
 

 

   
Abstract —The Breadth-First-Search algorithm belongs to the 

most used searching algorithms. The Breadth-First-Search tree has its 
special properties that can be convenient to be used in various other 
algorithms. Deep analysis of the topic and discussion on mutual 
relationships between solutions to problems allows the teacher to 
enhance student’s logical thinking and support their understanding to 
more complex algorithms. Moreover, contrary to the intuition that a 
problem is solvable by a polynomial algorithm, theoretical 
background of the appropriate topic can show that the problem is 
much more complex and a fast algorithm is unlikely to exist. The 
paper presents a comprehensive view on problems that are based on 
Breadth-First-Search tree property. 

 
Keywords BFS tree, BFS tree property, circles with the given 

property. 

INTRODUCTION 
T  is a fact generally agreed on by mathematics educators 
and researchers in the field of mathematics education that 

problem solving is a cornerstone of mathematics taught. 
Problems and issues should be presented in a more challenging 
way than just as tasks in which an individual or a group of 
students are expected to demonstrate to their teacher how they 
can apply the mastered algorithms. The presentation and 
processing of problems should develop students’ intellectual 
activity and encourage their creativity in the solving process 
(cf. [1, 2]). 

The Graph Theory is a discipline, which can put forward 
some very entertaining problems, and informatics has played a 
big part in its development. These two fields are strongly 
interconnected, which can mainly be seen in the design of 
computer algorithms. On the one hand, there are many 
methods which can all be used for solving the same problem, 
while on the other hand, using effective modifications of one 
algorithm, we can devise methods of solving various other 
tasks. To get a deeper insight into a problem it is important to 
examine it from more than one point of view and discuss 
various approaches to its solution. 

In the paper, whose aim is to point out the importance of a 
proper subject matter analysis being seen in mutual relations, 
we devote attention to the Breadth-First-Search tree and its 
property. There exist various descriptions of the Breadth-First-
Search (BFS in short) algorithm (see e.g. [3 - 9]). 

The paper briefly presents the BFS algorithm formulated 
according to [10] as an edge colouring process as well as BFS 
tree property. Then the necessary and sufficient conditions for 

 
 

several statements connected with the BFS tree property are 
discussed and on the basis of them, various simple algorithms 
using vertex coding are summarized.  

BREADTH-FIRST-SEARCH 
The Breadth-First-Search (BFS shortly) algorithm together 

with the Depth-First-Search algorithm belongs to the most 
used searching algorithms.  

Let us formulate the BFS algorithm searching both vertices 
and edges of a given undirected graph in the form of an edge 
colouring process. Let us deal with a connected graph (in the 
case of a disconnected graph, the algorithm is applied on its 
components). 

BFS algorithm of vertices and edges  
1. Initially all vertices and edges of the given connected 

undirected graph G, with n vertices and m edges, are 
uncoloured. Let us choose any single vertex, insert it 
into queue Q, colour it blue and search it. 

2. while Q is not empty do the following commands: 
o choose the first vertex x in Q 
o if there is an uncoloured edge {x, y} then 

  if the vertex y is uncoloured then  
search and colour blue both the vertex y and 
the edge {x, y}, and insert the vertex y into Q 

  else  
search and colour the edge {x, y} red 

         else  
delete the vertex x from Q 

A.  Relation to the Minimum Spanning Tree Problem 
A lucid interpretation of the BFS algorithm and BFS tree 

(see thereinafter) can proceed from the Jarník’s method 
solving the minimum spanning tree problem, see [11]: 

Minimum Spanning Tree Problem. Given a connected 
undirected graph G = (V, E) with n vertices, m edges and real 
weights assigned to its edges (i.e. w: E→R). Find among all 
spanning trees of G a spanning tree T = (V, E’) having 
minimum value w(T) = Σ(w(e); e ∈ E’), a so-called minimum 
spanning tree. 

Jarník’s algorithm 
1. Initially all vertices and edges of the graph G are 

uncoloured. Let us choose any single vertex and 
suppose it to be a trivial blue tree. 

2. At each of (n - 1) steps, colour the minimum-weight 
uncoloured edge, having one vertex in the blue tree and 
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the other not, blue. (In case, there are more such edges, 
choose any of them.) 

3. The blue coloured edges form a minimum spanning tree. 

Using a connected undirected graph with all edges having 
the same weight, e.g. weight w(e) = 1 for each edge e, and 
tracing the Jarník’s algorithm solving the minimum spanning 
tree on this graph, one can see that at each step an arbitrary 
edge, having one vertex in the blue tree and the other not, is 
coloured blue. Consecutive adding vertices into the blue tree 
can be understood as a consecutive search of them. Hence, to 
get either the Breadth-First Search for consecutive search of 
all vertices of the given connected undirected graph G, we 
simply modify Jarník’s algorithm in the following way. 

Breadth-First Search: At each step we choose from the 
uncoloured edges, having one vertex in the blue tree and the 
other not, such an edge having the end-vertex being added to 
the blue tree as the first of all in blue tree vertices belonging to 
the mentioned uncoloured edges and colour it blue.  

B. Breadth-First-Search Tree 
In connection with the above mentioned interpretation it is 

evident that applying the BFS algorithm to an undirected 
connected graph the blue coloured edges form a spanning 
tree T. If we represent the gained spanning tree T by a rooted 
tree with the root in initial vertex v (i.e. vertex in which the 
BFS algorithm starts) we get so called BFS tree (T, v) with the 
root v.  

Definition. Let G be a connected undirected graph, let v be 
a vertex of G, and let T be its spanning tree gained by the BFS 
algorithm starting in vertex v. Let us call an appropriate rooted 
tree (T, v) as BFS tree (T, v) with the root v, let us call the 
edges of G that do not appear in (T, v) as non-tree edges, and 
let us call the components of the forest F = (T, v) – v as 
(T, v)-subtrees. 

Let us denote the level of (T, v) where the vertex y lies by 
h(y) supposing h(v) = 0. 

Remark: Obviously, the concept (T, v)-subtrees denotes all 
subtrees (T’, r) with the root  r, where r is a direct descendant 
of the initial vertex v in BFS tree (T, v). 

C. Breadth-First-Search Tree Property 
Theorem. The end-vertices of each non-tree edge of G 

belong either to the same level or to the adjacent levels of 
(T, v).  

Proof. Let {x, y} be a non-tree edge of G. We may assume 
that the vertex y was put into Q later than the vertex x (for 
otherwise we would go analogically). Obviously, h(z) ≥ h(x) 
for each vertex z put into Q later than x and h(z) ≤ h(x) + 1 for 
each vertex z put into Q before x. Hence, with regard to the 
assumption and because the vertices x and y are adjacent in G, 
h(x) ≤ h(y) ≤ h(x) + 1. 

Corollary. The length of the shortest path from vertex v to a 
vertex y in G equals h(y). 

D.  Necessary and Sufficient Conditions  
In the practice there are various problems looking for and 

dealing with a circle with the given property. Problems 
connected with Hamiltonian graphs are a case of such 
problems. Nevertheless, the existence of various suitable 
circles with the given property can be efficiently solved, using 
the observation of the BFS tree. 

Theoretical background belongs to the most difficult parts in 
the engineering education. The following proofs can serve also 
as a lucid explanation of necessary and sufficient conditions. 

 
Let G be a connected undirected graph, let v be a vertex of 

G, and let T be its spanning tree gained by the BFS starting in 
vertex v.   

Observing both the levels and the subtrees of the given BFS 
tree (T, v) both necessary and sufficient conditions for the 
existence of a circle with the given property obviously follow 
from the theorem and corollary (see statements 1, 2 and 3). 

 
Firstly, let us observe end-vertices of non-tree edges 

regarding to the levels of a given BFS tree (T, v) similarly as in 
the corollary concerning the length of the shortest path Pvy. 

Statement 1. There is a circle of odd length in G if and only 
if there is a non-tree edge having both end-vertices in the same 
level of (T, v). 

Proof. Let {x, y} be a non-tree edge of G, h(x) = h(y). Let z 
be the first ancestor of both vertex x and y in (T, v). Obviously, 
Pzx ∩ Pzy = ∅, length Pzx = length Pzy. Hence, Pzx ∪ Pzy ∪ {x, y} 
creates a circle of odd length. 

On the other hand, if there is no non-tree edge having both 
end-vertices in the same level of (T, v) then G is bipartite 
graph and thus there is no circle of odd length in G. 

Secondly, let us observe end-vertices of non-tree edges 
regarding to (T, v)-subtrees.  

Statement 2. There is a circle containing a vertex v in G if 
and only if there is a non-tree edge having its end-vertices in 
different (T, v)-subtrees. 

Proof. Let {x, y} be a non-tree edge of G, whereas x and y 
belongs to different (T, v)-subtrees. Let us suppose x ∈(T’, a) 
and y ∈(T’, b). Obviously, Pax ∩ Pby = ∅. Hence, Pax ∪ Pby ∪ 
{a, v} ∪ {v, b} ∪ {x, y} creates in G a circle containing 
vertex v. 

On the other hand, if there is no non-tree edge having its 
end-vertices in different (T, v)-subtrees  then there is either no 
non-tree edge in (T, v) and thus there is no circle in G at all, or 
each non-tree edge has its end-vertices in the same 
(T, v)-subtree and thus each circle belongs to a subtree (T’, r), 
where r is a direct descendant of the initial vertex v. Hence, in 
G there is no circle containing a vertex v. 

Statement 3. There is a circle containing an edge {v, w} in 
G if and only if there is a non-tree edge having one end-vertex 
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in the (T, v)-subtree with the root w and the other end-vertex in 
another (T, v)-subtree. 

Proof. Let {x, y} be a non-tree edge of G, x and y belong to 
different (T, v)-subtrees, whereas one of them belongs to 
(T’, w). A circle containing an edge {v, w} in G can be 
determined accordingly as above. 

On the other hand, if there is no non-tree edge having one 
end-vertex in the (T, v)-subtree with the root w and the other 
end-vertex in another (T, v)-subtree  then there are three 
possible cases obviously leading to nonexistence of a circle 
containing an edge {v, w} in G: 

• there is no non-tree edge in (T, v) 
• each non-tree edge has its end-vertices in the same 

(T, v)-subtree 
• there is no non-tree edge in (T, v) having one end-

vertex in the subtree (T’, w)  

BFS MODIFICATIONS 
Let us suppose an undirected connected graph G with n 

vertices and m edges. The above given corollary and three 
statements directly lead to a formulation of the following six 
simple BFS algorithm modifications, having the time 
complexity equal to O(n + m). 

A.  BFS Tree Levels 
Running the BFS algorithm starting at vertex v, and saving 

the level h(y) at each step by each vertex y ≠ v, we achieve  
1. algorithm determining the length of the shortest path from 

the vertex v to a vertex y in G 
and examining if h(x) = h(z) when searching a non-tree edge 

e = {x, z}, we easily achieve  
2. algorithm determining if there is an odd circle in G 

B.  BFS Tree (T, v)-subtrees  
Running the BFS algorithm starting at vertex v, and at each 

step saving by each vertex y ≠ v the information about 
(T, v)-subtree in which the vertex y lies, and examining 
relevance of x and z to (T, v)-subtrees when searching a non-
tree edge e = {x, z} we achieve  

1. algorithm determining if there is a circle containing the 
given vertex v 

2. algorithm determining if there is a circle containing the 
given edge {v, w} 

Note that there is another simple algorithm determining if 
there is a circle containing the given edge {v, w} in G 
(otherwise determining if the edge is/is not a cut edge)  based 
on the BFS or Depth-First-Search algorithm applied to 
G -{v, w} starting either at the vertex v or w. 

C.  BFS Tree levels and (T, v)-subtrees  
Running the BFS algorithm starting at vertex v, and saving 

at each step saving by each vertex y ≠ v, both the level h(y) and 
the information about (T, v)-subtree in which the vertex y lies, 

and examining relevance of x and z to (T, v)-subtrees when 
searching a non-tree edge e = {x, z} we achieve  

1. algorithm determining the length of the shortest circle 
containing the given vertex v if there is any 

2. algorithm determining the length of the shortest circle 
containing the given edge {x, z} if there is any  

Note that as soon as we find the first non-tree edge {x, z} 
having its end vertices in different (T, v)-subtrees, we examine 
h(x), h(z). If h(x) = h(z), we finish the algorithm, however, if 
h(x) ≠ h(z) (assuming h(x) < h(z), we have to continue 
searching vertices belonging to the level h(x) to recognize if 
there is an edge having both end-vertices all at once in 
different (T, v)-subtrees and in the same levels. Thus, if there 
is a circle containing a given vertex v, the length of the shortest 
circle containing a given vertex v is either 2h(x) + 1 or 
2h(x) + 2. 

Example 
Given the graph represented by the following adjacency 

matrix.  
 a b c d e f g h i 
a   1 1     1 
b    1 1 1    
c 1      1  1 
d 1 1        
e  1     1   
f  1      1  
g   1  1   1  
h      1 1   
i 1  1       

Let us determine one of the shortest circles containing the 
vertex g if there is any.  

We use the following vertex coding - starting BFS algorithm 
with the vertex g, at each step we save for each vertex y ≠ g 
the information describing the ancestor of y, the number of 
subtree in which the vertex v lies and the level h(v). 

queue Q   BFS tree       non-tree edges 
g g  
g,c g, c(g,1,1)  
g,c,e g, c(g,1,1),e(g,2,1)  
g,c,e,h g, c(g,1,1),e(g,2,1),h(g,3,1)  
c,e,h,a g, c(g,1,1),e(g,2,1),h(g,3,1), 

a(c,1,2) 
 

c,e,h,a,i g, c(g,1,1),e(g,2,1),h(g,3,1), 
a(c,1,2),i(c,1,2) 

 

e,h,a,i,b g, c(g,1,1),e(g,2,1),h(g,3,1), 
a(c,1,2),i(c,1,2),b(e,2,2)  

 

h,a,i,b,f g, c(g,1,1),e(g,2,1),h(g,3,1), 
a(c,1,2),i(c,1,2),b(e,2,2),f(h,3,2) 

 

a,i,b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2), 
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,3) 

 

a,i,b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2), 
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,3) 

{a,i} 
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i,b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2), 
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,3) 

 

b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2), 
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,3) 

{a,i}, {b,d} 
 

b,f,d g, c(g,1,1),e(g,2,1),h(g,3,1), a(c,1,2), 
i(c,1,2),b(e,2,2),f(h,3,2),d(a,1,4) 

{a,i},{b,d} 
{b,f} 
 

The non-tree edge {b, f} determines the circle (g,e,b,f,h,g) 
of the length 5, which is the shortest circle in the given graph 
containing the vertex g. 

D.  Remarks 
Applying the BFS modification solving the shortest circles 

containing the given vertex on each vertex in the given graph, 
algorithm of time complexity O(n3) determining the girth of 
the given graph (i.e. the length of the shortest circle), is 
formulated. 

Saving at each step by each vertex y ≠ v also the information 
describing the ancestor of y we can easily determine the 
shortest path from the vertex v to a vertex y according to the 
BFS tree with the root v, as well as a circle with the given 
property (see the example above). 

Using the BFS algorithm we are also able to formulate an 
algorithm searching all the shortest paths between two given 
vertices. Its description based on an x-y Shortest Path Tree 
construction is given in [10], where an x-y Shortest Path Tree 
is defined as follows:  

Let G be a connected undirected graph, let x and y be 
vertices of G. An x-y Shortest Path Tree is a rooted tree Tx,y 
with the root y[1] and with leaves x[1], ..., x[k], where k is the 
number of the shortest paths from x to y existing in G, and 
where each path in Tx,y leading from x[i], i = 1, ..., k, to y[1] 
represents exactly one of the shortest paths from x to y in G. 

The algorithm can be intuitively understood with the help of 
and according to the following illustration. 

Illustration. Let us find all the shortest paths between c and 
f in the graph on Fig. 1. Let us suppose that for each vertex v 
the number h(v) has been already determined (see the number 
next each vertex on Fig. 1). 

 

 
Fig. 1 

 
Queue Q: f[1](3), a[1](2),  d[1](2),  g[1](2),  b[1](1),  

b[2](1),  e[1](1),  b[3](1),  c[1](0),  c[2](0),  c[3](0),  c[4](0) 

Tx,y: f[1](f[1]),  a[1](f[1]),  d[1](f[1]),  g[1](f[1]),  b[1](a[1]), 
b[2](d[1]),  e[1](d[1]),  b[3](g[1]),  c[1](b[1]),  c[2](b[2]), 
c[3](e[1]),  c[4](b[3]) 

Solution: (c, b, g, f); (c, e, d, f); (c, b, d, f); (c, b, a, f)          

The complexity of an x-y Shortest Path Tree construction 
depends on the number of the shortest paths existing in the 
given graph. Their number can grow exponentially with the 
growth of vertices, see e.g. the following Fig. 2.  

 
Fig. 2  

ODD CIRCLE CONTAINING A GIVEN VERTEX 
One could consider that an algorithm looking for an odd 

circle containing a given vertex (edge resp.) can be easily 
formulated, based on the statement 1 and the statement 2 (the 
statement 3 resp.). 

However, let us observe Fig. 3 and Fig. 4, where two graphs 
are represented as BFS trees (thick lines = blue edges) 
completed by non-tree edges (thin lines). For the existence of 
an odd circle containing a given vertex in G, using these 
figures and the above given statements 1 and 2, we can 
formulate an obvious sufficient condition that is however not 
necessary (see statement 4 and Fig. 3), and a necessary 
condition that is however not sufficient, see statement 5 and 
Fig. 4. 

Statement 4. If there is a non-tree edge having its end-
vertices all at once in the same level of (T, v) and in different 
(T, v)-subtrees, then there is an odd circle containing the given 
vertex v. 

Proof. Let {x, y} be a non-tree edge of  G, h(x) = h(y), x and 
y  belongs to different  (T, v)-subtrees. Let us suppose 
x ∈(T’, a) and y ∈(T’, b). Obviously, the length of the circle 
Pax ∪ Pby ∪ {a, v} ∪ {v, b} ∪ {x, y} containing vertex v in G 
is odd. 

Statement 5. If there is an odd circle containing the given 
vertex v, then there is a non-tree edge having its end-vertices in 
the same level of (T, v) and there is a non-tree edge having its 
end-vertices in different (T, v)-subtrees. 

Proof. follows directly from statement 1 and 2. 

On the other hand, Fig. 3 is a lucid example that the 
statement 4 is not a necessary condition and Fig. 4 confirms 
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that the statement 5 is not a sufficient condition for the 
existence of an odd circle containing a given vertex in G. 
 

    
Fig. 3                                                                 

      

 
Fig. 4 

 
To determine if there is an odd circle containing a given 

vertex (edge resp.) can be in general, similarly as to determine 
if a graph is Hamiltonian, difficult.  

SHORTEST CIRCLE CONTAINING TWO GIVEN VERTICES 
Let us think about an algorithm looking for a circle 

containing two given vertices x and y in the given graph G. In 
connection with the previous chapters let us consider such a 
shortest circle.  

An intuitive idea aims to apply the following commands: 
find the shortest path Pxy (thin lines); remove its edges from G; 
in the gained graph find another path Pxy (thick lines) if there is 
any. However, the following figures (Fig. 5 – Fig. 8) show that 
this idea fails. In the graphs on Fig. 5 and Fig. 7 a circle of the 
length 8 exists. However, the above given commands find a 
circle of the length 9 in the first example (Fig. 6) and even no 
case of such a circle in the second example (Fig. 8). 

 

 
Fig. 4 

 

 
Fig. 5 

 

 
Fig. 6 

 

 
Fig. 7 

 
To formulate an algorithm determining the shortest circle 

containing two given vertices can be quite an uneasy task, see  
http://cs.stackexchange.com/questions/13194/ 

PUZZLE 
Let us finish the paper with an example whose solution uses 

the above described subject matter.  
Example  
In the graph G in Fig. 9 find an odd circle containing the 

vertex B.  
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Fig. 9 A given connected undirected graph G  

 

 
Fig. 10 BFS tree (T, B) completed by non- tree edges 

Solution  
Although there is no non-tree edge having its end-vertices 

both in the same level of (T, v) and in different (T, v)-subtrees 
in the appropriate BFS tree (T, B) (see Fig. 9), we can see that 
there is a non-tree edge having its end-vertices both in the 
same level of (T, v), e.g. {1, 5}, as well as a non-tree edge 
having its end-vertices in different (T, v)-subtrees, e.g. {19, 
25}. Due to this fact, in spite of a demanded circle is not 

visible at once, we go on and try to find it.   

One solution is given in Fig. 11.   

 
Fig. 11 Solution of the task 

CONCLUSION 
In the paper we explored both the levels and subtrees of the 

BFS Tree appropriate to the BFS algorithm. We formulated 
polynomial time algorithms directly following from the BFS 
Tree property. We also mentioned the exponentially growing 
problem of finding all the shortest paths existing in the given 
graph.  

On two examples, despite their intuitive simplicity, we have 
shown that solving them can be quite uneasy.  

Students usually have problems with theoretical parts of 
mathematics; they avoid studying proofs of theorems and are 
willing only to remember them without proper understanding 
their meanings, even the meanings of theorem formulations 
themselves. Therefore it is important to practise students’ 
comprehension and skills on simple statements proofs, and to 
emphasize the meaning of both necessary and sufficient 
conditions, necessary conditions that are not sufficient, 
sufficient conditions that are not necessary. It is important to 
devote enough time to a proper analysis of a discussed subject 
matter.  

An intended topic for future research is to investigate 
problems relating to the BFS Tree property without having 
both sufficient and necessary conditions supporting their 
solutions. 
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