluation OR examination OR review OR
measurement OR verify OR validate OR authenticate OR
confirm OR ensure OR prove) AND (approach OR
process OR system OR technique OR methodology OR
procedure OR mechanism OR plan OR pattern) AND
(type OR taxonomy OR classification OR categorization
OR grouping OR organization OR terminology OR
systematization) AND (priority OR preference OR
primacy OR superiority) AND (test OR check OR
examination OR assessment AND (test case) AND (policy
OR strategy OR plan OR guidelines OR rule) AND

(reduction OR decrease OR decline OR cut OR drop
OR lessening)

Using this global search string, five different search strings
(each one with its own purpose) were derived and executed on
each database. Executing the search strings on the databases
in Table 2 resulted in an extensive list of potential papers that
could be included in the review. To ensure that only the most
relevant papers were included a set of detailed inclusion and
exclusion criteria are shown in table 2.

Using these criteria, the results of the database searches
were examined to arrive at the final list of papers. The process
followed for paring down the search results was:

Use the title to eliminate any papers clearly not related to
the research focus

Use the abstract and keywords to exclude additional papers
not related to the research focus

Read the remaining papers and eliminate any paper that are
not related to the research questions

After using the inclusion and exclusion criterion to select
applicable papers and studies, a quality assessment was
performed on those studies. This quality assessment was
another check on the quality of the set of papers that resulted
from the initial search.

Each accepted study after using the inclusion and
exclusion criterion and removing duplicated studies is
assessed for its quality against set of criteria. Some of these
criteria were informed by those proposed for the Critical
Appraisal Skills Programme (CASP) (in particular, those for
assessing the quality of qualitative research) and by principles
of good practice for conducting empirical research in software
engineering. The criteria covered three main issues pertaining
to quality that need to be considered when appraising the
studies identified in the review:

• Rigour. Has a thorough and appropriate approach
been applied to key research methods in the
study?

• Credibility. Are the findings well-presented and
meaningful?

• Relevance. How useful are the findings to the
software industry and the research community?

Taken together, these criteria provide a measure of the

extent to which we could be confident that a particular study’s

Table 2 – Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria
Papers that talk dynamic adaptive systems. Papers that are based only on expert opinion
Papers about testing, validating, verifying for dynamic adaptive
systems.

Short papers, tutorials, and mini-tracks

Papers about classifications, components risks in adaptive systems. Studies not related to any of the research questions
Empirical studies (qualitative or quantitative) Preliminary conference versions of included journal papers
Other papers that directly address the research questions Studies presented in language other than English
 Studies whose findings are unclear and ambiguous

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 183

findings could make a valuable contribution to the review.
Each of the criteria will be graded on a dichotomous (‘‘yes” or
‘‘no”) scale. The quality assessment criteria are shown in
table 3.

VII. EXTRACTION
In the data extraction, data was extracted from each of the

primary studies included in this systematic review according
to a predefined extraction table as shown in table 4.

VIII. TEST SUITE REDUCTION TECHNIQUE
In this section we demonstrate and explain the main four

pre and post test case reduction techniques.

A. CBR (Case-Based Reasoning) Deletion Algorithms
Technique (Post-Process)

Removing all redundancy test cases is desirable, so many
approaches introduced to reduce redundancy test cases. The
process of employing artificial intelligent concept in the test
case reduction process is considered as an innovated approach
in [9].

Case-based reasoning (CBR) is defined by Barry [16] as
“one of the Artificial Intelligence-based algorithms, which
solve the problems by searching through the case storage for
the most similar cases. CBR has to store their solved cases
back to their memory or storage in order to learn from their
experience.” “Case Base is a collection of cases in CBR,
which can be defined as the following: Given a case - base C=

{c1... cn}, for c ε C whereas C = CBR, c = case” [16]. For
CBR, we discussed three reduction methods that use CBR
deletion algorithms: TTCF, TCIF and PCF methods. These
methods utilize path-oriented test case generation technique in
order to reduce a number of test cases. Path coverage is
described by the control flow graph, which is derived from the
source-code (program). As example, if we specify S ={s1, s2,
s3, s4, s5} to be a set of states in the control flow graph as in
figure 1 below, where each state represents a block of code[9].

Fig. 1 An Example of Control Flow Graph

From the above figure, we assume that each state can

reveal a fault. Thus, an ability to reveal faults of five states is
equal to 5. Also, it is assumed that every single transaction
must be tested. We will use this example in the three methods
of CBR [9].

Let TCn = {s1, s2, …,sn} where TC is a test case and sn is
a state or node in the path-oriented graph that is used to be
tested. Table 5 summarizes a set of test cases were generated
Based on Figure 1.

 Table 5 Test Cases

TC1 = {s1,
s2}

TC6 = {s1, s4,
s3}

TC11 = {s3, s5}

TC2 = {s1,
s3}

TC7 = {s1, s2,
s3, s5}

TC12 = {s4, s3}

TC3 = {s1,
s4}

TC8 = {s1, s4,
s3, s5}

TC13 = {s4, s3,
s5}

TC4 = {s1, s2,
s3}

TC9 = {s2, s3}

TC5 = {s1, s3,
s5}

TC10 = {s2,
s3, s5}

B. Test Case Complexity for Filtering (TCCF)
A complexity of test case is the significant criteria in this

proposed method. It measures a number of states included in
each test case. Let Cplx(TC) = {High, Medium, Low} where
Cplx is a complexity of test case, TC is a test case. The
complexity value can be measured as [9]:

• High when a number of states are greater than an
 average number of states in the test suite.
• Medium when a number of states are equal to an

Table 3 – Quality Assessment Criteria

S. No Quality Assessment Criteria
1 Is the paper based on research (or is it

merely a ‘‘lessons learned” report based on
expert opinion)?

2 Is there a clear statement of the aims of the
research?

3 Is there an adequate description of the
context in which the research was carried
out?

4 Was the research design appropriate to
address the aims of the research?

5 Was the recruitment strategy appropriate to
the aims of the research?

6 Was there a control group with which to
compare treatments?

7 Was the data collected in a way that
addressed the research issue?

8 Is there a clear statement of findings?
9 Is the study of value for research or

practice?

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 184

 average number of states in test suites.
• Low when a number of states are less than an
 average number of states in the test suites.
First, we should produce an auxiliary set from the test suite

above. Auxiliary set removes test cases that don’t have a direct
effect on the ability to reveal faults when it is removed.
Therefore, the auxiliary set in our example is as follows [9]:

Auxiliary set = {TC1, TC2, TC3, TC4, TC5, TC6, TC9,
TC10, TC11, TC12, TC13}

We can notice that TC7 and TC8 are being removed.
Afterward, the method computes a complexity value for all
test cases in the above auxiliary set. From figure 1 and the test
suite that contain 13 test cases, the average ++

number of states is equal to 3. Therefore, the complexity
value for each test case can be computed as follows:

Cplx(TC1) = Low, Cplx(TC2) = Low, Cplx(TC3) =Low,
Cplx(TC4) = Medium, Cplx(TC5) = Medium, Cplx(TC6) =
Medium, Cplx(TC9) = Low, Cplx(TC10) = Medium,
Cplx(TC11) = Low, Cplx(TC12) = Low and Cplx(TC13) =
Medium.

 Finally, the last step removes test cases with minimum
complexity value from the auxiliary set, which they areTC1,
TC2, TC3, TC9, TC11 and TC12 .Thus the reduced test suite
will be: TC4, TC5, TC6, TC10 and TC13 [9] .

C. Test Case Impact for Filtering (TCIF)
Due to the fact that defining and measuring a quality of

software is important and difficult, the impact of inadequate
testing must not be ignored. The impact of inadequate testing
could be lead to the problem of poor quality, expensive costs
and huge time-to-market. In conclusion, software testing
engineers require identifying the impact of each test case in
order to acknowledge and understand clearly the impact of
ignoring some test cases. An impact value is considered here
as an impact of test cases in term of the ability to detect faults
if those test cases are removed and not be tested [9].

Let Imp(TC) = {High, Medium, Low} where Imp is an
impact if a test case is removed, TC is a test case and the
impact value can be measured as:

• High if the test case has exposed at least one fault for
several times.

• Medium if the test case has exposed faults for only one
time.

• Low if the test case has never exposed faults.
 The procedure of this method is similar to the previous

method. The only different is that this method aims to use an
impact value instead of complexity value. The impact value is
computed for all test cases in the above auxiliary set, which is
{TC1, TC2, TC3, TC4, TC5, TC6, TC9, TC10, TC11, TC12,
TC13}. Based on figure 1, the impact value for each test case
can be computed as follows:

Imp (TC1) = Low, Imp (TC2) = High, Imp (TC3)
=Medium, Imp (TC4) = Low, Imp (TC5) = High, Imp (TC6) =
Medium, Imp (TC9) = Low, Imp (TC10) =Low, Imp (TC11) =
Low, Imp (TC12) = Low and Imp (TC13) = Low

Finally, test cases with minimum of impact value are
removed from the auxiliary set. They are TC1, TC4, TC9,
TC10, TC11, TC12 and TC13. Thus the reduced test suite will
be: TC2, TC3, TC5, TC6 [9].

D. Path Coverage for Filtering (PCF)
The advantage of path coverage is that it takes responsible

for all statements as well as branches across a method. It
requires very thorough testing and used as a coverage value in
this technique. The coverage value can specify how many
nodes that the test case can cover. In other words, the coverage
value is an indicator to measure nodes that each test case
covers. It means that the higher coverage value is, the more
nodes can be contained and covered in the test case.

Let Cov(n) = value, where Cov is a coverage value, value
is a number of test cases in each coverage group and n is a
coverage relationship.

The first step in this procedure is to identify a coverage set,
which can be identified as follows (based on figure 1 above
and the set of test cases that derived from it):

Coverage (1) = {TC1}
Coverage (2) = {TC2}
Coverage (3) = {TC3}
Coverage (4) = {TC1, TC4, TC9}
Coverage (5) = {TC2, TC5, TC11}
Coverage (6) = {TC3, TC6, TC12}
Coverage (7) = {TC1, TC4, TC7, TC9, TC10, TC11}
Coverage (8) = {TC3, TC6, TC8, TC11, TC12, TC13}
Coverage (9) = {TC9}
Coverage (10) = {TC9, TC10, TC11}
Coverage (11) = {TC11}
Coverage (12) = {TC12}
Coverage (13) = {TC11, TC12, TC13}
The next step is to calculate a coverage value based on a

number of test cases in each coverage group. Therefore, the
coverage value can be computed as follows:

Cov (1) = 1, Cov (2) = 1, Cov (3) = 1, Cov (4) = 3, Cov (5)
= 3, Cov (6) = 3, Cov (7) = 6, Cov (8) = 6,Cov (9) = 1, Cov
(10) = 3, Cov (11) = 1, Cov (12) = 1 and Cov (13) = 3.

The last step removes all test cases with minimum
coverage value, in the potential removal set, that they are:
TC1, TC2, TC3, TC9, TC11 and TC12. Thus the reduced test
suite will be: TC4, TC5, TC6, TC7, TC8, TC10 and TC13 [9].

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 185

E. GE & GRE Heuristics and Priority Cost Technique
(Post-Process)

GE and GRE heuristics algorithm have been proposed by
Chen and Lau [20], Chen et al. defined essential test cases as
the opposite of redundant test cases. If a test requirement ri
can be satisfied by one and only one test case, the test case is
an essential test case. On the other hand, if a test case satisfies
only a subset of the test requirements satisfied by another test
case, it is a redundant test case [10]. Based on these concepts,
the GE and GRE heuristics can be summarized as follows
[10]:

GE heuristic: first select all essential test cases in the test
suite; for the remaining test requirements, we use the
additional greedy algorithm, i.e. select the test case that
satisfies the maximum number of unsatisfied test
requirements.

GRE heuristic: first remove all redundant test cases in the
test suite, which may make some test cases essential; then
perform the GE heuristic on the reduced test suite. A
mathematical formula is proposed to reduce the cost of testing
by minimizing the size of the test suite using priority based
cost. The priority factor will be calculated based on weighted
set coverage, the cost of test requirements and test cases [11].
Let us consider the test cases T= {t1, t2, t3, t4, t5, t6} and let
requirements of test cases are R= {R1, R2, R3…, R10}.

Requirements according to the test cases (requirements
satisfied by each test case) are t1={R1,R2,R3,R5,R6,R10},
t2={R1,R2,R4,R5,R10}, t3={R6,R8}, t4={R1, R2, R3, R4,
R5, R6, R7, R8, R9, R10}, t5={R3, R5, R7, R8, R10},
t6={R3, R4, R5, R6, R8, R9, R10}.

After deriving the test cases from the test requirements,
each requirement cost (C) is derived and computed from the
summation of coverage (such as state coverage, edge coverage
or branch coverage), high cost for a requirement means high
degree of coverage.

 Table 6 Test Cases along with Covered Requirements [11]

From Table 6 [11], we calculate the cost of each test case,

by taking the summation of cost of requirements (that it
satisfies) as follows:

Cost (t1) =2+1+3+2+1+3=12
Cost (t2) =2+1+1+2+3=9

Cost (t3) =1+3=4
Cost (t4) =2+1+3+1+2+1+1+3+1+3=18
Cost (t5) =3+2+1+3+3=12
Cost (t6) =3+1+2+1+3+1+3=14.
Next, we checked for unnecessary and redundant test

cases, by applying GE and GRE heuristics as mentioned
above. If not present, we then calculate the priority factor. We
calculate the cardinality of the test cases (requirements
satisfied by each test case)[11]:

|req(t1)|=6, |req(t2)|=5, |req(t3)|=2, |req(t4)|=10, |req(t5)|=5,
|req(t6)|=7.

The priority of the test case (ti) is then calculated by this

formula:
 Priority (ti) =Cost (ti) /|req(ti)|
In our example, priorities for the sex test cases are:
Priority (t1) =12/6=2 , Priority (t2) =9/5=1.8, Priority (t3)

=4/2=2, Priority (t4) =18/10=1.8, Priority (t5) =12/5=2.4,
Priority (t6) =14/7=2

Test cases with lower priority factor will be removed, so t2
and t4 are selected. Thus the reduced test suite will be: t1, t3,
t5 and t6 [11].

F. Model- Checker Based Technique (Post-Process)
In this technique, we consider test-cases generated with

model-checker based methods. A model-checker is a tool
originally intended for formal verification. In general, a
model-checker takes as input a finite-state model of a system
and a temporal logic property and efficiently verifies the
complete state space of the model in order to determine
whether the property is fulfilled or not [12].

Redundancy is used to describe test-cases that are not
needed in order to achieve a certain coverage criterion. As the
removal of such test-cases leads to reduced fault detection
ability, they are not really redundant in a generic way. In
contrast, we say a test-case contains redundancy if part of the
test-case does not contribute to the fault detection ability. We
are going to identify such redundancy, and describe
possibilities to reduce it [12].

Intuitively, identical test-cases are redundant. For any two
test-cases t1, t2 such that t1 = t2, any fault that can be detected
by t1 is also identified by t2 and vice versa, assuming the test-
case execution framework assures identical preconditions for
both tests. Similarly, the achieved coverage for any coverage
criterion is identical for both t1 and t2.

Clearly, a test-suite does not need both t1 and t2 [12]. The
same consideration applies to two test-cases t1 and t2, where
t1 is a prefix of t2. t1 is subsumed by t2, therefore any fault
that can be detected by t1 is also detected by t2 (but not vice
versa). In this case, t1 is redundant and is not needed in any
test-suite that contains t2. In model-based testing it is common

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 186

practice to discard subsumed and identical test-cases at test-
case generation time [12]. This kind of redundancy can be
illustrated by representing a set of test-cases as a tree. The
initial state that all test-cases share is the root-node of this tree.
A sub-path is redundant if it occurs in more than one test-case.
In the tree representation, any node below the root node that
has more than one child node contains redundancy. If there are
different initial states, then there is one tree for each initial
state. The depth of the tree equals the length of the longest
test-case in TS. Children(x) denotes the set of child nodes of
node x. Consider a test-suite consisting of three test-cases
(letters represent distinct states): ”A-B-C”, ”A-C-B ”, ”A-C-
D-E”. The execution tree representation of these test-cases can
be seen in Figure 2(a) [12]. The rightmost C-state has two
children, therefore the sub-path A-C is contained in two test-
cases; it is redundant.

Fig. 2: Simple test-suite with redundancy represented as

execution tree.
The execution tree can be used to measure the redundancy

R of test-suite TS based on the following relation:
R (TS) =1 /(n– 1). ∑ R(x) (1)
 x∈children(root(TS))
The redundancy of the tree is the ratio of the sum of the

redundancy values R for the children of the root-node and the
number of arcs in the tree (n − 1, with n nodes).

 The redundancy value R is defined recursively as
following relation [12]:

R(x) = (|children(x) − 1|) + ∑ R(c) if children(x) ≠ {}
 c∈children(x)
 0 if children(x) = {} (2)
The example test-suite depicted as tree in Figure 2(a) has a

total of 7 nodes, where one node besides the root node has
more than one child, which is the node c. Therefore, the
redundancy of this tree (based on relations 1 and 2) equals:

 R = 1 / (7-1) ・ ∑ R(x)
 x∈ children(root(TS))
 R = 1/6 . (0 + (1+0)) = 1/6 = 17%

A test-suite contains no redundancy if for each initial state

(root node) there are no test-cases with common prefixes, e.g.,
if there is only one test-case per initial-state. Figure 2(b)
illustrates the result of an optimization applied to the Figure
2(a) [12] in order to remove redundancy. The test-cases A-C-

B and A-C-D-E have the common prefix A-C, and there is a
test-case ending in C, which is A-B-C. Therefore the postfix B
of A-C-B is appended to A-B-C, resulting in A-B-C-B. Thus
test suite with the three test cases is reduced to become test
suite with two test cases after removing the redundancy [12].

G. Base Choice Coverage Criterion Technique (Pre-
Process)

The input domain to any program contains all the possible
inputs to that program. In equivalence partitioning technique,
the domain for each input is partitioned into regions
(partitions), and each partition defines a set of blocks that must
be pair wise disjoint (no overlap) and covers the domain of
each partition (complete), as we can see in figure 3 [15].

Fig. 3 three blocks for a partition which are disjoint and

complete
An important question would be: “How should we

consider multiple partitions at the same time?” This is the
same as asking “What combination of blocks should we
choose values from?” The most obvious choice is to choose all
combinations. However, using all combinations will be
impractical when more than 2 or 3 partitions are defined [15].
For example, if we have three partitions with blocks [A, B],
[1, 2, 3] and [x, y]. Table 7shows the twelve test cases are
needed for all combinations coverage.

 Table 7 Combinations Coverage Test Cases

Ammann and Offutt [13] advocated base choice coverage

criterion as the minimum adequate criterion. They argued that
each system has a normal mode of operation and that normal
mode corresponds to a particular choice in each category
(partition). This particular choice (block) is called as base
choice. Thus base – choice - coverage criterion requires that
each choice in a category be tested by combining it with the
base choice for all other categories. This causes each non-base

t1 : (A, 1, x) t5 : (A, 3,
x)

t9 : (B, 2, x)

t2 : (A, 1, y) t6 : (A, 3,
y)

t10 : (B, 2, y)

t3 : (A, 2, x) t7 : (B, 1,
x)

t11 : (B, 3, x)

t4 : (A, 2, y) t8 : (B, 1,
y)

t12 : (B, 3, y)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 187

choice to be used at least once, and the base choices to be used
several times [14].

We simply ask: What is the most “important” block for
each partition in our domain? This block is called the “base
choice” [15]. For our example above, we suppose that base
choice block in partition [A, B] is A, in partition [1, 2, 3] is 1
and in partition [x, y] is x. Then a base choice test case and
additional test cases would be like the following [15]:

T1 : (A, 1, x)
which is
called the base
test

t2 : (B,
1, x)

t3 : (A,
2, x)

t4 : (A,
3, x)

t5 : (A,
1, y)

As we can see, in base choice coverage criterion the

number of test cases are reduced compared with all
combinations coverage criterion. This is because of choosing a
base choice block for each partition we have. Which blocks
are chosen for the base choices becomes a crucial step in test
design that can greatly impact the resulting test [15].

Fig.4 Equivalence partitioning organizer tool example

Figure 4 represents an example of equivalence partitioning
for a specific inputs, organized using the equivalence
partitioning organizer [33] (written by Martin Keesen –version
0.5). The organizer allows us to create partitions with their
valid and invalid values (blocks). In the above example, there
are three partitions: Foreground color, Background color and
Outlining partitions. Each has their own valid and invalid
values. From the edit menu, we choose: Auto create test cases,
and then the test cases above will be generated automatically
based on a coverage criteria called: Each choice coverage,
which requires that: one value from each block for each
partition must be used in at least one test case[15]. So we
notice that the four test cases (TC1-TC4) have covered all
valid blocks each at least one and the last five test cases form
(TC5-TC9), represent possible combination between one
invalid block with two other valid blocks from the different
partitions.

H. Pros and Cons of Test Case Reduction Techniques
There are many research challenges and gaps in the test

case reduction area. Those challenges could inspire interested
researchers to further inspect this area to use most effective
reduction techniques.. However, the research issues that
motivated this study are: the too many redundancy test cases
after reduction process, a decrease of test cases ability to
reveal faults and the uncontrollable grow of test cases [9].
Table 8 summarizes the advantages and limitations of the
aforementioned test suite reduction techniques:

The tester is likely to dramatically increase his or her
understanding of the software by deriving the FSMs, and then
deriving tests from them. Some Simple and straightforward
suggestions are exist for generating FSMs from code, Like
using the software structure, modeling state variables (global
and class) or using the implicit or explicit specifications [15].
Next we present a tool that helps us to write or draw FSMs
and easily generate tests automatically.

Table 8 Pros and Cons of the four Reduction Techniques

Technique /
Algorithm Advantages Limitations

CBR
algorithms

- Preserving capability
to detect faults after
reduction (especially
TCCF and TCF) [9].

 - Removing the
redundancy and
unnecessary test
cases[11]

 - Controlling the
growth of test cases
[11].

 - Require a lot of
time.(specially
TCCF and TCF)
[9].

 - The path coverage
may be not an
effective coverage
factor for a huge
system that
contains million
lines of code. This
is because it
requires an
exhaustive time
and cost for
identifying
coverage from a
huge amount of
codes [9].

GE & GRE
Heuristics
and priority
cost
technique

 - Construction of
optimal representative
set [11].

 - Reduce the
redundant and
unnecessary test cases
[11].

 - T he NP-complete
problem [11].(that
is no fast solution
is known)

Model-
Checker

 - A convenient tool for
optimization purposes
and removing
redundancy,
especially if it is
already used for test-

 - Not an effective
for a huge system
that contains
million lines of
code [9]. Because
this will be costly

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 188

case generation in the
first place [12].

 - Quality of the

resulting test-suites
does not suffer with
regard to test
coverage or fault
detection ability [12].

and time
consuming.

 Base choice
criteria
(equivalence
partitioning)

 - Fairly easy to get
started, because it can
be applied with no
automation and very
little training [15].

 - Simple to tune the
technique to get more
or fewer tests [15].

 - Quality of the
resulting test-suite
may suffer or be
not efficient in
revealing defects,
because choosing
base choices is
crucial step that
depends on the
tester.

REFERENCES
[1] Jovanović, I., Software Testing Methods And Techniques, May
26,2008.
[2] Guide To The Software Engineering Body of Knowledge, Swebok: A
Project of the IEEE Computer Society Professional Practices Committee,
2004.

 [3] Miller, E., Introduction to Software Testing Technology, Tutorial:
Software Testing & Validation Techniques, Second Edition, IEEE Catalog
No. EHO 180-0, 1981, pp. 4-16.
[4] Marciniak, J., Encyclopedia of Software Engineering, Vol. 2, New
York, NY: Wiley, 1994, pp.1327-1358.
[5] Khan, M., Different Forms of Software Testing Techniques For Finding
Errors, IJCSI International Journal Of Computer Science Issues, Vol. 7, No. 3,
No 1, May 2010.
[6] Abhijit, A., Sawant1, P. H. Bari2 & P. M. Chawan3, Software Testing
Techniques and Strategies, Vol. 2, No 3, 2012, pp.980-986.
[7] Beizer, B., Software Testing Techniques, Van Nostrand Reinhold, 2nd
Edition, 1990.
[8] Mahapatra, R., & J. Singh, Improving the Effectiveness of Software
Testing Through Test Case Reduction, World Academy of Science,
Engineering and Technology, 2008.
[9] Roongruangsuwan, S. & Daengdej, J., Test Case Reduction Methods by
Using CBR,Autonomous System Research Laboratory Faculty of Science and
Technology Assumption University, Thailand.
[10] S. Yoo, M. Harman, Regression Testing Minimisation, Selection
and Prioritisation: A Survey” Softw. Test, Verif. Reliability, 2007,
(DOI: 10.1002/000)
[11] Rout, J. Et al, An Effective Test Suite Reduction Using Priority Cost
Technique, International Journal of Computer Science & Engineering
Technology, (IJCSET), 2011.
[12] Fraser, G. & F. Wotawa, Redundancy Based Test-Suite Reduction, In
Matthew B. Dwyer & Ant´Onia Lopes, Editors, FASE, Vol. 4422 of Lecture
Notes In Computer Science, 2007, pp. 291–305.
[13] Ammann, P. & J. Ofutt, Using Formal Methods to Derive Test
Frames In Category- Partition Testing, Proceedings of the Ninth Annual
Conference On Computer Assurance (COMPASS 94), 1994, pp. 69-80.
[14] Ghani, K., Searching For Test Data, 2009.
[15] Ammann, P & J. Ofutt, Introduction To Software Testing
Cambridge, UK, ISBN 0- 52188-038-6, 2008.
[16] Boehm, B., A Spiral Model Of Software Development and
Enhancement, TRW Defense Systems Group, 1998.
[17] Rothermel, G., M. Harrold, J. Ostrin & C. Hong, An Empirical Study of
the Effects of Minimization on the Fault Detection Capabilities of Test Suites,
Proceedings of IEEE International Test Conference on Software Maintenance
(ITCSM'98), Washington D.C.,1998, pp. 34-43.

[18] Mcmaster, S. & A. Memon, Call Stack Coverage For Test Suite
Reduction, Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM’05), 2005, pp. 539-548, Budapest, Hungary.
[19] Sampath, S., S. Sprenkle, E. Gibson & L. Pollock, Web Application
Testing With Customized Test Requirements – An Experimental Comparison
Study, 17th International Symposium On Software Reliability Engineering
(ISSRE’06), 2006.
[20] Chen, T & M. Lau, A New Heuristic For Test Suite Reduction,
Information And Software Technology, Vol. 40, No. 5-6, 1998, pp. 347–354.
[21] Horgan J., S. London, ATAC: A Data Flow Coverage Testing Tool For
C. Proceedings of The Symposium on Assessment of Quality Software
Development Tools, IEEE Computer Society Press, 1992, pp. 2–10.
[22] Horgan JR, S. London , Data Flow Coverage and the C Language.
Proceedings of the Symposium on Testing, Analysis, and Verification
(TAV4), ACM Press, 1991,pp. 87–97.
[23] Bertolino, M. , Using Spanning Sets For Coverage Testing, IEEE
Transactions on Software Engineering, Vol. 29, No. 11, 2003, pp. 974–984.
[24] Black, P.E.: Modeling And Marshaling: Making Tests From Model
Checker Coun-Terexamples. In: Proc. Of The 19th Digital Avionics Systems
Conference, (2000).
[25] Heimdahl, M. & G. Devaraj, Test-Suite Reduction For Model Based
Tests: Effects on Test Quality And Implications For Testing. In: ASE, IEEE
Computer Society, 2004, pp. 176–185.
[26] Arnicane, V., Complexity of Equivalence Class And Boundary Value
Testing Methods, International Journal of Computer Science and Information
Technology, Vol. 751, 2009, pp. 80-101.
[27] Demillo, R., W. Mccracken, R. Martin, & J. Passafiume, Software
Testing and Evaluation, Benjamin/Cummings Publishing Company, Menlo
Park, CA, 1987.
[28] White, L. & E. Cohen, A Domain Strategy For Computer Program
Testing, IEEE Transactions On Software Engineering SE-6, 1980, pp. 247-
257.
[29] Jeng B., Weyuker E. J., A Simplified Domain-Testing Strategy. ACM
Trans. Softw. Eng. Methodol. Vol. 3, No. 3, 1994, pp. 254– 270.
[30] Zeil, S. & F. Afifi, White L. J. Detection of Linear Errors Via Domain
Testing, ACM Trans. Softw. Eng. Methodol. Vol.1, No.4, 1992, pp. 422–451.
[31] Utting, M., G. Perrone, J. Winchester, S. Thompson, R. Yang & P.
Douangsavanh, The Modeljunit Model-Based Testing Tool - Department of
Computer Science, The University of Waikato, New Zealand.
[32] http://Sourceforge.Net/Projects/ Equivalencepart/, 2004, pp. 247–257.

Dr. Mohammed Akour is an Assistant Professor in the Department of
Computer Information System at Yarmouk University (YU). He got his
Bachelor (2006) and Master (2008) degree from Yarmouk University in
Computer Information System with Honor. He joined YU as a Lecturer in
August 2008 after graduating with his master in Computer Information
System. In August 2009, He left YU to pursue his PhD in Software
Engineering at North Dakota State University (NDSU). He joined YU
again in April 2012 after graduating with his PhD in Software
Engineering from NDSU with Honor.

Dr. Iyad Alazzam is an assistant professor in the department of computer
information systems at Yarmouk University in Jordan, he has received his
Ph.D degree in software engineering from NDSU (USA). His master from
LMU (UK) in electronic Commerce and his B.Sc in computer science and
information systems from Jordan University of Science and Technology in
Jordan. His research interests lays in software engineering and software
testing.

Dr. Feras Hanandeh is an Associate Professor in the Faculty of Prince Al-
Hussein Bin Abdallah II for Information Technology. His research interest is
in Constraints Integrity Maintenance for Parallel Databases, Distributed
Databases, Artificial Intelligence, and Grid Computing.

Dr. Iman Akour is an associate Professor of Management Information
Systems at Sharjah University. Got her PhD in Business Administration,
(2006), from Louisiana Tech University, USA. Specialization: Information
System & Quantitative Analysis. Her master was in Business Administration,
(1995), Grambling State University, USA. Major: Computer Information
Systems. She supervised several graduate dissertations in USA and was a
committee member for graduate student’s thesis from other countries.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 189

http://sourceforge.net/Projects/

