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Abstract—In practice, it is often necessary to combine infor-
mation from different sources. For this task, one of aggregation
operators can be used. Probably the best-known of them are
the weighted average and the OWA (ordered weighted average)
operator. The weighted average makes it possible to assign
importances to the individual information sources. On the other
hand, with the OWA operator, the importances are assigned to
the aggregated values according to their order. In cases when
we need to combine these two approaches, the weighted OWA
(WOWA) operator can be used.

The situation when the aggregated values are not known
precisely is very common in the practice. That is why fuzzified
versions of various aggregation operators begun to emerge. In
this paper, a fuzzified WOWA operator, which can aggregate
values expressed by fuzzy numbers, will be presented. The version
studied in this paper is based on Zadeh’s extension principle.

The behavior of the presented fuzzified WOWA operator
will be demonstrated on an illustrative example and it will be
compared to a different approach to the fuzzification of the
WOWA and to another aggregation operator generalizing the
fuzzy weighted average and the fuzzy OWA operator. Finally,
a software tool for the fuzzified WOWA calculation will be
mentioned.

Index Terms—WOWA, Weighted OWA, Fuzzification, Aggre-
gation operators, Fuzzy numbers, Extension principle

I. INTRODUCTION

Aggregation operators have many uses in the practice. This
paper will focus mainly on their application in the multiple-
criteria evaluation, but the scope of their use is much wider.
Specifically, in the area of multiple-criteria evaluation, they
can be used to obtain the overall evaluation from the evalua-
tions according to different criteria.

Probably the best-known and the most often used ag-
gregation operator is a weighted average. For the weighted
average, a vector of weights is given. The weights express the
importances of the particular information sources (in our case
the importances of the particular criteria).

Another widely used aggregation operator is the ordered
weighted average (OWA), which has been proposed by Yager
in [18]. The OWA operator requires again a vector of weights
to be set but, contrary to the weighted average, the weights
are not assigned to the particular aggregated criteria, but to the
aggregated values according to their order. Different choice
of the weights leads to the family of functions between the
minimum and the maximum.

Sometimes, a combination of the two mentioned approaches
is required. That is why aggregation operators that generalize
both the weighted average and the OWA operator have been
proposed. The most significant of them is the WOWA operator
introduced by Torra [15]. The WOWA operator requires two
vectors of weights – the first one is connected to the individual
criteria just like in case of the weighted average and the second

one is assigned to the order of the aggregated values as in the
OWA operator.

The aggregated values are not always known precisely. If
the criteria values are estimated by an expert, they always
contain some uncertainty. Moreover, if the values have been
obtained by some measurement tool (e.g. thermometer), their
accuracy is limited by the accuracy of the tool. Therefore, it
is meaningful to express the aggregated values by means of
fuzzy numbers, which can reflect this uncertainty.

Many fuzzified aggregation operators has been proposed.
The fuzzy weighted average has been introduced in [2] and
the fuzzification of OWA followed [20]. Later, another version
of fuzzy weighted average, based on the extension principle
and using a special structure called normalized fuzzy weights,
has been introduced together with a computationally effective
algorithm [13]. The fuzzification of the OWA operator based
on the same ideas has been devised in [14].

In the mentioned paper [14], the authors have divided the
fuzzified aggregation operators into two groups – the first-
level and the second-level fuzzy aggregation operator. The first
group allows the aggregated values to be fuzzy numbers while
the rest of the parameters (weights) remain crisp 1. In the
latter group, the parameters of the aggregation operators are
also expressed by fuzzy numbers. In the mentioned paper, very
simple methods of calculating the fuzzy weighted average and
fuzzy OWA for the first group have been devised.

In this paper, a first-level fuzzification of the WOWA
operator will be described. The considered fuzzified WOWA
operator is able to aggregate the values expressed by fuzzy
numbers, but the weights remain crisp. As this is not the first
attempt to generalize the WOWA operator so that it could
handle uncertain values [8], the comparison with the already
existing approaches will be provided. Our version is based on
Zadeh’s extension principle.

The paper is structured as follows. First, the weighed
average, the OWA and the WOWA operator will be described
and the behavior of the WOWA operator will be explained
briefly. Next, basic notions from the fuzzy set theory will
be given. In the following section, the fuzzification of the
WOWA operator will be defined and its relationship to the
fuzzy weighted average and fuzzy OWA operator will be
explained and proven. Subsequently, our approach will be
compared to the other approaches and the results will be shown
on an illustrative example. Finally, a software tool that uses
the proposed fuzzified WOWA will be introduced so that the
readers would be able to examine its behavior and apply it in
the practice on their own.

1In the context of the fuzzy set theory, the word “crisp” means “non-fuzzy”.
Therefore, by crisp weights, we mean weights expressed by real numbers.
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II. WEIGHTED AVERAGE, OWA AND WOWA OPERATORS
IN THE CRISP CASE

The weighted average is a simple aggregation operator
that has countless applications in the practice. For its use,
normalized weights have to be set first.

Definition 1: Real numbers p1, . . . , pm are said to be
normalized weights if pi ∈ [0, 1] for all i = 1, . . . ,m and∑m
i=1 pi = 1.
The weights express the importances of each argument that

should be aggregated. Then, the weighed average is defined
as follows.

Definition 2: A weighted average of the values u1, . . . , um,
ui ∈ <, i = 1, . . . ,m, with normalized weights ~p =
(p1, . . . , pm) is defined as

WA~p(u1, . . . , um) =
m∑
i=1

pi · ui. (1)

Another well-known aggregation operator is the OWA pro-
posed by Yager [18]. Again, a vector of weights needs to
be given first. In comparison to the weighted average, the
weights are, however, connected to the decreasing order of
the aggregated evaluations (i.e. the first weight is connected
to the largest of the aggregated values, the second weight to
the second-largest one, etc.).

Definition 3: The ordered weighted average (OWA) of the
values u1, . . . , um, ui ∈ <, i = 1, . . . ,m, with normalized
weights ~w = (w1, . . . , wm) is defined as

OWA~w(u1, . . . , um) =

m∑
i=1

wi · uφ(i), (2)

where φ denotes such a permutation of the set of indices
{1, ...,m} that uφ(1) ≥ uφ(2) ≥ . . . ≥ uφ(m).

A WOWA proposed in [15] is an aggregation operator
that generalizes both the weighted average and the OWA
operator. It uses two vectors of weights. The vector ~p =
(p1, p2, . . . , pm) has the same interpretation as in the case
of the weighted average – the weights are connected to
the individual values that should be aggregated. The second
vector of weights, ~w = (w1, w2, . . . , wm), is connected to the
decreasing order of the aggregated values, exactly as in case
of the OWA. The WOWA operator is given by the following
definition.

Definition 4: The weighted ordered weighted average
(WOWA) of the values u1, . . . , um, ui ∈ <, i = 1, . . . ,m,
with normalized weights ~p = (p1, . . . , pm) and ~w =
(w1, . . . , wm) is defined as:

WOWA~p~w(u1, . . . , um) =
m∑
i=1

ωi · uφ(i), (3)

where the permutation φ is the same as in the OWA, i.e., φ
denotes such a permutation of the set of indices {1, . . . ,m}
that uφ(1) ≥ uφ(2) ≥ . . . ≥ uφ(m). The weight ωi is defined
as

ωi = z(
∑
j≤i

pφ(j))− z(
∑
j<i

pφ(j)), (4)
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Fig. 1: Weighted average with ~p = (0.3, 0.7)
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Fig. 2: OWA with the weights ~w = (0.2, 0.8)

for i = 1, . . . ,m, and z is a nondecreasing function interpo-
lating the following points

{(0, 0)} ∪ {(i/m,
∑
j≤i

wj)}i=1,...,m. (5)

The function z is required to be linear when the points can be
interpolated in that way.

The above-mentioned condition on the function z is rather
technical and it is required in order to ensure that the WOWA
operator generalizes the weighted average [15].

Although several ways of creating the function z has been
discussed in the literature (e.g. [17]), we will use the simplest
one in the examples in this paper – z will be a piece-wise
linear function connecting the mentioned points.

One feature of the WOWA operator is that it generalizes
both the weighted average and OWA. Let ~η denotes a vector of
uniform weights, i.e. ~η = ( 1

m ,
1
m , . . . ,

1
m ). Then WOWA~p~η =

WA~p and WOWA~η~w = OWA~w. The proof can be found in
[15].

It can appear that WOWA creates the mixture weights in a
very complicated way. However, comparing the graphs of the
weighted average (Figure 1), OWA (Figure 2) and WOWA
(Figure 3) might give an insight into the way how the weights
are mixed. Looking at the figures, we can see that the graph of
the WOWA is composed of the OWA graph rotated according
to the weights for the weighted average.
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Fig. 3: WOWA with ~p = (0.3, 0.7) and ~w = (0.2, 0.8)

Some important properties have been studied in [15] – it has
been proven that the WOWA operator is idempotent, monotone
in relation to the input variables u1, . . . , um and that it satisfies
a boundary condition (its result remains between the minimum
and the maximum). It has been also shown that the WOWA is
a special case of the Choquet integral with a particular fuzzy
measure [16].

The WOWA has found its application in diverse areas such
as medicine [11], reputation management [7], or web search
[10]. The FWOWA operator that is studied in this paper
broadens the application area even more because it makes it
possible to aggregate data that are uncertain or even missing
as it will be shown later. Before we proceed to the definition
of this operator, we will mention some basic notions from the
fuzzy set theory that will be used in this paper

III. BASIC NOTIONS OF THE FUZZY SET THEORY

The aggregated values are seldom known precisely. There-
fore, it is convenient to express them by fuzzy numbers instead
of real numbers. In this paper, a new approach to fuzzification
of the WOWA operator will be presented. First, some basic
notions from the fuzzy set theory that will be used in this
paper will be mentioned. The reader can find more detailed
information on the fuzzy set theory e.g. in [3].

A fuzzy set A on a universal set X is characterized by its
membership function A : X → [0, 1]. Ker A denotes a kernel
of A, Ker A = {x ∈ X | A(x) = 1}. A support of A is
defined as Supp A = {x ∈ X | A(x) > 0}. For any α ∈
[0, 1], Aα denotes an α-cut of A, Aα = {x ∈ X | A(x) ≥ α}.

A fuzzy number is a fuzzy set C on the set of all real
numbers < which satisfies the following conditions: a) the
kernel of C is not empty, b) the α-cuts of C are closed intervals
for all α ∈ (0, 1], c) the support of C is bounded. In the
following text, the symbol FN will denote the set of all fuzzy
numbers.

Real numbers c1 ≤ c2 ≤ c3 ≤ c4 are called significant
values of the fuzzy number C if the following holds: [c1, c4] =
Cl(Supp C), [c2, c3] = Ker C, where Cl(Supp C) denotes
a closure of Supp C.

A fuzzy number C is said to be linear, if its membership
function between each pair of the neighboring significant

values is linear. The linear fuzzy number C is called triangular
if c2 = c3, otherwise it is called trapezoidal.

In the examples, linear fuzzy numbers will be described by
their significant values. Therefore, we will write such a fuzzy
number as C = (c1, c2, c3, c4) if C is trapezoidal, or simply
C = (c1, c2, c4) if C is a triangular fuzzy number.

Obviously, fuzzy numbers can be also used to express real
numbers. If for the fuzzy number C it holds that c1 = c2 =
c3 = c4 = c, for some c ∈ <, this fuzzy number can be seen
as a representation of a real number c. Such a fuzzy number
will be called a fuzzy singleton containing the element c

Any fuzzy numbers C can be described in an alternative
way, which is often very convenient for calculations. It can
be characterized by a pair of functions c : [0, 1] → <, c :
[0, 1] → < defined as Cα = [c(α), c(α)] for all α ∈ (0, 1]
and Cl(Supp C) = [c(0), c(0)]. The functions c(α) and c(α)
thus represent the lower and the upper bounds of the respective
α-cuts with a technical exception for α = 0.

A fuzzy number C can be then denoted as C ={
[c(α), c(α)], α ∈ [0, 1]

}
using these two mentioned func-

tions. For example a triangular fuzzy number C = (1, 3, 4)
can be written as C =

{
[1 + 2α, 4− α], α ∈ [0, 1]

}
.

In the rest of the text, U1, . . . , Um will denote the fuzzy
numbers that should be aggregated and U will denote
the result of such an aggregation. For all of these fuzzy
numbers, the mentioned notation will be used, i.e. Ui =
{[ui(α), ui(α)], α ∈ [0, 1]}, for i = 1, . . . ,m, and U =
{[u(α), u(α)], α ∈ [0, 1]}.

An important notion in the fuzzy set theory is the exten-
sion principle introduced by Zadeh [19]. In this paper we
will use its special case [14], according to which, any real
continuous function f of n real arguments can be extended to
a FNV-function (a fuzzy-number-valued function) of n FNV-
arguments.

Definition 5: Let f : <n → < be a real continuous
function of n variables. Then its fuzzy extension is a mapping
F : FnN → FN assigning to any n-tuple of fuzzy numbers
C1, . . . , Cn a fuzzy number D = F (C1, . . . , Cn) whose
membership function is for any y ∈ < defined as follows:

D(y) =



max
{
min{C1(x1), . . . , Cn(xn)} |
y = f(x1, . . . , xn), xi ∈ <,
i = 1, 2, . . . , n

}
if f−1(y)

6= ∅,

0 otherwise.
(6)

The requirement that f is continuous guarantees that the re-
sult of the function F will be always a fuzzy number (without
this requirement the result would be, generally, a fuzzy set).
The following theorem (see [12] for more information) makes
it possible to obtain the function F in an easier way, providing
that the original function f is moreover non-decreasing.

Theorem 1: Let f : <n → < be a real continuous function
of n variables non-decreasing in those variables, and F be the
fuzzy extension of f . Let Ci = {[ci(α), ci(α)], α ∈ [0, 1]},
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i = 1, . . . , n, be fuzzy numbers. Then for the value D =
F (C1, . . . , Cn), D = {[d(α), d(α)], α ∈ [0, 1]}, it holds that

d(α) = f(c1(α), c2(α), . . . , cn(α)), (7)

d(α) = f(c1(α), c2(α), . . . , cn(α)). (8)

IV. WEIGHTED AVERAGE AND OWA IN THE FUZZY CASE

Using the extension principle, the fuzzified weighted aver-
age has been introduced [2], [13]. Even though it is possible to
express both the aggregated values and the weights in form of
fuzzy numbers, for our purposes, we will focus on a simpler
so-called first-level fuzzification [14] where the aggregated
values are expressed by fuzzy numbers, but the weights remain
crisp. The extension of this approach, the second-level fuzzy
weighted average, which allows both the aggregated values
and the weights to be expressed by fuzzy number is studied
e.g. in [13]. In the same paper, an effective algorithm for its
calculation is proposed.

The first-level fuzzy weighted average is defined as follows.
Definition 6: Let U1, . . . , Um be fuzzy numbers and let

p1, . . . , pm be normalized (real) weights. Then the first-level
fuzzy weighted average of the values U1, . . . , Um with the
weights p1, . . . , pm is a fuzzy number U with the membership
function given for any y ∈ < as follows:

U(y) = max
{
min{U1(u1), . . . , Um(um)} |

ui ∈ <, i = 1, . . . ,m, y =

m∑
i=1

piui
}
. (9)

Similarly, the fuzzy OWA operator has been defined [20].
Again, for our purposes we will consider only its first-level
fuzzification [14] where the aggregated values are in form of
fuzzy numbers, but the weights are crisp. A definition of the
second-level fuzzy OWA, which uses the weights expressed
by fuzzy numbers, together with a computationally effective
algorithm can be found in [14].

Definition 7: Let U1, . . . , Um be fuzzy numbers and let
w1, . . . , wm be normalized (real) weights. Then the first-
level fuzzy OWA of the values U1, . . . , Um with the weights
w1, . . . , wm is a fuzzy number U with the membership func-
tion given for any y ∈ < as follows:

U(y) = max
{
min{U1(u1), . . . , Um(um)} |
ui ∈ <, i = 1, . . . ,m,

y =
m∑
i=1

wiuφ(i)
}
, (10)

where φ denotes such a permutation of the set of indices
{1, . . . ,m} that uφ(1) ≥ uφ(2) ≥ . . . ≥ uφ(m).

The following two theorems present an easy way for com-
putation of the (first-level) fuzzy weighted average and the
(first-level) fuzzy OWA operator.

Theorem 2: The (first-level) fuzzy weighted average of
the fuzzy numbers U1, . . . , Um with normalized weights

p1, . . . , pm is a fuzzy number U that can be calculated, for
any α ∈ [0, 1], as follows

u(α) =
m∑
i=1

pi · ui(α), (11)

u(α) =
m∑
i=1

pi · ui(α). (12)

Proof: The proof can be found in [1]. �

Theorem 3: The (first-level) fuzzy OWA of the fuzzy
numbers U1, . . . , Um with normalized weights w1, . . . , wm is
a fuzzy number U , which can be obtained by the following
formulae for any α ∈ [0, 1]:

u(α) =
m∑
i=1

wi · uσ(i)(α), (13)

u(α) =
m∑
i=1

wi · uχ(i)(α), (14)

where σ and χ are such permutations of the set of indices
{1, . . . ,m} that uσ(1) ≥ uσ(2) ≥ . . . ≥ uσ(m) and uχ(1) ≥
uχ(2) ≥ . . . ≥ uχ(m).

Proof: The proof can be found in [1]. �

V. THE FUZZIFIED WOWA OPERATOR

The aim of the paper is to introduce the fuzzified WOWA
operator that generalizes the both of the previous operators. Its
first-level fuzzification, considered in this text, is able to aggre-
gate the values given by fuzzy numbers U1, . . . , Um. However,
the weights ~p = (p1, . . . , pm) and ~w = (w1, . . . , wm) are
crisp.

This aggregation operator has been already mentioned in
[5] in an intuitive way. However, this paper strives to define
it properly and study some of its properties. The fuzzified
WOWA is defined according to the extension principle as
follows.

Definition 8: Let U1, . . . , Um be fuzzy numbers and let
~p = (p1, . . . , pm) and ~w = (w1, . . . , wm) be two vectors of
normalized (real) weights. Then the result of the aggregation
by a fuzzified WOWA operator is a fuzzy number U with the
membership function defined for any y ∈ < as

U(y) = max
{
min{U1(u1), . . . , Um(um)} |
ui ∈ [0, 1], i = 1, . . . ,m,

y = WOWA~p~w(u1, u2, . . . , um)
}
. (15)

The definition is not very convenient for calculations but the
following theorem makes it possible to calculate the fuzzified
WOWA directly.

Theorem 4: The result of the fuzzified WOWA of the fuzzy
numbers U1, . . . , Um with the weights ~p = (p1, . . . , pm) and
~w = (w1, . . . , wm) is a fuzzy number U defined for any α ∈
[0, 1] as follows

u(α) = WOWA~p~w(u1(α), u2(α), . . . , um(α)), (16)

u(α) = WOWA~p~w(u1(α), u2(α), . . . , um(α)). (17)
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Proof: Applying Theorem 1 to Definition 8, we obtain
Formulae 16 and 17. The required monotonicity has been
proven in [15] and continuity is derived from the fact that
the WOWA is a special case of the Choquet integral with a
particular fuzzy measure [16], which is monotone [4]. �

When the fuzzified WOWA is calculated, the used mixtures
weights for WOWA in Formulae 16 and 17 can differ and,
moreover, they need not to be the same throughout different
α-cuts. This is a significant difference to the other approaches.
For instance, the approaches based on the fuzzy numbers
arithmetic struggle with the fact that the fuzzy numbers can
be incomparable and that, in these cases, it is not possible to
find a single permutation that would order them. They usually
deal with the problem by replacing the fuzzy numbers with
some of their characteristics (such as centers of gravity), which
are real numbers and therefore can be easily ordered. This
way, one “average” ordering is used neglecting the possible
incomparability completely.

In the next step, we will show that the presented fuzzified
WOWA operator reduces to the first-level fuzzy weighted
average if the weights w1, . . . , wm are uniform.

Theorem 5: Let U1, . . . , Um be fuzzy numbers. and ~p be
a vector of normalized weights. Further, let ~w be a vector of
uniform real weights, ~w = ~η. Then the result of the fuzzified
WOWA of U1, . . . , Um with the weights ~p and ~w is identical
to the result of fuzzy weighted average of U1, . . . , Um with
the weights ~p.

Proof: Because WOWA~p~η = WA~p (for proof see [15]), we
obtain

u(α) = WOWA~p~η(u1(α), u2(α), . . . , um(α))

= WA~p(u1(α), u2(α), . . . , um(α))

=
m∑
i=1

pi · ui(α), (18)

u(α) = WOWA~p~η(u1(α), u2(α), . . . , um(α))

= WA~p(u1(α), u2(α), . . . , um(α))

=
m∑
i=1

pi · ui(α). (19)

These two formulae correspond to the first-level fuzzification
of the weighed average from Theorem 2. �

Similarly, it can be shown that the fuzzified WOWA is also
a generalization of the fuzzy OWA operator.

Theorem 6: Let U1, . . . , Um be fuzzy numbers, ~w be a
vector of normalized weights and ~p be a vector of uniform
real weights, ~p = ~η. Then the result of the fuzzified WOWA
of U1, . . . , Um with the weights ~p and ~w is identical to the
fuzzy OWA of U1, . . . , Um with the weights ~w.

Proof: Because ~p is uniform and it holds that

WOWA~η~w = OWA~w [15], we can write

u(α) = WOWA~η~w(u1(α), u2(α), . . . , um(α))

= OWA~w(u1(α), u2(α), . . . , um(α))

=
m∑
i=1

wi · uσ(i)(α), (20)

u(α) = WOWA~η~w(u1(α), u2(α), . . . , um(α))

= OWA~w(u1(α), u2(α), . . . , um(α))

=
m∑
i=1

wi · uχ(i)(α), (21)

where σ and χ are such permutations of the set of indices
{1, . . . ,m} that uσ(1) ≥ uσ(2) ≥ . . . ≥ uσ(m) and uχ(1) ≥
uχ(2) ≥ . . . ≥ uχ(m). Again, it can be seen that these two
formulae are identical to those in Theorem 3. �

It can be easily shown that the fuzzified WOWA (FWOWA)
generalizes the WOWA operator.

Theorem 7: Let Ui, i = 1, . . . ,m, be fuzzy single-
tons containing only single elements ui ∈ <. Then for
any vectors of normalized weights ~p and ~w it holds that
FWOWA~p~w(U1, . . . , Um) = WOWA~p~w(u1, . . . , um).

Proof: If the fuzzy numbers Ui are fuzzy singletons
containing only a single element ui ∈ <, i = 1, . . . ,m, then
ui(α) = ui(α), for all α ∈ [0, 1] and any i = 1, . . . ,m. Then,
in Formulae 16 and 17, we can see that u(α) = u(α) =
WOWA~p~w(u1, . . . , um). �

The presented fuzzified WOWA operator has some impor-
tant properties. First, it will be shown that it is idempotent.
Next, a boundary condition for the FWOWA will be presented.
It guarantees that the result lies between the minimum and the
maximum input value in the described way.

Theorem 8: The fuzzified WOWA is idempotent, i.e. if U
is a fuzzy number and ~p and ~w are two vectors of normalized
weights, then it holds that U = FWOWA~p~w(U, . . . , U).

Proof: The theorem is a result of Theorem 4 and the fact
that the crisp WOWA is idempotent. �

Theorem 9: Let U1, . . . , Um be fuzzy numbers and ~p and ~w
be two vectors of normalized weights. For the fuzzy number
U = FWOWA~p~w(U1, . . . , Um), it holds that for any α ∈
[0, 1]:

u(α) ≥ min{u1(α), u2(α), . . . , um(α)}, (22)
u(α) ≤ max{u1(α), u2(α), . . . , um(α)}. (23)

Proof: The theorem follows from the fact that u(α) and
u(α) can be calculated by Formulae 16 and 17 as a pair of
crisp WOWA and, moreover, that for the WOWA operator of
values u1, . . . , um ∈ <, it holds that

min{u1, . . . , um} ≤WOWA~p~w(u1, . . . , um)

≤ max{u1, . . . , um}, (24)

which has been proven in [15]. �

The fuzzy OWA does not preserve the linearity. The fuzzi-
fied WOWA has the same property. This means that even
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Fig. 4: An example of the fuzzified WOWA where the result
is not a linear fuzzy number.

though the fuzzy numbers U1, . . . , Um are linear, generally,
the resulting fuzzy number U is not.

This can be demonstrated on an example. Let us consider
U1 = (0.3, 0.4, 0.5), U2 = (0.1, 0.8, 0.9), p1 = 0.3, p2 = 0.7,
w1 = 0.2 and w2 = 0.8. Then the result of the fuzzified
WOWA is shown in Figure 4 and it can be seen that it is not
linear.

VI. OTHER APPROACHES COMBINING FUZZY WEIGHTED
AVERAGE AND FUZZY OWA OPERATOR

In this section, we will describe an existing approach to
the WOWA fuzzification and another approach combining
the weighted average and the OWA operator for fuzzy num-
bers – UIWOWA (uncertain induced weighted OWA) and
UIOWAWA (uncertain induced ordered weighted averaging –
weighted averaging) operators [8]. In the next section, they
will be compared with the aggregation operator proposed in
this paper on illustrative examples. It will be shown that the
results are quite different.

While the fuzzified WOWA described in this paper is based
on Zadeh’s extension principle, the other approaches exploit
fuzzy numbers arithmetic. For example, if two triangular fuzzy
numbers are expressed by triplets, A = (a1, a2, a3) and
B = (b1, b2, b3), the common arithmetic operations can be
performed by the following formulae (see e.g. [8]):

A+B = (a1 + b1, a2 + b2, a3 + b3), (25)
k ·A = (k · a1, k · a2, k · a3) for k ≥ 0, (26)
A ·B = (min{a1b1, a1b2, a2b1, a2b2}, a2b2,

max{a1b1, a1b2, a2b1, a2b2}). (27)

Similar formulae can be easily derived for A and B repre-
sented by intervals or by trapezoidal fuzzy numbers. It should
be noted that Formula 27 do not provide the exact result but
just its approximation by a linear fuzzy number because the
multiplication of the linear fuzzy numbers is not, generally, a
linear fuzzy number.

The OWA and WOWA aggregation operators require a
permutation that orders the aggregated values from the largest
to the lowest one. In case of fuzzy numbers, this presents
a great problem. The fuzzy numbers can be, and in the
practice usually are, incomparable. This obstacle is usually
overcome by replacing the fuzzy numbers with some of their
characteristics (e.g. their centers of gravity), which are real

numbers and can be ordered easily. In practical cases, the
validity of the ordering created this way can be questionable
as it will be seen in the example. One way to avoid the
problem is by introducing an order-inducing variables. The
aggregated values are then composed of a pair containing
the fuzzy number and a real number which is used for the
ordering. This way does not solve the problem that some
fuzzy numbers can be hard to compare. Instead, the expert
is required to provide, besides the aggregated values and the
weights, more information – the order-inducing variables.

In the paper [8], the authors recommend to compare fuzzy
numbers that are intervals by their centers and triangular fuzzy
numbers by a weighted average of their significant values – for
a triangular fuzzy number A = (a1, a2, a3), the value (a1 +
4a2 + a3)/6 is used for the comparison. We will use this
method to derive the order-inducing variables in the examples.

The two approaches UIWOWA and UIOWAWA are accord-
ing to [8] defined as follows.

Definition 9: Let fuzzy numbers U1, . . . , Um and the cor-
responding order-inducing variables o1, . . . , om, oi ∈ <,
i = 1, . . . ,m, be given. Let ~p = (p1, . . . , pm) and ~w =
(w1, . . . , wm) be two vectors of normalized (real) weights.
Then the result of the aggregation by an UIWOWA operator
is a fuzzy number U given by the following formula

UIWOWA~p~w
(
〈o1, U1〉, . . . , 〈om, Um〉

)
=

m∑
i=1

ωi · Uφ(i), (28)

where φ denotes such a permutation of the set of indices
{1, . . . ,m} that oφ(1) ≥ oφ(2) ≥ . . . ≥ oφ(m). The weight
ωi is defined as

ωi = z(
∑
j≤i

pφ(j))− z(
∑
j<i

pφ(j)), (29)

for i = 1, . . . ,m, and z is a nondecreasing function interpo-
lating the following points

{(0, 0)} ∪ {(i/m,
∑
j≤i

wj)}i=1,...,m. (30)

The function z is required to be linear when the points can be
interpolated in that way.

Definition 10: Let U1, . . . , Um be fuzzy numbers and
o1, . . . , om be the corresponding order-inducing variables, oi ∈
<, i = 1, . . . ,m. Let ~p = (p1, . . . , pm) and ~w = (w1, . . . , wm)
be two vectors of normalized (real) weights. Further, let
a parameter β ∈ [0, 1] be given. Then the result of the
aggregation by an UIOWAWA operator is a fuzzy number U
given by the following formula

UIOWAWA~p~w,β
(
〈o1, U1〉, . . . , 〈om, Um〉

)
=

m∑
i=1

ωi · Uφ(i), (31)

where

ωi = βpi + (1− β)wφ(i), (32)

and φ denotes such a permutation of the set of indices
{1, . . . ,m} that oφ(1) ≥ oφ(2) ≥ . . . ≥ oφ(m).

The both approaches are very similar. Contrary to the
presented FWOWA operator, both UIWOWA and UIOWAWA
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considers only a single permutation φ that is given by the
order-inducing variables (i.e. it should be set by the expert).
The two aggregation operators differ in the way how the
mixture weights are obtained – the UIWOWA uses the same
approach as the WOWA, while UIOWAWA uses a weighted
average of the weighs assigned to the value by the weighted
average and by the OWA operator. If β = 0, the weights ~p
are ignored and the operator behaves as an uncertain OWA [8]
and, vice versa, for the β = 1, the weights ~w and the order-
inducing variables o1, . . . , om are not used by the UIOWAWA
and the operator reduces to an uncertain weighted average [8].

The mentioned approaches are not the only attempts to
incorporate fuzziness into the WOWA. For example, versions
of WOWA using hesitant fuzzy sets and intuitionistic fuzzy
sets has been proposed [9], [6]. However a comparison with
FWOWA would be very difficult because of a completely
different nature of the input data.

VII. EXAMPLE

Let us consider the following scenario. We evaluate various
resorts for holidays according to three criteria – hotel quality,
sport possibilities, and culture possibilities. We will study
two examples. The first one presents the simplest possible
setting. The aggregation function should behave as a minimum
(which is a special case of WOWA) and the evaluations will
be expressed in form of intervals (which can be viewed as
a special case of fuzzy numbers). Because of the simplicity
of the example, it will be easier to observe the difference in
the behavior of the compared aggregation operators. It will
be seen that the results of UIWOWA and UIOWAWA can be
against intuition.

In the next example, we will use the full power of the
operators – both vectors of weights will be used and the
evaluations will be represented by fuzzy numbers. This will
allow us to study the performance of the selected aggregation
operator in the settings that are close to real situations.

A. Example 1

In this simplest settings, let us assume that we require
all three criteria to be satisfied at the same time with the
same importance for all three areas. This corresponds to
the minimum, which is a special case of the WOWA with
the weights ~p = (1/3, 1/3, 1/3) and ~w = (0, 0, 1). For
UIOWAWA, we set β = 0.

We will ask three people who visited one of the considered
resorts about their opinion on the resort according each of
the three areas. These evaluation will be modeled by fuzzy
numbers on the interval [0, 1], where 0 means that the resort
is completely unsatisfactory according to the criterion, and 1
that it is fully satisfactory.

In this example, we consider only evaluations in form of
intervals. Intervals can be understood as a special case of fuzzy
numbers (an interval [a, b] can be modeled by a trapezoidal
fuzzy number (a, a, b, b)). The evaluations according to the
criteria and the results are summarized in Table I.

The first person P1 assess the particular resort by the follow-
ing fuzzy evaluations in form of intervals: Uhotel = [0.7, 0.8],

Criteria values

Person Hotel Sport Culture

P1 [0.7, 0.8] [0.5, 0.6] [0.9, 1]
P2 [0.3, 0.7] [0.7, 0.8] [0.4, 0.5]
P3 [0.5, 0.6] [0, 1] [0.4, 0.8]

Results

Person FWOWA UIWOWA UIOWAWA

P1 [0.5, 0.6] [0.5, 0.6] [0.5, 0.6]
P2 [0.3, 0.5] [0, 4, 0.5] [0, 4, 0.5]
P3 [0, 0.6] [0, 1] [0, 1]

TABLE I: The results of FWOWA, IOWAWA and UIOWAWA
with parameters set so that they would behave as a minimum.

Usport = [0.5, 0.6], and Uculture = [0.9, 1], where the order of
their upper and lower bounds is the same. In this simple case
all three aggregation operators return, in unison, the lowest of
the three evaluations U = [0.5, 0.6] as the result.

For the second person P2, the values of the order-inducing
variable will be ~o = (0.5, 0.75, 0.45) and we obtain the
following results: [0.3, 0.5] for FWOWA, and [0, 4, 0.5] for
both IOWAWA and UIOWAWA. We will show that the results
returned by IOWAWA and UIOWAWA are against intuition.
Let us mention that the weights were set so that all three
aggregation operators would behave as a fuzzy minimum. We
have estimations of the values given by the intervals Uhotel,
Usport, and Uculture. Let us assume that those estimations
were correct and the real evaluations are within the given
intervals, e.g. uhotel = 0.3, usport = 0.75, and uculture = 0.5.
Then it is easy to see, that the minimum of them is 0.3. This
number is included only in the solution given by FWOWA.

Finally, the statement given by the third person P3 presents
one more obstacle. Let us say that the person is not a sport type
and therefore he/she did not survey the sport possibilities in
this area at all. The value for Usport is therefore unknown. The
advantage of fuzzified aggregation operators is that they can
cope even with this situation. Because the real value of Usport
can by any number from 0 to 1, we can set Usport = [0, 1].
Other evaluations given by the person are Uhotel = [0.5, 0.6]
and Uculture = [0.4, 0.8].

As the value one of the variables is unknown, it would
be really difficult for the expert to set one order inducing
variable. We will use again centers of the intervals and obtain
~o = (0.5, 0.55, 0.6). With this variable, both IOWAWA and
UIOWAWA considers Usport to be the lowest and return
[0, 1] as the result expressing that the final evaluation can
be anything, i.e. even 1 representing the perfect evaluation.
However, this is not true. If we consider the real evaluations
from the intervals, the evaluation of the hotel cannot be greater
than 0.6 and so the minimum of the three evaluations will
never exceeds 0.6. The FWOWA operators takes this fact into
account and returns the value [0, 0.6].

We can see that even in the simplest case, when the
aggregated values are represented only by intervals, the results
calculated IOWAWA and UIOWAWA can be against intuition.
This is caused by the fact that both operators can take into
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Criteria values

Person Hotel Sport Culture

P1 (0.7, 0.75, 0.8) (0.5, 0.55, 0.6) (0.9, 0.95, 1)
P2 (0.3, 0.3, 0.7) (0.7, 0.75, 0.8) (0.4, 0.45, 0.5)
P3 (0.5, 0.55, 0.6) [0, 1] (0.4, 0.7, 0.8)

Results

Person FWOWA UIWOWA UIOWAWA

P1 (0.59, 0.64, 0.69) (0.59, 0.64, 0.69) (0.64, 0.69, 0.74)
P2 (0.36, 0.38, 0.64) (0.36, 0.38, 0.68) (0.41, 0.44, 0.67)
P3 (0.17, 0.22, 0.63, (0.19, 0.22, 0.84, (0.25, 0.31, 0.79,

0.68) 0.86) 0.82)

TABLE II: The results of FWOWA, IOWAWA and UIOWAWA
with parameters ~p = (0.45, 0.35 0.2), ~w = (0.1, 0.3, 0.6) and
β = 0.5 for the second example.

0.5 0.55 0.6 0.65 0.7 0.75 0.8

1

0.75

0.5

0.25

0

FWOWA = UIWOWA UIOWAWA

Fig. 5: Comparison of the FWOWA, UIWOWA (left) and
UIOWAWA (right) evaluations of the first resort.

account only a single ordering of the values.

B. Example 2

In this section, we will study the three resorts’ evaluation
under more realistic requirements on the criteria importances.
Let us say that we require a good accommodation, we are
quite keen on culture and the sport possibilities have a lower
importance for us. That could be expressed by the weights ~p =
(0.45, 0.35, 0.2). We assign the greatest weight to the worst
of the evaluations but the other two are taken into account,
too, i.e. ~w = (0.1, 0.3, 0.6). For UIOWAWA, we expect that
both weights vectors have the same importance and we set
β = 0.5.

The evaluations will no longer be limited to intervals – they
can be fuzzy numbers. The input values and the results are
summarized in Table II.

0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7

1

0,75

0,5

0,25

0

UIWOWA UIOWAWAFWOWA

Fig. 6: Comparison of the FWOWA, UIWOWA and
UIOWAWA evaluations of the second resort.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0.75

0.5

0.25

0

FWOWA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0.75

0.5

0.25

0

UIWOWA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0.75

0.5

0.25

0

UIOWAWA

Fig. 7: Comparison of the FWOWA, UIWOWA and
UIOWAWA evaluations of the third resort.

The first person P1 could reformulate his/her description of
the resorts and use triangular fuzzy numbers (see Table II).
The results are then depicted in Figure 5. The UIOWAWA is
the most optimistic. However the difference is not big. It can
be seen that FWOWA and UIWOWA are equivalent in this
case.

The results of evaluation by the second person P2 are
depicted in Figure 6. The UIOWAWA is again more optimistic.
The results of the FWOWA and UIWOWA are very similar
except for the fact that the FWOWA result is no more a linear
fuzzy number.

In case of the third person P3, the value of Usport is
unknown. Figure 7 reveals that the results of the compared
aggregation operators are substantially different.

From this example the following conclusions can be drawn.
If the aggregated values are comparable, the FWOWA based
on the extension principle and UIWOWA based on the fuzzy
numbers arithmetic are equivalent. The UIOWAWA differs due
to another way of combining both of the weights vectors but
the difference is not substantial. However, if the aggregated
values are incomparable, the results of the three aggregation
operators can differ significantly. This is caused by the fact
that UIWOWA and UIOWAWA use only a single permutation
while FWOWA considers all feasible permutations of the input
values. Therefore, the result of the FWOWA is more realistic.

VIII. SOFTWARE

The FWOWA requires two WOWA calculations for each
of the α-cuts. This involves a large number of calculations
and therefore a software implementation of the FWOWA is
necessary in order to be able to apply it in the practice.
The calculation of the FWOWA is supported by the FuzzME
software.

The FuzzME (Figure 8) is a software tool that makes it
possible to design complex multiple-criteria evaluation mod-
els. The solved problem is organized into a tree structure
called a goals tree. Both quantitative and qualitative criteria
can be used. For aggregation, multiple methods are supported –
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Fig. 8: The FuzzME software

fuzzy weighted average, fuzzy OWA, fuzzified WOWA, fuzzy
Choquet integral, or a fuzzy expert system.

The FuzzME has been designed to be able to evaluate a
large set of alternatives. More information on the software, the
used evaluation type and the system of the supported methods
can be found in [5]. The demo version of FuzzME can be
downloaded at http://www.FuzzME.net.

IX. CONCLUSION

In this paper, we have introduced a fuzzification of the
WOWA operator based on the extension principle. The new
operator has been compared to two existing approaches – the
UIWOWA and UIOWAWA. On an illustrative example, it is
show that, when the input variables are incomparable (which
is quite common case in the practice), the approaches can
give significantly different results. It has been pointed out that
the results provided by the UIWOWA and UIOWAWA can be
against intuition because these operators simplify the problem
by taking into account only a single ordering, which need not
to be valid for all feasible values of the input variables. On the
other side, the FWOWA based on Zadeh’s extension principle
considers all feasible orderings of the values and, thus, it gives
more realistic result.

The paper pursued to lay the theoretical foundations so that
the presented FWOWA operator could be applied in practice.
Generally, any practical problem where the WOWA operator
has been used and the input values might be uncertain can
be extended to employ FWOWA instead. The benefit of such
an extension is that the information on the uncertainty is
preserved. The illustrative example showed another advantage
of FWOWA over WOWA in the area of multiple-criteria
evaluation and decision–making – the FWOWA is applicable
even when some of the aggregated values are unknown.

The calculation of the FWOWA can be performed by the
FuzzME software, which has been presented briefly. The
software makes it possible to create complex multiple-criteria
evaluation models using fuzzy methods including, among the
others, also the presented FWOWA operator. Therefore, there
is a ready-made solution for applying the proposed operator
in the practice.
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[12] Pavlačka, O.: Fuzzy methods of decision making (in Czech). Ph.D.
thesis, Faculty of Science, Palacký Univerzity, Olomouc (2007)
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[14] Talašová, J., Bebčáková, I.: Fuzzification of aggregation operators based
on Choquet integral. Aplimat - Journal of Applied Mathematics 1(1),
463–474 (2008). ISSN 1337-6365

[15] Torra, V.: The weighted OWA operator. International Journal of
Intelligent Systems 12(2), 153–166 (1997)

[16] Torra, V.: On some relationships between the wowa operator and
the Choquet integral. In: Proceedings of the Seventh Conference on
Information Processing and Management of Uncertainty in Knowledge-
Based Systems (IPMU98), pp. 818–824. Paris, France (1998)

[17] Torra, V.: The WOWA operator and the interpolation function w*: Chen
and otto’s interpolation method revisited. Fuzzy Sets and Systems
113(3), 389 – 396 (2000)

[18] Yager, R.: On ordered weighted averaging aggregation operators in
multicriteria decision making. IEEE Trans.Systems Man Cybernet 18(1),
183–190 (1988)

[19] Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)
[20] Zhou, S.M., Chiclana, F., John, R.I., Garibaldi, J.M.: Type-1 OWA

operators for aggregating uncertain information with uncertain weights
induced by type-2 linguistic quantifiers. Fuzzy Sets and Systems
159(24), 3281–3296 (2008). Theme: Fuzzy Intervals and Optimisation

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 221




