

Abstract—The article illustrates the new unique coding method for

describing the properties of different objects of the virtual and real

world into the so-called characteristic text strings. The basic

description of the object can be summarized into a very short text string

by this method. These strings are comprised only of the basic

characters of the alphabet and numbers and it is easily to readable by

humans. These strings can be easily and very quickly compared with

each other and determine mutual difference of described objects. Total

and partial difference (differences in specific properties) may be

calculated at any time. This enables us to easily find the object that is

most dissimilar from or most similar to the pattern object. The whole

principle of characteristic text strings is demonstrated on generating

random elements in the test questions. Thanks to this principle,

a complicated structure can be described of each randomly generated

question by the short string. On the basis of this, such procedures can

be suggested for repeatedly used questions that ensure generating of

the most different version from versions used previously. The

applicability is thus of each of the test questions maximized. Another

area of use of characteristic text strings are then presented, such as web

online shops, vehicle license plate, genetic algorithms, and more.

Keywords—Characteristic text strings, eShop, random elements,

test questions.

I. INTRODUCTION

NLINE testing system, the Universal Testing

Environment, allows creating graphically rich, interactive

and multimedia enhanced questions of all sorts [1]. In order

really not to limit the creative potential of the authors of the test

questions, a respective language, QML1 (based on XML and

XAML [2]), was created for defining the structure of the

questions. In addition to text, the QML allows the use of vector

and bitmap graphics of any kind, animations, and various types

of random values at any part of the question. This is achieved

by the use of random elements [3] for selecting version of the

question, generating random numbers and characters, selecting

the text string from multiple variants, and mixing of inner

elements structure of the questions.

Like with the selection of questions used in a test [4], it is

desirable in this case that the internal mixing is not always

entirely random, but it rather provides the opportunity to

This research has been supported by Specific research project of University

of Hradec Kralove, Faculty of Science in 2015.

P. Voborník is with the Department of Informatics, Faculty of Science,

University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03,
Czech Republic (e-mail: petr.vobornik@uhk.cz, orcid: 0000-0003-1841-3455).

generate the greatest possible variation of each question that is

repeatedly used with the same tested user. Thanks to this, the

selection process of random elements in each question should

prefer those variations, or their combinations, which would

differ the most from the variations used previously.

Determining the degree of difference between individual

combinations of random elements should not be

computationally complex (e.g. such as multi-distance spatial

cluster analysis, see [5]), it should be easily storable in

a database, and the structure of such record should be extensible

for possible future development of the question.

II. PRINCIPLE OF COMPARISON OF STRINGS

Firstly, the selected method will be explained using an easily

presentable example: comparing of the persons [6]. Table 1

contains five human properties which will be compared for each

person and a description of their data types and ranges

(metadata).

Table 1. Metadata of persons’ properties for comparison

Property Index Type Min Max Range Units Weight

Height 1 cardinal 40 220 181 cm 1.5

Weight 2 cardinal 1 256 256 kg 0.9

Age 3 cardinal 0 127 128 years 1.0

Sex 4 nominal 1 2 2 - 10.0

Color of eyes 5 nominal 1 6 6 - 2.0

The range parameter determines how many possible values

the property can take on. The process of its calculation is shown

in Equation 1.

 𝑟𝑎𝑛𝑔𝑒𝑖 = 𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖 + 1 (1)

Properties are differentiated into two main types: cardinal

and nominal. For the cardinal type, differences between values

of individual subjects can be directly and precisely calculated,

whereas for the nominal values it can only be determined

1 QML - Questions Markup Language [3]

Effective determining of the degree of similarity

of selected properties of objects through

characteristic text strings

Petr Voborník

O

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 90

mailto:petr.vobornik@uhk.cz
http://orcid.org/0000-0003-1841-3455

whether the values are identical or not [7]. The calculation of

the difference of these two models will therefore vary.

A. Cardinal values

Each compared subject can essentially be expressed as

a vector (e.g. �⃗� or �⃗�) comprised of the values of individual

properties. If each of the cardinal properties had the same

weight (e.g. if the difference of one year of age was as

significant for the comparison as the difference of 1 cm of

height or 1 kg of weight), the difference is in this case formed

by a scalar product of a unit vector and a vector composed of

the absolute differences of the individual components of the

vectors �⃗� and �⃗� (see Equation 2).

 (

𝑎1

𝑎2

⋮
𝑎𝑛

)

𝑖𝑠
𝑑𝑖𝑓𝑒𝑟𝑒𝑛𝑡

𝑓𝑟𝑜𝑚
 (

𝑏1

𝑏2

⋮
𝑏𝑛

) = (

|𝑎1 − 𝑏1|

|𝑎2 − 𝑏2|
⋮

|𝑎𝑛 − 𝑏𝑛|

) × (

1
1
⋮
1

) (2)

Calculating differences of cardinal properties for entities

A and B (Equation 2) can also be expressed using the sum of

absolute values of differences of individual properties as shown

in the Equation 3.

 ∑|𝑎𝑖 − 𝑏𝑖|

𝑛

𝑖=1

 (3)

If differences for each property had a different impact on the

overall assessment of the overall similarity of two entities, their

weights, which are part of the metadata, can then be taken into

account in the calculation (𝑣 , see last column in Table 1).

Calculation of differences of the cardinal properties of entities

A and B with the addition of weights is then shown in Equation

42.

 𝑅𝑐𝑎𝑟. = ∑(|𝑎𝑖 − 𝑏𝑖| ∙ 𝑣𝑖)

𝑛

𝑖=1

 (4)

B. Nominal values

For nominal values, although these categories are identified

by numbers (for coding), it cannot be determined how much

they differ, but only if they are identical or not. If both values

are equal, the result is 0, if they are different the result is 1. In

this case, either the comparison operator (if) can be used for

both nominal values, or the sgn3 function to the absolute value

of their difference can be applied (see Equation 5). The degree

of influence of both types of values on the total difference can

be determined by setting the appropriate weight.

2 vector of weights would then replace the unit vector in a vector terms (see

Equation 2)

 𝑅𝑛𝑜𝑚. = ∑(𝑠𝑔𝑛|𝑎𝑖 − 𝑏𝑖| ∙ 𝑣𝑖)

𝑚

𝑖=1

 (5)

C. Total difference

The total difference is made up of the sum of the differences

of cardinal and nominal values (see Equation 6).

 𝑅 = 𝑅𝑐𝑎𝑟. + 𝑅𝑛𝑜𝑚. (6)

The procedure for particular example of a comparison of two

persons is shown in Table 2. Differences for individual types of

values are calculated with the above equations that are selected

according to the types of values (see col. Type in Table 1).

Table 2. Sample of procedure for calculating the difference between

persons A and B

Property Person A Person B Difference Weight
Weighted
difference

Height 175 165 10 1.5 15.0

Weight 85 60 25 0.9 22.5

Age 35 25 10 1.0 10.0

Sex 2 1 1 10.0 10.0

Color of eyes 5 1 1 2.0 2.0

Total 47 59.5

The resulting difference of persons A and B has a value of

59.5. If we considered an extra person C with the same values

in all properties as with person B, with the only difference that

its height would be 166 cm, then the difference between person

A and C would have a value of 58. It follows that the person

C would be more similar to person A than to person B. This

way, the person that is most similar to or most dissimilar from

the pattern4 person A (from aspect of compared properties) can

be found in an arbitrarily large database of people, and the

number of comparisons would only be equal to the number of

people in the database.

III. CODING

Another requirement to the system of comparison was the

ability to easily store values of compared properties in

a database. Each value is usually stored atomically in its own

field (column of the database table) in a database of persons [8].

In such a database each column must be processes individually,

but the necessary calculations can be performed even within the

SQL query. For more complex structures, such as the record of

internal mixing of the questions, data fields cannot be prepared

in advance to effectively cover atomically all the possible

combinations. The questions may contain an unlimited number

of such combinations. For this reason, only one field was

allocated to store combinations of random values.

3 sgn function leaves only the input value of 0, all other (positive) values are

converted to 1
4 pattern is a term for the entity which other entities are compared with [32]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 91

To store multiple values in a single item, it is necessary to

encode them. It is possible to use e.g. the blob data type

enabling the record of text or binary data of unlimited length,

or a limited varchar5. In such items, text strings in a given

coding can be stored. Due to the limitation of the symbols for

printed form, only 6 bits of each character of a string would be

used to encode values, i.e. the range of 64 (26) possible

characters. With a binary blob it would then be possible to use

the whole range of a byte (28 = 256 characters) for individual

characters.

Characters for encoding 6-bit values can be chosen

arbitrarily, but in general they should be selected from between

the 32nd and 126th character of the ASCII table, because these

are all viewable in printed form and they are not a subject of the

national coding [9]. This eliminates any problems with the

encoding of character set, without any further problems when

sending it via URL parameter or in a XML file. The string is

easily readable by humans and it is also capable of being written

in a non-digitized (analog) form.

Selection of characters for the following examples was

inspired by the Base64 format [10]. Because the system

conversion methods could not be used for this purpose, their

order and additional characters were more appropriately

adjusted (see Table 3).

Table 3. The code table for conversion between values (0-63) and

characters selected for encoding

0 a 8 i 16 q 24 y 32 A 40 I 48 Q 56 Y

1 b 9 j 17 r 25 z 33 B 41 J 49 R 57 Z

2 c 10 k 18 s 26 0 34 C 42 K 50 S 58 6

3 d 11 l 19 t 27 1 35 D 43 L 51 T 59 7

4 e 12 m 20 u 28 2 36 E 44 M 52 U 60 8

5 f 13 n 21 v 29 3 37 F 45 N 53 V 61 9

6 g 14 o 22 w 30 4 38 G 46 O 54 W 62 -

7 h 15 p 23 x 31 5 39 H 47 P 55 X 63 _

Characters + and / used in the Base64 (see [11]) were

replaced by others, because these are subject of coding when it

is transferred as the URL parameter [12]. The proposed

arrangement of characters is partly legible for humans, because

lowercase letters and numbers from 0 to 5 form the first half of

the table and the uppercase letters, remaining numbers, and

other characters are located in the second half. With a good

knowledge of the alphabet, a more precise value can be

estimated intuitively out of each character.

Another difference from Base64 is the overall approach

towards coding. Base64 losslessly encodes arbitrarily large

value to the required number of characters (see the example in

Table 4).

5 varchar – database type for a string of a variable length limited from above

[33]

Table 4. Process of character encoding from plain “yes” to the

Base64 “eWVz”

Data (text) y e s

ASCII code 121 101 115

Bit pattern 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1

6-bit number 30 22 21 51

Base64 e W V z

In contrast, the proposed method is based on the premise, that

the value of each property will be stored as just a one character,

i.e. the encoded value will be transferred to the range of 0-63.

Larger values will be stored in a lossy format and smaller ones

will not use the full range of the character, but thanks to this

approach individual properties can be directly individually

compared.

For conversion of property values (ai) to the range of 0-63,

each value is first normalized to the range of 0, 1 (ni, see

Equation 7) and then it is multiplied by the maximum value of

this range (63). The result rounded to the nearest integer (in this

step there is a loss of accuracy) is converted to a character

according to Table 3.

 𝑛𝑖 =
𝑎𝑖−𝑚𝑖𝑛𝑖

𝑟𝑎𝑛𝑔𝑒𝑖−1
=

𝑎𝑖−𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖−𝑚𝑖𝑛𝑖
 (7)

This procedure of coding can be applied to all numerical

values, including nominal, provided the individual categories

are first converted to numbers (indexes). This step is necessary

for values bigger than 64, while it is not for discrete values of

a lower range. With them, the minimum is sufficient to be

subtracted from them and the result can be directly used for

encoding without using the entire range. This uniform

procedure was selected for the following example and for all

types of values. Table 5 shows the process of encoding values

of properties of two persons from the previous example.

Table 5. Process of encoding values of properties to characters

Property
Person A Person B

Value ni 0–63 Char Value ni 0–63 Char

Height 175 0.750 47 P 165 0.694 44 M

Weight 85 0.329 21 v 60 0.231 15 p

Age 35 0.276 17 r 25 0.197 12 m

Sex 2 1.000 63 _ 1 0.000 0 a

Color of eyes 5 0.800 50 S 1 0.000 0 a

As shown in Table V, the characteristics of person A are

encoded in a “characteristic” text string of “Pvr_S”, and person

B’s to the string of “Mpmaa”. From these strings it is apparent

at first glance that these are two different people that do not

match in any parameter, including the last two nominal values.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 92

IV. COMPARISON OF CHARACTERISTIC STRINGS

Comparing of two characteristic text strings can be done in

several ways, or in various stages of coding back to the original

value. Various weights must be used to achieve the same result

in each of these stages.

The easiest way is the absolute differences of values

converted directly from the individual characters (see col.

“Code values – difference” in Table 6).

Table 6. The process of decoding individual characters of a text string

Property
Characters Code values (0–63)

A B A B difference

Height P M 47 44 3

Weight v p 21 15 6

Age r m 17 12 5

Sex _ a 63 0 1

Color of eyes S a 50 0 1

Total 16

The second option are the absolute differences of values

normalized to the range of 0, 1 ni, i.e. the previous value

divided by 63 (see col. “Normalized values – difference”

in Table 7).

Table 7. Back-calculation of the original values (ai) of individual

properties (continued from Table 6)

Property
Normalized values 0, 1 Original value (ai)

A B difference A B difference

Height 0.746 0.698 0.048 174.3 165.7 8.6

Weight 0.333 0.238 0.095 86.0 61.7 24.3

Age 0.270 0.190 0.079 34.3 24.2 10.1

Sex 1.000 0.000 1.000 2.0 1.0 1.0

Color of eyes 0.794 0.000 1.000 5.0 1.0 1.0

Total 2.222 44.9

The third option is to compare the original decoded values

(ai) by the means of inverse operation of calculating ni

(Equation 7) as shown in Equation 8.

𝑎𝑖 = 𝑛𝑖 ∙ (𝑟𝑎𝑛𝑔𝑒𝑖 − 1) + 𝑚𝑖𝑛𝑖

= 𝑛𝑖 ∙ (𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖) + 𝑚𝑖𝑛𝑖
(8)

Original weights (see Table 1) can be used only in the third

stage, i.e. when comparing the original values. However, a one-

off conversion of weights saves a need of repeated conversion

of coded values to the original ones for each property of each

compared subject.

V. QUESTION MIX

Initial setting of encoding conditions (metadata) for the

specific cases would be performed by someone who would

6 this information is directly specified for random values <rnd> of the range

and in other cases they are not required

assess ranges and weights best suited for the particular purpose,

or would make experimental measurements and subsequently

edit the ranges accordingly. For test questions [13] containing

various random elements in various positions of the question,

the settings would be very difficult for the creator of questions,

in some cases (e.g. for mixing of content position) even

impossible. The whole system should thus work completely

automatedly in the background.

Since the sequence of the same random elements in

a question may differ on each occurrence, and some portions

may even be completely omitted, fixed identifiers (id) were

used to detect the elements. On the first processing of a question

the metadata (or the data necessary for coding of values) are

listed under their identifiers, i.e. types of values and their

minimum and maximum6. Numeric identifiers7 of positions

(index) and values (val) are also assigned to these elements

(or their items) if necessary. Through them they will then be

encoded into the characteristic string. The order of items

(individual characters) in the encoded string then determines

the order of their record in this list. List of metadata (e.g. see

Code 1) is stored in a database directly within the record of the

question and, can be expanded if necessary (when adding new

elements or uncovering previously inaccessible elements due to

random selection).

<metadata>

 <versions index="0">

 <ver id="x" val="0" />

 <ver id="y" val="1" />

 </versions>

 <rnd index="1" id="a" type="car" min="10" max="99" />

 <rnd index="2" id="b" type="car" min="1" max="9" />

 <rnd index="5" id="var" type="nom" /> <!— char A-Z -->

 <mix id="m1">

 <itm index="3" id="i1" />

 <itm index="4" id="i3" />

 <itm index="6" id="i2" />

 </mix>

</metadata>

Code 1. Sample of possible record of question metadata to XML

The string containing random values for each use of each

question is stored in the database during the generation of the

test, along with other statistics for each instance of the question,

in a form of a plain text string (varchar). An example of the

coding of a question values with random elements described by

metadata in Code 1 into the string of “bMyb#ha” is shown in

Table 8.

7 identifiers specified by creator of questions may not be numeric

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 93

Table 8. Sample of encoding of question random values into the

string “bMyb#ha”

Element Value Coding process Character Index

ver y val["y"] = 1 b 0

a 72
72−10

99−10
=̇ 0.7 → 0.7 · 63 ≐ 44 M 1

b 4
4−1

9−1
= 0.375 → 0.375 · 63 ≐ 24 y 2

var H index H in {A–Z} = 7 h 5

m1 i2,i1 i1 = 1, i2 = 0, i3 = null ba# 3,6,4

If any of the values in the list of a current question mix was

omitted due to the random selection, it would still have to be

included in the code string, so that its individual positions

would always correspond to the same elements. For these cases,

a special character # (hash, or sharp) will be used as the

equivalent of the null8 value, in the following example. It

indicates that the item’s value is not represented in the string9.

In this case there are three basic approaches for comparing this

value with others.

 Mark both strings as incomparable.

 Set a zero difference for the given property in the

comparison of these specific characters.

 Evaluate the fact that the property exists in one case and

not in the other, as the maximal difference. [14]

The choice of the optimal approach depends on the particular

application. The third option (maximum difference) was

selected for comparing question mix.

A. Multiple comparisons

The process of comparing two entities, or their characteristic

strings, was explained in the previous chapter. This method can

be applied to an arbitrarily extensive list and thus a subject can

be found that is most similar or dissimilar to the pattern object.

The aim of comparing a question-mix is to determine the

difference not only between two subjects but between one entity

(generated question) and the group of entities (previously used

questions).

If the same tested user has been previously asked the same

question more times, then only the last five cases10 are used for

comparing, as it helps to save computational cost. The pattern

string is compared with each of them and the total difference is

the sum of these values. Individual comparisons, however, do

not have the same weight. A similar principle as was the

forgetting component at the selection of test questions (see [4])

is used in this case. In this case the weight is only repeatedly

lowered11 by one fifth12 in order to accelerate the calculations.

8 null is a special value applicable in databases and some object-oriented

programming languages across the data types which indicates that the field of
the database record or variable is not set to any value [8]

9 when encoding to the range of 256, this range can be reduced by one (255)

and the last value reserved for the null

B. Most different random values

There are more ways to create the most diverse question to

its earlier versions. For example, the whole question can be

generated several times and the version which is most different

from all the previous versions will be used [15]. This will be

evaluated by the comparing of their characteristic strings.

Respecting individual values during question creation can also

be used, which is possible due to their division into individual

characters. This method was selected, because of the

complexity of repeated parsing of QML. Therefore, since there

is no comparison of a whole question but only at the level of

individual elements, weights and mutual ranges of these

parameters do not have to be taken into account in the

calculation.

C. Versions

Random variant of a question based on the versions

<versions> defines a finite number of possibilities, one of

which is randomly selected. Individual elements of the question

are then shown or hidden, accordingly to which version was

randomly selected. In terms of the type of values, versions are

nominal.

For the nominal values such encoding is used which does not

convert the value to the range of 0-63 (unlike the previous

example of people comparison), but values are indexed by

integers from 0 to the count of versions. The impossibility to

include all versions into the calculations if their enumeration

contains more than 64 variants is undoubtedly the

disadvantageous aspect, but this is only a theoretical possibility.

The advantage is the possibility to extend the list of other items

at any time (up to 64), without invalidating the data from

previously completed testing.

Selection of the version is realised by the means of five

random choices from all possible versions. If any of them was

not used in the previous five representations of the question, this

version is declared as the best and the process is done. However,

if all five randomly selected “candidates” were used in the

previous five cases, the best of them is determined by the

highest total sum of weighted nominal differences from the

previous selections (see example in Table 9).

10 any number of previous cases can be used for comparison, or even all of

them
11 the time component described in the mentioned source can be also used
12 the latest variant of the question has a weight of 1, 0.8 for the penultimate,

0.6 for the preceding, etc. and the fifth (the oldest in the selection) has a weight
of 0.2

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 94

Table 9. Sample of selection of the most diverse random version (out

of five) in relation to the five previous selections

The example in Table 9 shows the procedure of selecting

random version out of five possibilities. All proposed versions

(2x1, 3, 4 and 5) were used in the previous five cases. First, the

previous uses of questions are sorted in the descending order by

the date, and according to this order, weights are assigned to

them. In the next step, for each of these selections the relevant

character is decoded from the question string to the specific

numeric identifier of particular used versions. Subsequently,

nominal differences between each previous and proposed

versions are calculated (0 for identical, 1 for different) and these

results are multiplied by weights reflecting topicality of

previous choice. Their sum for each “candidates” is the decisive

factor for determining the “winning” version. That is the fourth

in this example with the ID number of 3 (val="3"), because its

overall difference from the previous five versions has a highest

value of 2.6.

D. Random values

Generating random values <rnd> for the question is also

repeated five times. All random values from these five (rj) are

compared (the absolute value of the difference) with values of

five previous versions (pi), and these differences are multiplied

by weights (vi) reflecting the ‘age’ of questions (see Equation

9).

 𝑑𝑖𝑗 = |𝑟𝑗 − 𝑝𝑖| ∙ 𝑣𝑖 (9)

The random value (rj) with the highest total sum of weighted

differences is included into the question (∑ 𝑑𝑖𝑗
5
𝑖=1 , see example

in Table 10).

13 also in the case of coding positions of items of random selection is not

resized to the range of 0-63 for the possibility of future extensibility of the
selection for other items

Table 10. Sample of selection of the most different random integer

value (from 1 to 100) with respect to the five previous values

The example in Table 10 shows the procedure of a particular

case for selection of the random value in the range from 1 to

100, beginning with the decoding characters to the previous

values and ending up with determining the best values from the

five possibilities. In this example, this is the fourth (j=4)

possibility (98), its total difference from the previous five

selections is the highest (160.3).

Random selections from the enumerations are treated as

nominal, e.g. for values of type string (text) or char (character).

Their selection is similar to the choice of the optimal version.

Even in this case it is not necessary to repeat the selection five

times, because if the selected value was not in the previous five

selections, it can be used directly and the process of selection

for this item is over.

E. Random selection

The procedure of mixing the content of the question <mix>

is more complicated [16]. Each item from a mix <item>

selection has its own identifier under which (with the prefix of

an identifier of the mix or as its sub-element as in Code 1) it is

registered in question metadata. A value that is stored below is

the position of the item in this mix13. If any item is omitted (due

to the numerical limitations for the selection), a null value (#)

is inserted on the position of the item in the string. When an

assigned position is compared to a null value, the difference is

the total count of selected items for the current mix element

(becoming a maximum mismatch). When two valid values are

compared, their relationship is evaluated as the absolute value

of their difference.

Table 11. Example of the procedure of determining the most diverse

variant of random selections (4 of 6 items) relatively to the previous

five

Date of use Weight Character Version 1 4 5 3 1

2015-02-08 1.0 b 1 0.0 1.0 1.0 1.0 0.0

2015-02-01 0.8 f 5 0.8 0.8 0.0 0.8 0.8

2015-01-26 0.6 e 4 0.6 0.0 0.6 0.6 0.6

2015-01-05 0.4 d 3 0.4 0.4 0.4 0.0 0.4

2014-12-15 0.2 f 5 0.2 0.2 0.0 0.2 0.2

2.0 2.4 2.0 2.6 2.0

Random versions

W
e
ig

h
te

d
 n

o
m

i-

n
a
l
d
if

fe
r
e
n

c
e

Total

Question Prior versions

Date of use Weight Character Value 5 32 17 98 61

2015-02-08 1.0 s 29.29 24.3 2.7 12.3 68.7 31.7

2015-02-01 0.8 Y 89.00 67.2 45.6 57.6 7.2 22.4

2015-01-26 0.6 1 43.43 23.1 6.9 15.9 32.7 10.5

2015-01-05 0.4 d 5.71 0.3 10.5 4.5 36.9 22.1

2014-12-15 0.2 p 24.57 3.9 1.5 1.5 14.7 7.3

118.7 67.2 91.8 160.3 94.1Total

Question Prior values Random values

W
e
ig

h
te

d
 d

if
fe

re
n

c
e

1 2 3 4 5 6 1 2 - 3 - 0 vS 3 - - 2 0 1 vS 0 2 - - 1 3 vS 1 2 3 - 0 - vS 3 2 1 - 0 - vS

1.0 #c#bda - 2 - 1 3 0 4 0 0 2 4 0 10.0 4 4 0 1 3 1 13.0 4 0 0 4 2 3 13.0 4 0 4 4 3 4 19.0 4 0 4 4 3 4 19.0

0.8 bcda## 1 2 3 0 - - 0 0 4 3 0 4 8.8 2 4 4 2 4 4 16.0 1 0 4 4 4 4 13.6 0 0 0 4 4 0 6.4 2 0 2 4 4 0 9.6

0.6 d#acb# 3 - 0 2 1 - 2 4 4 1 4 4 11.4 0 0 4 0 1 4 5.4 3 4 4 4 0 4 11.4 2 4 3 4 1 0 8.4 0 4 1 4 1 0 6.0

0.4 #cb#ad - 2 1 - 0 3 4 0 4 4 4 3 7.6 4 4 4 4 0 2 7.2 4 0 4 0 1 0 3.6 4 0 2 0 0 4 4.0 4 0 0 0 0 4 3.2

0.2 #bcd#a - 1 2 3 - 0 4 1 4 0 0 0 1.8 4 4 4 1 4 1 3.6 4 1 4 4 4 3 4.0 4 1 1 4 4 4 3.6 4 1 1 4 4 4 3.6

Total 39.6 45.2 45.6 41.4 41.4

Prior testing Random selection

Weight String
Items positions V1 V2 V3 V4 V5

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 95

Even in this case, the five possible variants of the selection

with different positions of the individual items are generated,

and these are compared with the previous five. The differences

of individual items within mixes are summed and multiplied by

the weight reflecting the topicality of previous version (same as

in the previous cases). Their sum for each “candidate” of

random selection is then the decisive factor for determining the

“winning” variant, which is again the highest value of this sum

(see Table 11).

The example in Table 11 shows the procedure of a particular

case of random selection, beginning with the decoding of

previous selections from the fragments of the characteristic

strings and resulting in determining the best variant of selection

out of five. This is V3, its total difference from the previous five

selections is the highest with the value of 45.6. According to

this variant, out of the 6 items, the 1st, 5th, 2nd and 6th item (in

this order) should be included in the selection.

For better understanding of the relationship between the

values in Table 11, three related values are framed. These are

the 4th item from V2 selection (2, i.e., the 3rd in order will be

registered under the index 4), the same item at the penultimate

version of the question (0, i.e., there was a 4th item in the 1st

place) as well as the absolute difference in the intersection of

the two coordinates (|2-0| = 2, i.e., the proposed position of the

item in comparison to the penultimate question is shifted by

2 positions).

F. User interface

The system represents only one checkbox and two numeric

editors in the configuration of test (see Fig. 1) in terms of user

interface [17].

Fig. 1. Example of user interface – Test settings – Mixing tab

The whole process of internal mixing of random elements in

questions is enabled or disabled by checking or unchecking of

“Smart mix” item. The first numerical value “Retrospectively

for mix” (no) determines how many previous versions of each

question for the tested user should be loaded for the comparison

process. Weights reflecting the ‘age’ of questions are derived

from this value (see Equation 10).

14 Silverlight is a software plugin for development lavishly furnished internet

applications that run within a web browser. It is developed by Microsoft,

executed using the plugin which is a smaller version of the .NET framework
and written in various languages supported by .NET (e.g. C#). [34]

 𝑤𝑑𝑖𝑓. =
1

𝑛𝑜
 (10)

The second numeric value “Count of random” (nr)

determines how many random versions will be generated for

each of random elements of the question. The most different

from previous versions is selected by comparing with them.

This value will be used in a new task for the user. The chance

of selecting the really very different value from the previous

ones is increased together with this value. However, a higher

value means more computational time required to generate

questions due to the higher number of necessary comparisons

(see Equation 11 – calculating the difference between each of

the old version and randomly generated, the sum of these

differences for each of the randomly generated versions and

comparing of these sums).

 𝑛𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 2 ∙ 𝑛𝑜 ∙ 𝑛𝑟 + 𝑛𝑟 (11)

G. Future application development

User part of the application (testing and administration

interface) is created as the Rich Internet Application (RIA) at

the Silverlight14 technology. It allows to an application to use it

anytime and anywhere without installing, updating,

configuration or own server. A web browser and this plugin is

only needed.

However, the modern trend is websites without any plugins

(Java, Flash, Silverlight, etc.) and creating of the whole

application logic only with HTML 5 and JavaScript. Microsoft

had promised the support for Silverlight until 2021, but in a new

browser Edge with it no longer count15.

However, Silverlight is a technology based on XAML and

C# (or any other .NET language), as well as so-called universal

applications (UWP) for Windows 10 [18]. Migration of

Universal testing environment to this new technology is

therefore possible solution. This new version will function on

any PC, tablet and mobile with Windows 10, including

XboxOne and HoloLens (see [19], p. 17–19). Windows Store16

would care about its distribution and updates [20]. The web

service would be liable to remain as a cloud-based without

changes of server part.

Migration of Universal testing environment to UWP should

occur before the Microsoft ends the planned support for the

Silverlight.

VI. FURTHER USE

Identifying and comparison of objects properties through the

characteristic text strings can be used in many other areas.

A. Similar alternatives of the product in eShop

Modern electronic online stores provide a function for

comparison of properties of products from the same category.

Usually, these systems can also find and offer to the customer

15 Microsoft Support Lifecycle for Silverlight:

https://support.microsoft.com/en-us/lifecycle?c2=12905
16 Microsoft Windows Store: www.windowsstore.com

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 96

https://support.microsoft.com/en-us/lifecycle?c2=12905
http://www.windowsstore.com/

an alternative for the current product, i.e. find the most similar

products in the category.

If values of properties of individual products are stored in the

database according to the classic rules of normalization [21],

then the data model has a structure similar to that of Fig. 2. Each

category of products defines a set of properties that can be

further expanded by subcategories. Individual products sets

a specific value to each property in a coupling table.

Fig. 2. Illustrative data model for structured records of values of

properties of products in classic eShops

All the properties of these compared products must be loaded

for creating a table with a list of comparing properties of

selected products. The final table will be build up by the

application or by using of complicated PSQL17. Finding the

most similar product then works with all the properties of all

products in the same category. The database system receives to

each of them by a relatively complex procedure [22].

The structure of the database could significantly simplify by

the use of encoding property values to the characteristic text

strings (see Fig. 3). All values of all properties of the product

would be encoded within a single data field (column) of

database table of products as text (varchar) or binary value.

Definition of individual properties could be saved in a separate

table, as in the previous case (see Fig. 2), or in a single data field

in the categories table, like as the definition of questions'

metadata (see Code 1).

Fig. 3. Illustrative data model for structured records of values of

properties of products in eShops through characteristic text strings

Simple selection from a single database table of products

with limitations for that category would suffice in this case

instead of complicated SQL query (see Code 2).

17 PSQL – Procedural SQL - is the Firebird programming language used in

stored procedures, triggers and executable blocks, see [33], p. 303–315

select * from PRODUCTS where ID_CATEGORY = @idCat;

Code 2. Sample SQL query to select the data required for find

alternative products from the same category

Data from the database can even be loaded directly into the

desired object through the Entity Framework [23]. This object

is a dictionary in this case. The product ID is the key of this

dictionary and the value is product's characteristic text string

which contains encoded values of its properties (see Code 3).

using (var ctx = new DbContext())
 var otherProducts = ctx.PRODUCTS
 .Where(p => p.ID_CATEGORY = idCat)
 .ToDictionary(k => k.ID,
 v => v.VALUES_OF_PROPERTIES);

Code 3. Sample code for retrieve data from a database using LINQ

query with lambda expressions (C#)

The most similar alternatives to a particular product from

loaded data could then be determined by the application layer

through a simple algorithm (see Code 4). By transfer maxima

computations to the application layer is reduced the database

server workload, allowing easier scalability of the computing

power of the whole system [24].

public IDictionary<int, double> CalcDifferences(
 string pattern, Property[] properties,
 IDictionary<int, string> otherProducts)
{
 var result = new Dictionary<int, double>();
 foreach (var key in otherProducts.Keys)
 {
 string op = otherProducts[key];
 double totalDiff = 0;
 for (int i = 0; i < pattern.Length; i++)
 {
 double diff = Math.Abs(pattern[i] - op[i]);
 if (properties[i].Type == PropType.Nominal)
 diff = Math.Sign(diff);
 totalDiff += diff * properties[i].Weight;
 }
 result[key] = totalDiff;
 }
 return result;
}

Code 4. Sample code of method for calculating the differences from

other products (C#)

Method in the Code 4 receives as an input the characteristic

text string with encoded properties of the pattern product

(pattern), information (type and weight) about individual

properties in the given order (properties) and a list (dictionary)

of other products properties (otherProducts) loaded by the

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 97

Code 3. The method calculates the weighted differences for

each of the compared products and return it again as

a dictionary with ID of the products and values of their

differences from the pattern product.

When using the code table would, of course, was necessary

to convert the characters to numbers through special functions.

In this example, the characters are converted to numeric values

according to the ASCII18 table.

The resulting dictionary can then be sorted e.g. through

LINQ by method OrderBy and choice can be limited e.g. only

to 5 most similar products by method Take (see Code 5).

var alternatives = CalcDifferences(pattern, props, otherProds)

 .OrderBy(p => p.Value).Take(5);

Code 5. Sample code for ascending sort and a choice of five

alternatives the most similar of the product on the basis of similarities

calculated by method in Code 4

Function to calculate the weighted difference between the

two text strings it being possible to directly implement into the

database system. E.g. UDF19 exist for this purpose in RDBS

Firebird. The differences between the products could be

determined and the data according to this value directly sort

already within the SQL query. In the event that the value of

properties (all) were stored as a binary value, a computation of

the total difference could be even faster, because the

calculations can take place at the binary level.

B. License plate

The license plates of cars are consist of letters and numbers.

Most of camera systems can automatically read these license

plates by image analysis [25]. Only a region where the owner

of the vehicle resides is encoded in the license plate code and

the remaining characters are random [26]. The basic condition

is that any combination of characters must be unique and the

vehicle could be traced by the vehicle registry database.

Some of characters in the license plate could be used to

encode other information about the vehicle. For example, it

could include the identification of the manufacturer of the

vehicle, body color, year, type of vehicle, engine, etc. Multiple

values simultaneously could be encoded into one character.

If that were the case, then it would be much easier to uncover

a vehicle with stolen license plates, even without internet

connection (offline) e.g. with the help of applications in smart

mobile phone. This basic checks could then be carried out by

persons without access to the central registry of vehicles.

In the case of identification of the vehicle based on the

description of a witness who does not know its license plate,

part of it could be inferred based of his description of the car.

C. Genetic algorithms

Genetic algorithms could represent another area of use of the

characteristic text strings. Genetic algorithm is a heuristic

scientific method based on Darwin‘s biological evolutionism

18 ASCII – American Standard Code for Information Interchange

[27], which has been widely applied to solve high dimensional

optimization problem for parameter optimization in

engineering and science areas, such as building construction

[28] and biotechnology [29]. [30]

Genetic algorithm encodes individual cases to a so-called

chromosomes composed of individual genes when finding an

optimal solution [31]. These chromosomes are crossovered

among themselves, their genes are mutated, or they are

reproduced into the next generation.

For their interpretation in computer memory could be used

characteristic text strings. They therefore constitute

chromosomes and their individual characters would been their

genes. Most operations of genetic algorithms would be greatly

facilitated thanks to the above-described method of encoding

and comparing of elements.

VII. CONCLUSION

The characteristic text strings allow us to encode values of

properties of different objects into legible characters and to

mutually compare their similarities. The whole process was

demonstrated on comparing the basic characteristics of two

different people. The procedures and ways of practical use of

such strings were also presented used to generate more diverse,

rather than purely random test questions for the same tested

user. The same procedure can also be used for various tested

users during mass preparation of questions at the same time, for

a single IP address or a computer lab, as a precaution against

possible cheating. Other possible uses were outlined, including

various ways of implementation of the entire process or its

individual parts.

Thanks to the code strings, database structures can be

simplified. Support for searching and comparing these strings

directly by SQL functions should not be difficult to implement

in some database systems.

Comparing, however, is not always performed on the large

database of different subjects, but thanks to the ease of

portability of characteristic strings can be realised individually

“in the field”, e.g. using a mobile phone. In addition to text

characters for storing values, it is also possible to use other data

structures, e.g. barcode or QR code.

Thanks to the separation of the individual properties to the

individual characters, it is also possible to compare only certain

parts of them, independently of the rest without decoding the

whole string.

Areas of application are broad, and this principle can be used

wherever it is necessary to store and compare the cardinal or

nominal characteristics. These may include e.g. parameters of

goods, searching for people, vehicles, dating etc. Strings

encoding characteristics of objects with possibility of fast

mutual comparisons are also a very important part of genetic

algorithms, where this approach could also be applied.

19 UDF – User-Defined Functions – functions that are not internal to the
engine, but defined in separate modules, see [33], p. 328–334

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 98

REFERENCES

[1] P. Voborník, “Universal Testing Environment as an External Tool of

Moodle,” in 10th International Scientific Conference on Distance
Learning in Applied Informatics (DiVAI 2014), Štúrovo, Slovakia:

Wolters Kluwer, pp. 215–225, 2014, ISBN 978-80-7478-497-2.

Available: http://download.petrvobornik.cz/docs/clanky/2014-divai.pdf
[2] M. MacDonald, Pro Silverlight 5 in C#, 4th ed., New York: Apress, 2012,

ISBN 978-1-4302-3479-1.

[3] P. Voborník, “Universal Testing Environment,” Ph.D. dissertation,
Faculty of Informatics and Management, University of Hradec Králové,

Hradec Králové, Czech Republic, 2012. Available:

http://download.petrvobornik.cz/docs/disertace.pdf
[4] P. Voborník, “The computing model for intelligent selection of the testing

questions,” in The proceedings of the 14th international conference

MEKON 2012. Ostrava: VŠB-TUO, 2012, ISBN 978-80-248-2552-6.
Available: http://download.petrvobornik.cz/docs/clanky/2012-mekon.pdf

[5] M. Meloun and J. Militký, “Přednosti analýzy shluků ve vícerozměrné

statistické analýze,” in Sborník přednášek z konference Zajištění kvality
analytických výsledků, Medlov: 2 THETA, pp. 29–46, 2004, ISBN 80-

86380-22-X.

[6] Š. Hubálovský and E. Milková, “Modeling of a real situation as a method

of the algorithmic thinking development,” in Advanced Educational

Technologies, Proceedings of 6th WSEAS/IASME International

Conference on Educational Technologies (EDUTE’10), WSEAS Press,
Kantoui, Sousse, Tunisia, May 3-6, pp. 68–72, 2010, ISBN 978-960-474-

186-1, ISSN 1790-5109.

[7] F. Pavelka and P. Klímek, Aplikovaná statistika, Zlín: FaME, 2000, ISBN
80-214-1545-2.

[8] P. O’Neil, Database: Principles Programming Performance, San

Francisco: Morgan Kaufmann, 2014, ISBN 9781483184043.
[9] Š. Hubálovský and P. Hanzalova, “Modeling, simulation and

visualization of automatic cryptoanalysis of the short monoalphabetical

substituted cipher text,” International Journal of Mathematics and
Computers in Simulation, vol. 7, is. 2, pp. 134–143, 2013, ISSN 1998-

0159.

[10] L. L. Wen, X. Z. Ruo, K. Jian, T. Ling and H. C. Guang, “A Design of
Improved Base64 Encoding Algorithm Based on FPGA,” Applied

Mechanics and Materials, vol. 513–517, pp. 2220–2223, Feb. 2014, ISSN

1662-7482.
[11] D. Ashley. (2010, Sep. 20). Obfuscation used by an HTTP Bot.

Information Security Office [Online]. Available:

http://security.utexas.edu/consensus/Obfuscation.pdf.
[12] Š. Hubálovský, “Remote Contact Learning of Programming in Distance

Study,” in 10th International Conference Efficiency and responsibility in

education 2013: proceedings (ERIE 2013), Praha, Česká zemědělská
univerzita, pp. 210–217, 2013, ISBN 978-80-213-2378-0.

[13] E. Milková, “Multimedia applications as an effective complement to the

educational process,” in Advanced Educational Technologies,
Proceedings of 6th WSEAS/IASME International Conference on

Educational Technologies (EDUTE’10), WSEAS Press, Kantoui, Sousse,

Tunisia, pp. 62–67, May 2010, ISBN 978-960-474-186-1, ISSN 1790-
5109.

[14] E. Milková and O. Kořínek, “Students’ programming capabilities
evaluation,” in Efficiency and Responsibility in Education 2013, Czech

University of Life Sciences Prague, pp. 434–440, 2013.

[15] Š. Hubálovský, “Research of Methods of a Multidisciplinary Approach in
the Teaching of Algorithm Development and Programming,” in 9th

International scientific conference on distance learning in applied

informatics (DIVAI 2012), Nitra, Univerzita Konštantína Filozofa, pp.

147–156, 2012, ISBN 978-80-558-0092-9.

[16] Š. Hubálovský and J. Šedivý, “Algorithm Development and Computer

Simulation of Position Order Decoding of Mastermind Board
Game,” Applied Mechanics and Materials, vol. 333–335, pp. 1353–1356,

Jul. 2013, ISSN 1662-7482.

[17] R. Němec, M. Hubálovská and Š. Hubálovský, “User Interface of System
SMPSL,” in Communications and information technology (CIT 2014),

Salem: North Atlantic University Union, pp. 324–329, 2014, ISBN 978-

960-474-361-2.
[18] M. Halsey, Windows 10 Primer: What to Expect from Microsoft's New

Operating System, Apress, Apr. 2015, ISBN: 978-1-4842-1047-5.

[19] A. Badju and D. Lundberg, Shopping Using Gesture Driven Interaction,
Master’s Thesis, Department of Design Sciences, Lund University,

Sweden, May 2015.

[20] V. Diba and C. Wagner, “Success within App Distribution Platforms: The

Contribution of App Diversity and App Cohesivity”, in System Sciences
(HICSS), 2015 48th Hawaii International Conference, IEEE, pp. 4304–

4313, Jan. 2015, ISSN 1530-1605, DOI 10.1109/HICSS.2015.515.

[21] W. Kent, “A simple guide to five normal forms in relational database
theory,” Communications of the ACM, vol. 26, is. 2, New York, pp. 120-

125, Feb. 1983, DOI 10.1145/358024.358054.

[22] M. Hubálovská and Š. Hubálovský, “Implementation of the Systems
Approach in Mathematical Modeling, Dynamic Simulation and

Visualization Using MS Excel Spreadsheet,” International Journal of

Mathematics and Computers in Simulation, vol. 7, no. 2, pp. 267–276,
2013, ISSN 1998-0159.

[23] A. Adya, J. A. Blakeley, S. Melnik and S. Muralidhar, “Anatomy of the

ADO.NET entity framework”, in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, ACM, Beijing, China,

pp. 877–888, Jun. 2007, ISBN: 978-1-59593-686-8, DOI

10.1145/1247480.1247580.
[24] I.-H. Chung and J. K. Hollingsworth, “Automated cluster-based Web

service performance tuning”, in Proceedings of the 13th IEEE

International Symposium High performance Distributed Computing
2004, IEEE, pp. 34–44, Jun. 2004, ISBN 0-7695-2175-4, ISSN 1082-

8907, DOI 10.1109/HPDC.2004.1323484.

[25] S.-L. Chang, L.-S. Chen, Y.-C. Chung and S.-W. Chen, “Automatic
license plate recognition”, Intelligent Transportation Systems, IEEE

Transactions, IEEE, pp. 42–53, Mar. 2004, ISSN 1524-9050, DOI

10.1109/TITS.2004.825086.
[26] Act No. 56/2001 of Coll., “On the Conditions for the Operation of

Vehicles on the Road Network”, Collection of Laws, Czech Republic,
2001.

[27] J. A. Foster, “Evolutionary computation”, Nature Reviews Genetics, vol.

2, pp. 428–436, Jun. 2001, ISSN 1471-0056, DOI 10.1038/35076523.
[28] M. Manzan, “Genetic optimization of external fixed shading devices”,

Energy and Buildings, vol. 72, pp. 431–440, Apr. 2014, ISSN 0378-7788,

DOI 10.1016/j.enbuild.2014.01.007.
[29] K. H. Kucharzyk, R. L. Crawford, A. J. Paszczynski, T. Soule and T. F.

Hessa, “Maximizing microbial degradation of perchlorate using a genetic

algorithm: media optimization”, Journal of Biotechnology. vol. 157, issue
1, pp. 189–197, Jan. 2012, ISSN 0168-1656, DOI

10.1016/j.jbiotec.2011.10.011.

[30] L. Jiang, H.-H. Xiao, J.-J. He, Q. Sun, L. Gong and J.-H. Sun,

“Application of genetic algorithm to pyrolysis of typical polymers”, Fuel

Processing Technology, vol. 138, pp. 48–55, Oct. 2015, ISSN 0378-3820,

DOI 10.1016/j.fuproc.2015.05.001.
[31] J. Šedivý and G. Garant, “Computer Modeling, Simulations and Design

in the Engineering – Research of Selected Indicators,” International

journal of education and information technologies, vol. 7, is. 3, North
Atlantic University Union, pp. 98–106, 2013, ISSN 2074-1316.

[32] V. Strnadová, Interpersonální komunikace, Hradec Králové: Gaudeamus,

2011, ISBN 978-80-7435-157-0.
[33] P. Císař, InterBase / Firebird - Tvorba, administrace a programování

databází, Brno: Computer Press, 2003, ISBN 80-7226-956-1.

[34] T. Lammarsch, W. Aigner, A. Bertone, Miksch, S., Turic, T. and Gärtner,
J., “A Comparison of Programming Platforms for Interactive

Visualization in Web Browser Based Applications,” in International

Conference Information Visualisation, Washington DC: IEEE Computer
Society, 2008, ISBN 978-0-7695-3268-4.

Petr Voborník was born in the Czech Republic in 1982. He

received a master degree (Ing.) in Information Management and
a doctoral degree (Ph.D.) in Information and Knowledge

Management from the University of Hradec Králové in 2006

and 2012. He is now an Assistant Professor at the Department
of Informatics, Faculty of Science, University of Hradec

Králové. His current research interests include developing new algorithms and

mini-languages for optimization of electronic testing for his Universal Testing
Environment. He also participates in several researches as a programmer, he

teaches and popularizes programming and he creates independent applications

and games.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 99

http://download.petrvobornik.cz/docs/clanky/2014-divai.pdf
http://download.petrvobornik.cz/docs/disertace.pdf
http://download.petrvobornik.cz/docs/clanky/2012-mekon.pdf
http://security.utexas.edu/consensus/Obfuscation.pdf

