

Abstract —The Breadth-First-Search algorithm belongs to the

most used searching algorithms. The Breadth-First-Search tree has its
special properties that can be convenient to be used in various other
algorithms. Deep analysis of the topic and discussion on mutual
relationships between solutions to problems allows the teacher to
enhance student’s logical thinking and support their understanding to
more complex algorithms. Moreover, contrary to the intuition that a
problem is solvable by a polynomial algorithm, theoretical
background of the appropriate topic can show that the problem is
much more complex and a fast algorithm is unlikely to exist. The
paper presents a comprehensive view on problems that are based on
Breadth-First-Search tree property.

Keywords BFS tree, BFS tree property, circles with the given

property.

INTRODUCTION
T is a fact generally agreed on by mathematics educators
and researchers in the field of mathematics education that

problem solving is a cornerstone of mathematics taught.
Problems and issues should be presented in a more challenging
way than just as tasks in which an individual or a group of
students are expected to demonstrate to their teacher how they
can apply the mastered algorithms. The presentation and
processing of problems should develop students’ intellectual
activity and encourage their creativity in the solving process
(cf. [1, 2]).

The Graph Theory is a discipline, which can put forward
some very entertaining problems, and informatics has played a
big part in its development. These two fields are strongly
interconnected, which can mainly be seen in the design of
computer algorithms. On the one hand, there are many
methods which can all be used for solving the same problem,
while on the other hand, using effective modifications of one
algorithm, we can devise methods of solving various other
tasks. To get a deeper insight into a problem it is important to
examine it from more than one point of view and discuss
various approaches to its solution.

In the paper, whose aim is to point out the importance of a
proper subject matter analysis being seen in mutual relations,
we devote attention to the Breadth-First-Search tree and its
property. There exist various descriptions of the Breadth-First-
Search (BFS in short) algorithm (see e.g. [3 - 9]).

The paper briefly presents the BFS algorithm formulated
according to [10] as an edge colouring process as well as BFS
tree property. Then the necessary and sufficient conditions for

several statements connected with the BFS tree property are
discussed and on the basis of them, various simple algorithms
using vertex coding are summarized.

BREADTH-FIRST-SEARCH
The Breadth-First-Search (BFS shortly) algorithm together

with the Depth-First-Search algorithm belongs to the most
used searching algorithms.

Let us formulate the BFS algorithm searching both vertices
and edges of a given undirected graph in the form of an edge
colouring process. Let us deal with a connected graph (in the
case of a disconnected graph, the algorithm is applied on its
components).

BFS algorithm of vertices and edges
1. Initially all vertices and edges of the given connected

undirected graph G, with n vertices and m edges, are
uncoloured. Let us choose any single vertex, insert it
into queue Q, colour it blue and search it.

2. while Q is not empty do the following commands:
o choose the first vertex x in Q
o if there is an uncoloured edge {x, y} then

 if the vertex y is uncoloured then
search and colour blue both the vertex y and
the edge {x, y}, and insert the vertex y into Q

 else
search and colour the edge {x, y} red

 else
delete the vertex x from Q

A. Relation to the Minimum Spanning Tree Problem
A lucid interpretation of the BFS algorithm and BFS tree

(see thereinafter) can proceed from the Jarník’s method
solving the minimum spanning tree problem, see [11]:

Minimum Spanning Tree Problem. Given a connected
undirected graph G = (V, E) with n vertices, m edges and real
weights assigned to its edges (i.e. w: E→R). Find among all
spanning trees of G a spanning tree T = (V, E’) having
minimum value w(T) = Σ(w(e); e ∈ E’), a so-called minimum
spanning tree.

Jarník’s algorithm
1. Initially all vertices and edges of the graph G are

uncoloured. Let us choose any single vertex and
suppose it to be a trivial blue tree.

2. At each of (n - 1) steps, colour the minimum-weight
uncoloured edge, having one vertex in the blue tree and

Breadth-First-Search Tree – Levels and Subtrees
Eva Milková

I

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 206

the other not, blue. (In case, there are more such edges,
choose any of them.)

3. The blue coloured edges form a minimum spanning tree.

Using a connected undirected graph with all edges having
the same weight, e.g. weight w(e) = 1 for each edge e, and
tracing the Jarník’s algorithm solving the minimum spanning
tree on this graph, one can see that at each step an arbitrary
edge, having one vertex in the blue tree and the other not, is
coloured blue. Consecutive adding vertices into the blue tree
can be understood as a consecutive search of them. Hence, to
get either the Breadth-First Search for consecutive search of
all vertices of the given connected undirected graph G, we
simply modify Jarník’s algorithm in the following way.

Breadth-First Search: At each step we choose from the
uncoloured edges, having one vertex in the blue tree and the
other not, such an edge having the end-vertex being added to
the blue tree as the first of all in blue tree vertices belonging to
the mentioned uncoloured edges and colour it blue.

B. Breadth-First-Search Tree
In connection with the above mentioned interpretation it is

evident that applying the BFS algorithm to an undirected
connected graph the blue coloured edges form a spanning
tree T. If we represent the gained spanning tree T by a rooted
tree with the root in initial vertex v (i.e. vertex in which the
BFS algorithm starts) we get so called BFS tree (T, v) with the
root v.

Definition. Let G be a connected undirected graph, let v be
a vertex of G, and let T be its spanning tree gained by the BFS
algorithm starting in vertex v. Let us call an appropriate rooted
tree (T, v) as BFS tree (T, v) with the root v, let us call the
edges of G that do not appear in (T, v) as non-tree edges, and
let us call the components of the forest F = (T, v) – v as
(T, v)-subtrees.

Let us denote the level of (T, v) where the vertex y lies by
h(y) supposing h(v) = 0.

Remark: Obviously, the concept (T, v)-subtrees denotes all
subtrees (T’, r) with the root r, where r is a direct descendant
of the initial vertex v in BFS tree (T, v).

C. Breadth-First-Search Tree Property
Theorem. The end-vertices of each non-tree edge of G

belong either to the same level or to the adjacent levels of
(T, v).

Proof. Let {x, y} be a non-tree edge of G. We may assume
that the vertex y was put into Q later than the vertex x (for
otherwise we would go analogically). Obviously, h(z) ≥ h(x)
for each vertex z put into Q later than x and h(z) ≤ h(x) + 1 for
each vertex z put into Q before x. Hence, with regard to the
assumption and because the vertices x and y are adjacent in G,
h(x) ≤ h(y) ≤ h(x) + 1.

Corollary. The length of the shortest path from vertex v to a
vertex y in G equals h(y).

D. Necessary and Sufficient Conditions
In the practice there are various problems looking for and

dealing with a circle with the given property. Problems
connected with Hamiltonian graphs are a case of such
problems. Nevertheless, the existence of various suitable
circles with the given property can be efficiently solved, using
the observation of the BFS tree.

Theoretical background belongs to the most difficult parts in
the engineering education. The following proofs can serve also
as a lucid explanation of necessary and sufficient conditions.

Let G be a connected undirected graph, let v be a vertex of

G, and let T be its spanning tree gained by the BFS starting in
vertex v.

Observing both the levels and the subtrees of the given BFS
tree (T, v) both necessary and sufficient conditions for the
existence of a circle with the given property obviously follow
from the theorem and corollary (see statements 1, 2 and 3).

Firstly, let us observe end-vertices of non-tree edges

regarding to the levels of a given BFS tree (T, v) similarly as in
the corollary concerning the length of the shortest path Pvy.

Statement 1. There is a circle of odd length in G if and only
if there is a non-tree edge having both end-vertices in the same
level of (T, v).

Proof. Let {x, y} be a non-tree edge of G, h(x) = h(y). Let z
be the first ancestor of both vertex x and y in (T, v). Obviously,
Pzx ∩ Pzy = ∅, length Pzx = length Pzy. Hence, Pzx ∪ Pzy ∪ {x, y}
creates a circle of odd length.

On the other hand, if there is no non-tree edge having both
end-vertices in the same level of (T, v) then G is bipartite
graph and thus there is no circle of odd length in G.

Secondly, let us observe end-vertices of non-tree edges
regarding to (T, v)-subtrees.

Statement 2. There is a circle containing a vertex v in G if
and only if there is a non-tree edge having its end-vertices in
different (T, v)-subtrees.

Proof. Let {x, y} be a non-tree edge of G, whereas x and y
belongs to different (T, v)-subtrees. Let us suppose x ∈(T’, a)
and y ∈(T’, b). Obviously, Pax ∩ Pby = ∅. Hence, Pax ∪ Pby ∪
{a, v} ∪ {v, b} ∪ {x, y} creates in G a circle containing
vertex v.

On the other hand, if there is no non-tree edge having its
end-vertices in different (T, v)-subtrees then there is either no
non-tree edge in (T, v) and thus there is no circle in G at all, or
each non-tree edge has its end-vertices in the same
(T, v)-subtree and thus each circle belongs to a subtree (T’, r),
where r is a direct descendant of the initial vertex v. Hence, in
G there is no circle containing a vertex v.

Statement 3. There is a circle containing an edge {v, w} in
G if and only if there is a non-tree edge having one end-vertex

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 207

in the (T, v)-subtree with the root w and the other end-vertex in
another (T, v)-subtree.

Proof. Let {x, y} be a non-tree edge of G, x and y belong to
different (T, v)-subtrees, whereas one of them belongs to
(T’, w). A circle containing an edge {v, w} in G can be
determined accordingly as above.

On the other hand, if there is no non-tree edge having one
end-vertex in the (T, v)-subtree with the root w and the other
end-vertex in another (T, v)-subtree then there are three
possible cases obviously leading to nonexistence of a circle
containing an edge {v, w} in G:

• there is no non-tree edge in (T, v)
• each non-tree edge has its end-vertices in the same

(T, v)-subtree
• there is no non-tree edge in (T, v) having one end-

vertex in the subtree (T’, w)

BFS MODIFICATIONS
Let us suppose an undirected connected graph G with n

vertices and m edges. The above given corollary and three
statements directly lead to a formulation of the following six
simple BFS algorithm modifications, having the time
complexity equal to O(n + m).

A. BFS Tree Levels
Running the BFS algorithm starting at vertex v, and saving

the level h(y) at each step by each vertex y ≠ v, we achieve
1. algorithm determining the length of the shortest path from

the vertex v to a vertex y in G
and examining if h(x) = h(z) when searching a non-tree edge

e = {x, z}, we easily achieve
2. algorithm determining if there is an odd circle in G

B. BFS Tree (T, v)-subtrees
Running the BFS algorithm starting at vertex v, and at each

step saving by each vertex y ≠ v the information about
(T, v)-subtree in which the vertex y lies, and examining
relevance of x and z to (T, v)-subtrees when searching a non-
tree edge e = {x, z} we achieve

1. algorithm determining if there is a circle containing the
given vertex v

2. algorithm determining if there is a circle containing the
given edge {v, w}

Note that there is another simple algorithm determining if
there is a circle containing the given edge {v, w} in G
(otherwise determining if the edge is/is not a cut edge) based
on the BFS or Depth-First-Search algorithm applied to
G -{v, w} starting either at the vertex v or w.

C. BFS Tree levels and (T, v)-subtrees
Running the BFS algorithm starting at vertex v, and saving

at each step saving by each vertex y ≠ v, both the level h(y) and
the information about (T, v)-subtree in which the vertex y lies,

and examining relevance of x and z to (T, v)-subtrees when
searching a non-tree edge e = {x, z} we achieve

1. algorithm determining the length of the shortest circle
containing the given vertex v if there is any

2. algorithm determining the length of the shortest circle
containing the given edge {x, z} if there is any

Note that as soon as we find the first non-tree edge {x, z}
having its end vertices in different (T, v)-subtrees, we examine
h(x), h(z). If h(x) = h(z), we finish the algorithm, however, if
h(x) ≠ h(z) (assuming h(x) < h(z), we have to continue
searching vertices belonging to the level h(x) to recognize if
there is an edge having both end-vertices all at once in
different (T, v)-subtrees and in the same levels. Thus, if there
is a circle containing a given vertex v, the length of the shortest
circle containing a given vertex v is either 2h(x) + 1 or
2h(x) + 2.

Example
Given the graph represented by the following adjacency

matrix.
 a b c d e f g h i
a 1 1 1
b 1 1 1
c 1 1 1
d 1 1
e 1 1
f 1 1
g 1 1 1
h 1 1
i 1 1

Let us determine one of the shortest circles containing the
vertex g if there is any.

We use the following vertex coding - starting BFS algorithm
with the vertex g, at each step we save for each vertex y ≠ g
the information describing the ancestor of y, the number of
subtree in which the vertex v lies and the level h(v).

queue Q BFS tree non-tree edges
g g
g,c g, c(g,1,1)
g,c,e g, c(g,1,1),e(g,2,1)
g,c,e,h g, c(g,1,1),e(g,2,1),h(g,3,1)
c,e,h,a g, c(g,1,1),e(g,2,1),h(g,3,1),

a(c,1,2)

c,e,h,a,i g, c(g,1,1),e(g,2,1),h(g,3,1),
a(c,1,2),i(c,1,2)

e,h,a,i,b g, c(g,1,1),e(g,2,1),h(g,3,1),
a(c,1,2),i(c,1,2),b(e,2,2)

h,a,i,b,f g, c(g,1,1),e(g,2,1),h(g,3,1),
a(c,1,2),i(c,1,2),b(e,2,2),f(h,3,2)

a,i,b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2),
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,3)

a,i,b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2),
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,3)

{a,i}

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 208

i,b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2),
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,3)

b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2),
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,3)

{a,i}, {b,d}

b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2),
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,4)

{a,i},{b,d}
{b,f}

The non-tree edge {b, f} determines the circle (g,e,b,f,h,g)
of the length 5, which is the shortest circle in the given graph
containing the vertex g.

D. Remarks
Applying the BFS modification solving the shortest circles

containing the given vertex on each vertex in the given graph,
algorithm of time complexity O(n3) determining the girth of
the given graph (i.e. the length of the shortest circle), is
formulated.

Saving at each step by each vertex y ≠ v also the information
describing the ancestor of y we can easily determine the
shortest path from the vertex v to a vertex y according to the
BFS tree with the root v, as well as a circle with the given
property (see the example above).

Using the BFS algorithm we are also able to formulate an
algorithm searching all the shortest paths between two given
vertices. Its description based on an x-y Shortest Path Tree
construction is given in [10], where an x-y Shortest Path Tree
is defined as follows:

Let G be a connected undirected graph, let x and y be
vertices of G. An x-y Shortest Path Tree is a rooted tree Tx,y
with the root y[1] and with leaves x[1], ..., x[k], where k is the
number of the shortest paths from x to y existing in G, and
where each path in Tx,y leading from x[i], i = 1, ..., k, to y[1]
represents exactly one of the shortest paths from x to y in G.

The algorithm can be intuitively understood with the help of
and according to the following illustration.

Illustration. Let us find all the shortest paths between c and
f in the graph on Fig. 1. Let us suppose that for each vertex v
the number h(v) has been already determined (see the number
next each vertex on Fig. 1).

Fig. 1

Queue Q: f[1](3), a[1](2), d[1](2), g[1](2), b1,

b[2](1), e1, b[3](1), c[1](0), c[2](0), c[3](0), c[4](0)

Tx,y: f[1](f[1]), a[1](f[1]), d[1](f[1]), g[1](f[1]), b[1](a[1]),
b[2](d[1]), e[1](d[1]), b[3](g[1]), c[1](b[1]), c[2](b[2]),
c[3](e[1]), c[4](b[3])

Solution: (c, b, g, f); (c, e, d, f); (c, b, d, f); (c, b, a, f)

The complexity of an x-y Shortest Path Tree construction
depends on the number of the shortest paths existing in the
given graph. Their number can grow exponentially with the
growth of vertices, see e.g. the following Fig. 2.

Fig. 2

ODD CIRCLE CONTAINING A GIVEN VERTEX
One could consider that an algorithm looking for an odd

circle containing a given vertex (edge resp.) can be easily
formulated, based on the statement 1 and the statement 2 (the
statement 3 resp.).

However, let us observe Fig. 3 and Fig. 4, where two graphs
are represented as BFS trees (thick lines = blue edges)
completed by non-tree edges (thin lines). For the existence of
an odd circle containing a given vertex in G, using these
figures and the above given statements 1 and 2, we can
formulate an obvious sufficient condition that is however not
necessary (see statement 4 and Fig. 3), and a necessary
condition that is however not sufficient, see statement 5 and
Fig. 4.

Statement 4. If there is a non-tree edge having its end-
vertices all at once in the same level of (T, v) and in different
(T, v)-subtrees, then there is an odd circle containing the given
vertex v.

Proof. Let {x, y} be a non-tree edge of G, h(x) = h(y), x and
y belongs to different (T, v)-subtrees. Let us suppose
x ∈(T’, a) and y ∈(T’, b). Obviously, the length of the circle
Pax ∪ Pby ∪ {a, v} ∪ {v, b} ∪ {x, y} containing vertex v in G
is odd.

Statement 5. If there is an odd circle containing the given
vertex v, then there is a non-tree edge having its end-vertices in
the same level of (T, v) and there is a non-tree edge having its
end-vertices in different (T, v)-subtrees.

Proof. follows directly from statement 1 and 2.

On the other hand, Fig. 3 is a lucid example that the
statement 4 is not a necessary condition and Fig. 4 confirms

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 209

that the statement 5 is not a sufficient condition for the
existence of an odd circle containing a given vertex in G.

Fig. 3

Fig. 4

To determine if there is an odd circle containing a given

vertex (edge resp.) can be in general, similarly as to determine
if a graph is Hamiltonian, difficult.

SHORTEST CIRCLE CONTAINING TWO GIVEN VERTICES
Let us think about an algorithm looking for a circle

containing two given vertices x and y in the given graph G. In
connection with the previous chapters let us consider such a
shortest circle.

An intuitive idea aims to apply the following commands:
find the shortest path Pxy (thin lines); remove its edges from G;
in the gained graph find another path Pxy (thick lines) if there is
any. However, the following figures (Fig. 5 – Fig. 8) show that
this idea fails. In the graphs on Fig. 5 and Fig. 7 a circle of the
length 8 exists. However, the above given commands find a
circle of the length 9 in the first example (Fig. 6) and even no
case of such a circle in the second example (Fig. 8).

Fig. 4

Fig. 5

Fig. 6

Fig. 7

To formulate an algorithm determining the shortest circle

containing two given vertices can be quite an uneasy task, see
http://cs.stackexchange.com/questions/13194/

PUZZLE
Let us finish the paper with an example whose solution uses

the above described subject matter.
Example
In the graph G in Fig. 9 find an odd circle containing the

vertex B.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 210

http://cs.stackexchange.com/questions/13194/

Fig. 9 A given connected undirected graph G

Fig. 10 BFS tree (T, B) completed by non- tree edges

Solution
Although there is no non-tree edge having its end-vertices

both in the same level of (T, v) and in different (T, v)-subtrees
in the appropriate BFS tree (T, B) (see Fig. 9), we can see that
there is a non-tree edge having its end-vertices both in the
same level of (T, v), e.g. {1, 5}, as well as a non-tree edge
having its end-vertices in different (T, v)-subtrees, e.g. {19,
25}. Due to this fact, in spite of a demanded circle is not

visible at once, we go on and try to find it.

One solution is given in Fig. 11.

Fig. 11 Solution of the task

CONCLUSION
In the paper we explored both the levels and subtrees of the

BFS Tree appropriate to the BFS algorithm. We formulated
polynomial time algorithms directly following from the BFS
Tree property. We also mentioned the exponentially growing
problem of finding all the shortest paths existing in the given
graph.

On two examples, despite their intuitive simplicity, we have
shown that solving them can be quite uneasy.

Students usually have problems with theoretical parts of
mathematics; they avoid studying proofs of theorems and are
willing only to remember them without proper understanding
their meanings, even the meanings of theorem formulations
themselves. Therefore it is important to practise students’
comprehension and skills on simple statements proofs, and to
emphasize the meaning of both necessary and sufficient
conditions, necessary conditions that are not sufficient,
sufficient conditions that are not necessary. It is important to
devote enough time to a proper analysis of a discussed subject
matter.

An intended topic for future research is to investigate
problems relating to the BFS Tree property without having
both sufficient and necessary conditions supporting their
solutions.

ACKNOWLEDGMENT
This research has been supported by Specific research

project of the University of Hradec Kralove, Faculty of
Science No. 2113.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 211

REFERENCES
[1] J, Novotná, P. Eisenmann, J. Přibyl, J. Ondrušová, and J. Břehovský,

“Problem solving in school mathematics based on heuristic strategies,”
Journal on Efficiency and Responsibility in Education and Science, vol.
7, no. 1, 2014, pp.1-6.

[2] P. Zeitz, “The Art and Craft of Problem Solving,“ New York: John
Wiley & Sons, Inc., 2007.

[3] H. Cormen, CH. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to
Algorithms,“ The MIT Press, 2009.

[4] Demel, J.: Grafy a jejich aplikace (Graphs and their Applications).
Academia (2002).

[5] Kučera, “Combinatorial Algorithms (Kombinatorické algoritmy),“
SNTL, Praha, 1989.

[6] W. Lipski, “Combinatorics for Programmers (Комбинаторика для
програмистов),“ Мир, Москва 1988.

[7] F. S. Roberts, B. Tesman, “Applied Combinatorics,“ 2nd Edition,
Pearson Prentice Hall, Upper Saddle River, NJ, 2004.

[8] S. Skiena, “The Algorithm Design Manual,“ New York: Springer-
Verlag, 1998.

[9] Tarjan, R. E.: Data structures and network algorithms.
SIAM, Philadelphia (1983).

[10] E. Milková, “BFS Tree and x-y Shortest Paths Tree,” in Proc. of
International Conference on Applied Computer Science (ACS), WSEAS
Press, Malta, September 15-17, 2010, pp. 391–395.

[11] E. Milková, “Combinatorial Optimization: Mutual Relations among
Graph Algorithms,“ WSEAS TRANSACTIONS on MATHEMATICS,
Issue 5, Volume 7, May 2008, pp.869-879.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 212

	Breadth-First-Search Tree
	Breadth-First-Search Tree Property
	Necessary and Sufficient Conditions
	BFS Modifications
	BFS Tree Levels
	BFS Tree (T, v)-subtrees
	BFS Tree levels and (T, v)-subtrees
	Remarks

	Odd circle containing a given vertex
	Shortest circle containing two given vertices
	Puzzle
	Conclusion
	Acknowledgment
	References

