
 

 

  
Abstract— The paper deals with two methods of hybrid adaptive 

control of the nonlinear system represented by the plug-flow tubular 
chemical reactor. The mathematical model of this type of 
technological processes is described by the set of partial differential 
equations which were solved numerically by the finite difference 
method and Runge-Kutta’s method. The adaptivity of the controller 
is satisfied by the recursive identification of the external linear model 
as a linear representation of the originally high nonlinear controlled 
system. The first method uses well known Pole-placement method 
and the second is based on the more sophisticated LQ approach. The 
advantage of these method is that both have tuning parameter which 
can affect control results. Although the controlled system has highly 
nonlinear behavior, used adaptive controller has good results.  
 

Keywords—Adaptive Control, Pole-placement Method, 
Recursive Identification, LQ Approach, Plug-flow Tubular Chemical 
Reactor.  

I. INTRODUCTION 
HE controlling of chemical reactors is always challenging 
because of the complexity of the system, hazardous and 

cost savings. The modeling of such processes usually ends 
with the complicated set of ordinary or even partial 
differential equations depending on the type of system [1].  

The tubular plug-flow reactor belongs to the ring of systems 
with continuously distributed parameters, mathematical model 
of which uses partial differential equations (PDE) 
unfortunately in the nonlinear form [2].  

The mathematical solution of the set of PDE uses Finite 
differences method which discretize the equation in the axial 
variable which means that the set of PDE is transformed into 
the set of ordinary differential equations ODE that can be then 
solved for example by Runge-Kutta’s method [3] which is 
easily programmable or even build-in function in 
mathematical software. Other numerical methods are also 
discussed in [4].     

Once we have done the simulation of the steady-state and 
dynamic behavior, we can continue with the choice of the 
optimal control strategy. There are several let’s say “modern” 
control methods which were tested on this or similar types of 
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systems – the robust control, the predictive control or the 
adaptive control. 

The adaptive control [5] has various improvements and 
applications. The approach applied in this work uses results 
from the dynamic analysis for the choice of the External 
Linear Model (ELM) parameters of which are estimated 
recursively during the control which satisfies adaptivity of the 
controller [6].  

Control synthesis uses a polynomial approach [7] which 
satisfies basic control requirements like stability of the control 
loop, the reference signal tracking and the disturbance 
attenuation. Another big advantage of this method is that it 
provides not only the structure of the controller but also 
relations for computing of the controller’s parameters. This 
method could uses also other methods like the Pole-placement 
method [7] and LQ approach. These two methods are 
discussed in this work.  

Other, let us say, modern control methods are robust control 
[8] and predictive control [9]. Advantage of these methods can 
be found in better efficiency and versability. 

All experiments in the work are done by simulations using 
mathematical software Matlab, version 7.0.1. These methods 
were tested and can be used also for the controlling of real 
systems, similarly as in [10].  

  

II. MODEL OF TUBULAR CHEMICAL REACTOR 
The system under the consideration is a tubular chemical 

reactor [11] as typical nonlinear equipment used in industry. 
The reaction inside is a simple exothermic reaction in the 
liquid phase and the reactant is cooled by the cooling liquid 
inside the jacket of the reactor. The scheme of the reactor 
could be found in Fig. 1. 

The convection of the liquids in the pipes and the cooling 
jacket is expected to be plug-flow. That is why are these types 
of reactors called Plug-Flow Reactors (PFR). The 
mathematical model uses material and heat balances inside the 
reactor.  

The PFR displayed in Fig. offers theoretically two types of 
cooling from the direction point of view – co-current and 
counter-current cooling. It was proofed for example in [12], 
that the counter-current cooling, where the direction of the 
cooling flow is opposite to the direction of the reactant has 
better cooling efficiency. This type of cooling is considered in 
this work mainly because of this efficiency. 
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The mathematical description of such model is very 

complex and there must be introduced simplifications which 
reduce the complexity of the system: we expect, that all 
densities, heat capacities and heat transfer coefficients are 
expected to be constant. Also, we neglect heat losses and 
conduction along the metal wall of pipes. On the other hand, 
the heat transfer through the wall is consequential for the 
dynamic study. As the space variable is also important in the 
mathematical description, the mathematical model with all 
mentioned simplification is described by the set of five partial 
differential equations (PDE) 
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where T denotes temperature, d are diameters of the pipes – 
d1 is inner diameter of the pipe, d2 is outer diameter of the 
pipe and d3 denotes diameter of the jacket. Then, ρ are used 
for densities, cp for specific heat capacities, U denotes heat 
transfer coefficients, n1 is used for number of individual pipes 
and L is length of the reactor. 

 

 
Fig. 1 Scheme of the plug-flow tubular chemical reactor  

 
The variables vr and vc are fluid velocities computed from 

the volumetric flow rate q and constant f, e.g. 
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Where constants fr and fc are connected to the structure of 
reactor 
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 The main nonlinearity of this system can be found in 
reaction velocities k1 and k2 which are nonlinear functions of 
the rectant’s temperature Tr according to the Arrhenius law: 
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with k0j as a pre-exponential factors, Ej as a activation 

energies and R as a universal gas constant. 
The last, unmentioned variable in (1) is a reaction heat hr 

computed from 
1 1 2 2r A Bh h k c h k c= ⋅ ⋅ + ⋅ ⋅  (5) 

where hj are reaction enthalpies. 
Fixed parameters of the reactor [11] are shown in the 

following Table 1: 

Table 1 Fixed parameters of the reactor 
Parameter Notation and value 

Inner diameter of the tube 
Outer diameter of the tube 

Inner diameter of the reactor 
Number of pipes 

Length of the reactor 
Volum. flow rate of the reactant 
Volum. flow rate of the cooling 

Density of the reactant 
Density of the metal wall 

Density of the cooling 
Heat capacity of the reactant 

Heat capacity of the metal wall 
Heat capacity of the cooling 
Heat transfer coefficient 1 
Heat transfer coefficient 2 
Pre-exponential factor 1 
Pre-exponential factor 2 

Activation energy 1/gas constant 
Activation energy 2/gas constant 

Reaction enthalpy 1 
Reaction enthalpy 2 

Input concentration of comp.A 
Input temperature of the reactant 
Input temperature of the cooling 

d1 = 0.02 m 
d2 = 0.024 m 

d3 = 1 m 
n1 = 1200 
L = 6 m 

qr = 0.15 m3.s-1 
qc = 0.275 m3.s-1 
ρr = 985 kg.m3 
ρw = 7800 kg.m3 
ρc = 998 kg.m3 

cpr = 4.05 kJ.kg-1.K-1 
cpw = 0.71 kJ.kg-1.K-1 

cpc = 4.18 kJ.kg-1.K-1 
U1 = 2.8 kJ.m-2.K-1.s-1 

U2 = 2.56 kJ.m-2.K-1.s-1 
k10 = 5.61×1016 s-1 

k20 = 1.128×1016 s-1 
E1/R = 13477 K 
E2/R = 15290 K 

h1 = 5.8×104 kJ.kmol-1 
h2 = 1.8×104 kJ.kmol-1 
cA0

s = 2.85 kmol.m-3 
Tr0

s = 323 K 
Tc0

s = 293 K 
 
Since the mathematical model of the system (1) is described 

by the set of nonlinear partial differential equations, we are 
talking about the nonlinear distributed-parameters system. 

III. STEADY-STATE AND DYNAMIC ANALYSES 
The static and dynamic analyses are usually the first steps 

after the modelling part. The goal of these studies is at first 
verify proposed mathematical model with measurements on 
the real system. Sometimes simplifications reduce the 
accuracy of the mathematical description and the use of the 
mathematical model is unacceptable. The second reason why 
we do these analyses is that we need to know the behavior of 
the system for finding of the optimal working point, 
limitations etc. The step responses in the dynamic analysis are 
also used for the choice of the External Linear Model in 
adaptive control described later in this work. 

As there are theoretically more input and output variables, 
the change of the cooling volumetric flow rate, qc, was chosen 
as a input variable for the reactant temperature, Tr, as an 
output variable. The volumetric flow rate as an input was 
chosen from the practical point of view – it is represented by 
the twist of the valve in this case. On the other hand, the 
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output temperature is better measured than the output 
concentration. 

A. Steady-state Analysis 
The static analysis explores the behavior of the system in 

steady-state, i.e. in the state when state variable does not 
change. Mathematically speaking, the derivatives with respect 
to time are equal to zero in the steady-state and the set of 
partial differential equations (1) is transformed to the set of 
ordinary differential equations with respect to space variable 
z.  

The Finite differences method is employed here for solving 
of this problem. Derivatives with respect to space variable are 
replaced by the first back difference 

( ) ( )1
, for 1, 2,

iz z z

x i x idx
dz h

i n
=

− −
≈ = …  (6) 

with x as a general variable and step size hz = L/Nz. As the 
system has counter-current cooling, the temperature of the 
cooling Tc is described in the opposite coordinates and the last 
fifth equation in (1) uses the first forward difference 

( ) ( )1
, for  = ,  -1, 0

jz z z

x j x jdx
dz h

j n n
=

+ −
≈ …  (7) 

The steady-state analysis is then solution of the cycle of 
discrete equations for different values of the input variable, in 
this case volumetric flow rate of the cooling qc. 

The static analysis was done for various values of the 
cooling volumetric flow rate qc = <0.1; 0.35> m3.s-1 and 
values of the steady-state reactant temperature, Tr

s, through 
the length of the reactor (axial variable z = <0; 8> m) are 
shown in Fig. 2. 
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Fig. 2 Steady-state characteristic of the reactant’s temperature, 
Tr, for different volumetric flow rate of the coolant qc through 

the length of the reactor 
 
 
Results of the steady-state analysis clearly show the 

nonlinearity of the system. The optimal working point is 
defined for the volumetric flow rate of the reactant  
qr

s = 0.150 m3.s-1 and the volumetric flow rate of the coolant  
qc

s = 0.275 m3.s-1 and this working point was used later in the 
dynamic analysis and also in the adaptive control. 

B. Dynamic Analysis 
The dynamic analysis observes the behavior of the output 

variable, reactant temperature at the end of the reactor Tr(L), 
after the step change of the input variable, in this case step 
change of the volumetric flow rate of the coolant, Δqc. The 
input, u(t), and the output, y(t) variables for both dynamic and 
control purposes are then 

( ) ( ) [ ] ( ) ( ) ( ) [ ]100 % ; ,
s

c c s
r rs

c

q t q
u t y t T t L T L K

q
−

= ⋅ = −  (8) 

where qc
s is volumetric flow rate at the working point and 

Tr
s(L) is the steady-state value of the output variable in the 

working point which is also initial value for the dynamic 
study. This means, that the graphs starts from zero. 

From the mathematical point of view, the dynamic analysis 
is the numerical solution of the set of partial differential 
equations (1). The numerical solution of PDE is not simple 
and the combination of the Finite differences method 
described above which transforms the set of PDE to the set of 
ordinary differential equations (ODE) was used here. The set 
of ODE is then solved numerically with the use of Runge-
Kutta’s methods.  

There were done several step changes and results are shown 
in the following Fig. 3. 
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Fig. 3 Dynamic characteristic for various step changes of the 

input variable 
 
It is clear, that the positive change of the input variable 

results in decreasing value of the output reactant temperature 
and conversely, the negative change of qc produces positive 
change of the output temperature. All courses of the output 
variables could be described by second order transfer function 
which will be used later in the adaptive control. 

IV. ADAPTIVE CONTROL 
Once we have information about the system’s behavior in 

the steady-state and dynamics, we can move on to the 
controller design. There are several control methods which 
can be used for such nonlinear process like predictive control, 
robust control etc. The adaptive approach was used in this 
work because authors have good experiences with the usage 
of this control method for similar types of technological 
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processes like heat exchangers, continuous stirred-tank 
reactors (CSTR), water tanks etc. An advantage of this 
method can be also find in the big theoretical background, 
modifications and applications. 

The term “Adaptivity” comes from the nature, where 
animals and plants adopt their behavior depending on the 
living environment and conditions. Similarly, the adaptive 
controller could adopt (e.g. change) its parameters or structure 
according to the actual state of the system and control 
requirements.  

There are, of course, various adaptive control strategies. As 
it is already mentioned, the adaptive approach here is based on 
on-line recursive identification of the External Linear Model 
(ELM) which represents original, nonlinear, process. 
Parameters of the controller depends on parameters of the 
ELM and changes in every identification step according to the 
identified parameters of the ELM. 

A. External Linear Model 
The choice of the ELM comes from the dynamic analysis 

presented above. The output responses have shown, that the 
change of the output temperature as the output y(t) to the input 
variable u(t) in Fig. 3 could be described by the continuous-
time (CT) model 
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On-line identification of the CT model is complicated. The 
discrete-time (DT) models are used more often. These models 
do not describe the system in the very accurate way – it 
depends on the choice od the sampling period Tv. 

Compromise could be found in the use of delta-models as a 
special type of the DT models where values of the input and 
output variables are related to the sampling period and it was 
proofed, that parameters of the delta-model approaches to the 
parameters of the CT model. 

The delta–model introduces a new complex variable γ [13] 
1

v
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The ELM (9) could be then rewritten to the form of the 
differential equation 
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where b0
δ, b1

δ , a0
δ, a1

δ are delta-parameters similar to those 
in (9) for small sampling period [14].  

Delta values of input and output variables in Equation (11) 
can be computed as 

2

( ) 2 ( 1) ( 2)( )

( 1) ( 2) ( 1) ( 2)( 1) ( 1)

( 2) ( 2) ( 2) ( 2)

v

v v

y k y k y ky k
T

y k y k u k u ky k u k
T T

y k y k u k u k

δ

δ δ

δ δ

− − + −
=

− − − − − −
− = − =

− = − − = −

(12) 

The regression vector ϕδ and the vector of parameters θδ are  
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and the differential equation (11) has then vector form 

( ) ( ) ( ) ( )1Ty k k k e kδ δ δ= ⋅ − +θ ϕ  (14)  
where e(k) is a general random immeasurable component 

and the task of the identification is to estimate the vector of 
parameters θδ  from known data vector ϕδ. 

B. Recursive Identification 
It was already mentioned, that adaptivity in this approach is 

based on the on-line parameter identification of the ELM. The 
recursive identification mathematically means the estimation 
of the vector of parameters θδ  from the differential equation 
(14). The method used here is a simple Recursive Least-
Squares (RLS) method [15] which can be easily programmed 
and also extended by the additional “forgetting” techniques. 
Generally, the RLS method used for estimation of the vector 
of parameters ( )θ̂T kδ  could be described by the set of 
equations: 
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where ε denotes a prediction error, P is a covariance matrix 
and λ1 and λ2 are forgetting factors. For example constant 
exponential forgetting  [15] uses λ2 = 1 and  

( ) ( ) ( )2
1 1k K k kλ γ ε= − ⋅ ⋅  (16) 

where K is a very small value (e.g. K = 0.001). 

C. Control Synthesis 
It was already mentioned, that parameters of the ELM are 

used in the computation of the controller. The polynomial 
synthesis is employed here because it provides not only the 
structure of the controller but also relations for computing of 
the controller‘s parameters. Negligible advantage could be 
found also in the fulfillment of the basic control requirements 
and easily programmability. 

The simplest one degree-of-freedom (1DOF) divides the 
control loop into two parts – the transfer function G(s) 
representing controlled plant (i.e. the ELM of the system) and 
the transfer function of the controller Q(s) – see Fig. 4. 

 

 
Fig. 4 One degree-of-freedom (1DOF) control configuration 
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The signal w in Fig. 4 represents reference signal (i.e. 

wanted value), u is control input, y controlled output, v 
denotes random error and e is control error – e = w – y. 

 
 
The transfer function of the controlled plant G(s) is known 

from the recursive identification and the transfer function of 
the controller is generally 

( ) ( )
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⋅
�

�

 (17) 

The parameters of the polynomials ( )p s�  and q(s) are 
computed from the Diophantine equation 

( ) ( ) ( ) ( ) ( )a s s p s b s q s d s⋅ ⋅ + ⋅ =�  (18) 
by the Method of uncertain coefficients which compares 

parameters of individual s-powers in (18). Polynomials a(s) 
and b(s) are known from the recursive identification and the 
polynomial d(s) on the right side of the (18) is stable optional 
polynomial the choice of which affects mainly the quality of 
the control. Two methods of choosing of this polynomial are 
discussed and tested in the next chapters – Pole-placement 
method and LQ approach. 

D.  Pole-placement Method 
The simplest way is to choose the polynomial d(s) by the 

Pole-placement method which divides the polynomial 
generally to  

( ) ( )
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d s

i

d s s α
=

= +∏   (19) 

with the stability condition α > 0. 
Degrees of polynomials ( )p s�  and q(s) from (17) and the 

polynomial d(s) in (18) are for this second order transfer 
function with relative order one (9)  
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which means that the transfer function of the controller is 
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q s q s q
Q s

s s p
+ +

=
⋅ +
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and the polynomial d(s) has four roots. Disadvantage of this 
method is that there is no rule how to choose there roots. We 
can have one quadruple root, two double roots, one ordinary 
and one triple root or four different roots. Our previous 
experiments have shown that it is good to connect the choice 
of the polynomial d(s) with the controlled system, for example 
with the use of spectral factorization of the polynomial a(s) in 
the numerator of the transfer function G(s).  

Let us introduce new polynomial n(s) computed from the 
spectral factorization of the polynomial a(s), i.e. 

( ) ( ) ( ) ( )* *n s n s a s a s⋅ = ⋅  (22) 
It is clear, that this polynomial has the same degree as the 

polynomial a(s) and as it is a part of the polynomial d(s), we 
can rewrite this polynomial to the form 

( ) ( ) ( )2d s n s s α= ⋅ +  (23) 
which means that we have reduced the uncertainty to one 

double root. 
The controller designed with this method has one tuning 

parameter – α which could affect the quality of control. 

E. LQ Approach 
The second, let’s say a bit sophisticated, method is for 

designing of the polynomial d(s) is the use Linear-Quadratic 
(LQ) approach which is based on the minimization of the cost 
function 
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0
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∞
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(24) 

in the complex domain. Parameters φLQ > 0 and μLQ ≥ 0 are 
weighting coefficients, e(t) is the control error and 

( )u t� denotes the difference of the input variable.  
If we use again the spectral factorization of the polynomial 

a(s), similarly as in previous case, the polynomial d(s) is then 
divided into 

( ) ( ) ( )d s n s g s= ⋅  (25) 
where the polynomial is solution of the minimization of 

(24), mathematically solution of the spectral factorization 
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(26) 

Degrees of the controller’s polynomials ( )p s�  and q(s) and 
the polynomial d(s) on the right side of Diophantine equation 
are for the second order ELM (9) 
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and the transfer function of the controller is 
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2
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q s q s q
Q s

s s a s p
+ +

=
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The LQ adaptive controller has two tuning parameters, 
weighting factors φLQ and μLQ but our experiments have 
shown that is good to fix one parameter and change only the 
second one [16]. 

V. SIMULATION RESULTS 
Both techniques were tested by the simulation on the 

mathematical model (1). The control output is the change of 
the input volumetric flow rate of the coolant in % and the 
controlled output is the change of the output temperature, 
similarly as it is in (8): 

( ) ( ) [ ] ( ) ( ) ( ) [ ]100 % ; ,
s

c c s
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c

q t q
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Due to better comparability of these methods are also 
simulation parameters the same. The sampling period was  
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Tv = 1.5 s, the simulation time was 8 000 s and there were 
done four different step changes to the positive and negative 
value during this time. 

The first control simulation was done for the Pole-
placement method and various values of the parameter  
α. = 0.07; 0.01 and 0.02. 
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Fig. 5 The course of the reference signal, w(t), and the 

output variable, y(t), for various values of α, Pole-placement 
method 
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Fig. 6 The course of the input variable, u(t), for various values 

of α, Pole-placement method 
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Fig. 7 The course of identified parameters a1

δ(t) and a0
δ(t) for 

various values of α, Pole-placement method 

Obtained simulation results in Fig. 5 a 6 have shown that 
the increasing value of α results in quicker output response 
but overshoots of the output variable y(t). The course of the 
control (input) variable u(t) is smoother for lower values of α. 

As it was already written, adaptive approach here is based 
on the recursive identification of the ELM (9). The recursive 
least squares method with exponential forgetting was used for 
online identification of parameters a1

δ(t), a0
δ(t), b1

δ(t) and 
b0

δ(t) and results are shown in Fig. 7 and 8.  
You can see that there is only problem with identification at 

the very beginning of the control where controller does not 
have any information about the system and starting value of 
the vector of parameters is generally ( ) [ ]0 0.1,0.1,0.1,0.1 T

δ =θ . 
The controller needs some time for “adaptation” but the 
estimation is much smoother after initial 50 min for all 
identified parameters. 
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Fig. 8 The course of identified parameters b1

δ(t) and b0
δ(t) for 

various values of α, Pole-placement method 
 
The second analysis was done for LQ approach and 

different values of weighting parameter φLQ = 0.005; 0.01 and 
0.02 and the results are shown in Fig. 9 and 10. 
 

Although there are similar values of the weighting 
parameter φLQ as α in previous case, the meaning of this 
parameter is different. In this case, increasing value of 
parameter φLQ results in slower, more oscillating output 
response but smoother course of the input variable which 
could be sometimes good from the practical point view.  

The use of LQ approach produces generally more 
oscillating output responses but both control techniques could 
be used for controlling of such strongly nonlinear processes. 
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Fig. 9 The course of the reference signal, w(t), and the output 

variable, y(t), for various values of φLQ, LQ approach 
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Fig. 10 The course of the input variable, u(t), for various 

values of φLQ, LQ approach 

0 2000 4000 6000 8000
-0.02

-0.01

0.00

0.01

0.02

aδ 1(t)
[-]

t [min]

 φLQ =0.005
 φLQ =0.01
 φLQ =0.02

 

0 2000 4000 6000 8000
0.0

0.5

1.0

1.5

2.0

2.5

aδ 0(t)
[-]

t [min]

 φLQ =0.005
 φLQ =0.01
 φLQ =0.02

x10-4

 
Fig. 11 The course of identified parameters a1

δ(t) and a0
δ(t) for 

various values of φLQ, LQ approach 
 
Fig. 11 and Fig. 12 representing results of online 

identification show very similar results to those mentioned 
above for previous control approach. We can say here that 
initial “adaptation” is much quicker than for previous case. 
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Fig. 12 The course of identified parameters b1

δ(t) and b0
δ(t) for 

various values of φLQ, LQ approach 
 

All results of identification presented in Fig. 7, Fig. 8, Fig. 
11 and Fig. 12 show usability of this recursive least-squares 
method. Moreover, we can see, that identified parameters do 
not change dramatically after some, already mentioned, initial 
“adaptation” time. Here rise the question: Is online recursive 
identification important here, where parameters does not 
change? Of course, we can use controllers with fixed 
parameters but what if the control conditions changes? What 
if there occur unexpected disturbances. In these cases is the 
use of online identification very good option. Those 
controllers react to these changes quickly and provide more 
optimal results. 

Obtained results were discussed only from the visual view 
until now but it is good to have any mathematical description 
of results for comparison. We can use for example simple 
quadratic criterions Su and Sy which quantitatively describes 
the courses of the output variable, y(t), or its difference from 
the reference signal, w(t),respectively and the changes of the 
input variable, u(t): 
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Obtained values of these quadratic criterions are shown in 
Tables 2, 3 and following figures 13-17. 

Table 2 Computed values of quadratic criterions Su 
and Sy in control with Pole-placement method 

 
 Su [-] Sy [K2] 
α = 0.007 24 759 1 105 
α = 0.01 79 963    649 
α = 0.02 16 233    519 
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Table 3 Computed values of quadratic criterions Su 
and Sy in control with LQ method 

 
 Su [-] Sy [K2] 
φLQ = 0.005 61 806   7.69 
φLQ = 0.01 68 823 19.99 
φLQ = 0.02 60 865 18.23 

 
Presented values of criterions can help us with the choice of 
the optimal value of tuning parameter α or φLQ. For example, 
Table 2 and graphs in Figures 13 and 15 which represent 
control approach with Pole-placement method indicates, that 
from the input point of view are the best results for control 
with α = 0.02. This is represented by the lowest value of the 
criterion Su that sums square of changes of the input variable. 
Also, the value of the second criterion Sy denoting the sum of 
control errors (w – y) is also the lowest for the last control 
strategy. We can say, that this setting has the best results and 
could be tested on the real process. 
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Fig. 13 Values of the quadratic criterion Su for various values 
of α, Pole-placement method 
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Fig. 14 Values of the quadratic criterion Su for various values 

of φLQ, LQ approach 
 
On the other hand, results for the next, LQ, strategy does 

not indicate so clear results. Values of input quadratic 
criterion Su are very similar and the criterion Sy is the lowest 
for the first value of φLQ = 0.005. As the value of the criterion 

Su is also one of the lowest for this setting, we can say that 
control with φLQ = 0.005 has the best results. 

If we compare also these criterions for both control 
strategies, Pole-placement method produces better values of 
the criterion Su then LQ method but this method has, on the 
other hand, better results of the criterion Sy. 
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Fig. 15 Values of the quadratic criterion Sy for various values 
of α, Pole-placement method 
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VI. CONCLUSION 
The paper presents two modifications of the adaptive 

control applied on the control of the reactant temperature 
inside the tubular chemical reactor as a typical nonlinear 
system with distributed parameters. The nonlinear system is 
described by the external linear model in the general form 
parameters of which are estimated recursively during the 
control which fulfills the “adaptivity” of the system. The 
difference between these two modifications is in the choice of 
the stable polynomial in the Diophantine equation. The first 
method uses simple Pole-placement method with spectral 
factorization and the second modification is based on the LQ 
approach again together with the spectral factorization of the 
polynomial in the denominator of the ELM. Both methods 
have tuning parameters which can affect the quality of control, 
mainly the speed of the control and the overshoots. Obtained 
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simulation results have shown the usability of the adaptive 
control for controlling of such complex nonlinear systems. 
Obtained results were also discussed and quantified by the 
quadratic criterions that summarize changes of the input 
variable and the control error. The choice of the best 
controller setting always depends on the main purpose of the 
control, e.g. if the minimal control error or the changes of the 
input variable. These changes of the input variable are 
important mainly from the practical point of view. The future 
work could be focused on the verification of the obtained 
results on the real chemical reactor.    
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