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Default contagion in financial networks
Chiara Benazzoli and Luca Di Persio

Abstract—The preset work aims at giving insights about how
the theory behind the study of complex networks can be prof-
itably used to analyse the increasing complexity characterizing
a wide number of current financial frameworks. In particular
we exploit some well known approaches developed within the
setting of the graph theory, such as, e.g., the Erdős and Rény
model, and the Barabási-Albert model, as well as producing
an analysis based on the evolving network theory. Numerical
simulations are performed to study the spread of financial peak
events, as in the case of the default of a single bank belonging to
a net of interconnected monetary institutions, showing how the
knowledge about the underlying graph theory can be effectively
used to withstand a financial default contagion.

Keywords—Financial networks, default spread, graph theory,
random graphs

I. INTRODUCTION

Modern monetary systems are characterized by a high
grade of interconnections between players that share finan-
cial products of heterogeneous type with high frequency also
exploiting fast communication channels. This leads to graph-
structures with a rather complicated topologies where each
node can be linked to a wide number of other ones by mean
of hedges with weights of quite different magnitude scale.
The latter implies that isolated peak events, that may occur
at a certain node in a given financial network, could spread
their effects along the whole structure. As an example, the
failure of a key bank may cause a big backlash to the
other institutions which are linked to it, hence leading to
a cascading failures and global financial crisis. Recently,
concrete examples of such a cascading phenomena have
been observed during the worldwide financial crisis of 2007-
2008, e.g., concerning the high negative impact caused by
the Lehman Brothers bankruptcy.

The present work is subdivided into the three following
sections: in Section II we show the reasons why complex
network theory can be usefully and naturally applied in order
to study financial nets of interconnected agents. Moreover,
following [1] and [2], some considerations about systemic
risk and risk contagion in banking network are discussed;
in Section III, the major mathematical results related to
the Erdős-Rény model, the Barabási-Albert model, and
those concerning the evolving network theory, are collected,
mainly following [3] and [4]; in Section IV, we generalise
the approaches proposed in [5] and [6], where the authors
analysed a static interbank network model to describe con-
tagion effects, by allowing to new banks to enter in the
network, establishing links with the ones already present in
the system. The latter dynamic will be shown to produce a
reduction in the number of the defaulting banks.
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II. BANKING NETWORK AND SYSTEMIC RISK

The increasing complexity of the banking systems has
suggested the use of approaches belonging to the graph
theory in general, with particular respect to the possibility of
exploiting results coming from the theory of random graphs,
see, e.g., [7, Chapt.5], and references therein.

The main idea is to represent a banking network by
associating to each financial institution composing it, e.g.,
insurance companies, banks, pension funds, etc., a vertex of
a graph whose connecting edges represent the liability or
the financial exposure financial player with respect to the
others. It follows that latter links can potentially become the
tie through which the distress of an individual component of
the net propagate to the others ones.

Our main goal is to understand how a bank’s failure may
damage the whole financial system or, in other words, to
analyse how the banking network reacts to the default of
one participant. The impact that the failure of a financial
institution has with respect to the stability of the whole
market of which it is a component is the so called systemic
risk. An unambiguous definition of the systemic risk is
rather difficult to give, since it depends on multiple factors
which vary in time as, e.g., the reflection of the market
movements and cycle trends caused by new regulatory
constraints. Moreover the systemic risk also varies in space,
according to specific regional, national or even international,
economic policies. Last but not least systemic risk depends
on a wide number of heterogeneous type of financial agents
which are interconnected by different types of links it can
be transmitted through. However, some key factors are
acknowledged as measures of how an institution represents
a possible source, or transmission vehicle, of systemic risk.
First of all, the size of the entity: the bigger is its the size
of the particular financial institution we are interested in,
the higher is the impact of its possible default. Secondly,
its degree of interconnection substitutability, namely its core
business function, e.g., banking, custody, fund management,
brokerage, clearing, etc. It is worth to mention that the
central bank and a small private bank play a significantly
different role in the banking network to which they con-
tribute.

Every financial collapse begins with the downfall of a
single player. The causes of this initial failure are many.
In particular they can be of exogenous type as in the case,
e.g., of recessions, wars, political crisis, etc., or they can
be originated within the financial system itself, as frauds or
misapplication of mathematical models. Analogously, there
are several ways through which these shocks can be spread
over the whole network. They can be divided into three
different classes:

i propagation due to a direct counterpart exposures: this
takes into account all the losses which may occur if
banks default in their obligations to other bank in the
interbank market;
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ii propagation due to asset price contagion: a failing bank
is forced to sell its assets at fire price, leading to a fall
in market prices and then affect the capital position of
the others banks which hold the same assets;

iii propagation due to liquidity hoarding: banks may reduce
the maturity of their loans or completely cut them, as
a defensive measure against future liquidity shortfall
and/or future defaults.

III. MATHEMATICAL MODELS

The way in which we build the topology of the graph mod-
els reflects the different possible scenarios for the specific
banking system considered. In what follows, we will focus
on the use of some random graph model from the financial
network perspective. Namely we will exploit the Erdős-
Rényi model, the Barabási-Albert model and a modification
of the latter which allows us to better understand the random
dynamics governed by financial failures and their related
spread through the network they are part of.

A. The Erdős-Rényi model

The random graph model proposed by Erdős and Rényi,
see [8], [4], defines an undirected random graph with a fixed
number N > 0 of nodes. The number n > 0 of connections,
or edges, is fixed a priori, while the configuration of the
network is chosen uniformly randomly from the possible
N(N−1)

2 alternatives.
In such a model the degree kb of a given node b is typically

modeled as a binomial random variable Bin(N − 1, p), p ∈
(0, 1) in order to avoid trivial settings, therefore the mean
network’s degree is given by E[k] = (N−1)p. Moreover the
expected number of nodes with degree k, denoted by #k,
turns out to be

E[#k] = N

(
N − 1

k

)
pk(1− p)N−1−k = λk .

As it is well known, if we consider the limit N → ∞, the
distribution of #k approaches a Poisson distribution with
parameter λK , and therefore the degree distribution reads as
follow

P (k) ' e−pN (pN)k

k!
= e−〈k〉

〈k〉k

k!
,

where 〈k〉 denotes the average degree of the graph.
Latter model can be used to represent networks of ho-

mogeneous institutions in a closed sector. Indeed since the
number of nodes N is fixed, the order of the graph do not
vary in time. The word homogeneous draws attention to
the similarity of the nodes because in this model they all
are treated equally. The latter follows from the fact that the
connection probability is equally chosen for all the nodes.
Latter scenario is rather reasonable if all the institutions
can be considered similar to each other in size, history and
budgets. In this context, an edge which is symmetric and
unweighted, may imply that the two banks share the same
assets,at least from a mere quantitative point of view, in their
respective portfolio.

If we consider a random graph structure as before, we
are left with considering the so called associated network
probability matrix which gives us, for every couple of
players acting in the financial network, the probability that
they can be connected. Of course the vice versa also holds,

namely a random graph can be built from a probability
matrix through its entries representing the associated edge
probabilities. By slightly modify such a matrix, the Erdős-
Rényi model can be extended to directed and/or weighted
graphs. We would like to underline that the just mentioned
two features are crucial for modeling banking network since
it is not always the case that the relation of two financial
institutions is symmetric. The latter implies that, exploiting
directed edges, we can distinguish lending from borrowing
banks. Moreover, by made use og weighted networks, we
can relate the weight of each edge to the respective loan
amount.

Examples of weighted and directed random graph are
considered in, e.g., [6] and [5], where the authors consider
each node, namely each bank, with a simplified balance sheet
summarizing related financial conditions. The assets of each
bank are divided into two main categories, the interbank
loans and the external assets, whereas the liabilities are split
into the interbank borrowing and the customer deposits.
Then an institution in the network is solvent as long as
its net worth, or capital, stays positive. The weights of the
directed edges represent the volume of the loans. A failing
bank transmits a shock which is supposed to be equally
subdivided to all its creditors. This may lead to a domino
cascade if a creditor bank, which cannot lose more than it
lent to the failing bank, cannot withstand the loss. We study a
generalisation of such a model in Section IV, also providing
related insightful numerical simulations in Subsection IV-C.

B. The Barabási-Albert model

It is worth to mention that, from the financial modeling
point of view, one of the major drawback affecting the
random graph theory, concerns its inability to represent the
scale-free nature, i.e. the so called power law behaviour,
of the degree distribution, which is known to characterize,
in particular, real-world, financial networks, see, e.g., [9,
Chapt.5].

The two main causes leading to a power law degree
distribution, are the ability of a network to growth by
adding new nodes, and the so-called preferential attachment
characteristic. The preferential attachment, in contrast to the
random one, models the growth behaviour of the graph by
letting the connection (between vertices) probabilities Π(k)
to depend on the degree of the nodes themselves. The latter
implies that, depending on the particular network we are
dealing with, a new node may be more likely to link with a
highly connected node, resp. to a lowly connected one. From
a modeling point of view, the understanding of what are the
conditions that lead Π(k) to be an increasing or a decreasing
function in k, is a rather delicate question. Concretely, it
is reasonable to suppose that Π should be increasing with
respect to a bank with a high level of exposure since it is
more likely that it continues to raise is relevance compared
with other banks characterized by lower degrees. The latter
aspect reflects the fact that an elevated number of edges
stand for a high level of trust in the bank soundness by
almost all the institutions acting in the same net. Previous
approach is empirically witnessed by collective aggregation
phenomena by imitation, namely since a large number of
players simultaneously trust in the financial capabilities of
another one, then suddenly others players add to the former,
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hence amplifying such a phenomena during time, in a
sort of avalanche dynamic which also produces heavy tails
phenomena, how it has been pointed out in, e.g., [10], [11],
[12], etc .

Previously described phenomena can be studied by mean
of the Barabási-Albert model which is particularly well
suited for the representation of the banking system of
developing economies. New institutes are free to enter and
they are more likely to clinch deals with older and highly
connected banks. At time t = 0, few financial institutions,
let us indicate them by a the constant N0 > 0, are already
present in the system. At every time step, e.g. at every
month or trimester, a new node enters in the system and it is
connected to 0 < n < N0 different nodes. The preferential
attachment is modeled by an increasing linear function in
the degree distribution, i.e. Π(kb) = kb∑

i∈B ki
. Since at every

time the degree of a node b increases if a new node enters
the system and links to it and this happens with probability
Π(kb), then kb has to satisfies

∂kb
∂t

= nΠ(kb) = n
kb∑N−1
i=1 ki

,

where k is thought as a continuous variable. Assuming that
the node b is introduced at time tb, then its initial condition
is given by kb(tb) = n, therefore, by solving the related
Cauchy problem, we have that

kb = n

√
2t+ 2 e0n − 1

2tb + 2 e0n − 1

and the degree distribution is given by

P (k) =
∂P(kb(t) < k)

∂k
=
n2

k3

(
2t+ 2

e0
n
− 1
)
,

so that, taking the limit t → ∞, we asymptotically have
P (k) ∼ 2n2k−3. Therefore, the Barabási-Albert model leads
to an asymptotic degree distribution that is independent
on time, as well as on the system size, implying that the
network reaches a stationary scale-free state. It is worth
to mention that also the Barabási-Alber model shows clear
limits in representing banking systems. As an example,
financial networks are of finite size and, in addition, we can
not expect that the attachment mechanism is time invariant,
while the whole financial structure does. A second major
lack concerns the properties of the power-law distribution
implied by the model itself, which has lead us to formulate
the new approach presented in the next section.

C. The theory of evolving network

One limitation of the Barabási-Albert model is the fact
that exponent of the power-law degree distribution is a fixed
constant (equal to 3) while real networks shows different
values for this parameter, usually between 1 and 3. One way
to modify this feature consists in modeling the preferential
attachment mechanism in a different way, namely exploiting
a power law probability distribution of the form: Π(k) ∼ kα.
However in order to preserve the scale-free nature of the
network the preferential attachment has to be asymptotically
linear, i.e. π(kb) ∼ akb as kb → ∞. The latter implies that
the rate equation leads to P (k) ∼ k−γ where γ = 1 + µ

a ,
where the α-th moment of Nk(t) satisfies

∑
k k

αNk(t) =
µt, as t→∞.

We would like to underline that there are other interesting
features that a financial network may share, which we have
not examined so far, namely the initial attachment and the
growing rate property. Notice that in a real network a new
node may link to an isolated node, which is not the case
in the Barabási-Albert approach, since Π(0) = 0. The latter
could be, e.g., the preferential behaviour followed by new
players which enter the system, and are characterized by
a high propensity to risk, hence supposing that isolated
financial agents already in the net, can offer them risky
investments, but with a potential high remuneration. More-
over real networks grow differently from one another, while
the Barabási-Albert model is characterized by a constant
rate of growth. As an example, accelerated growth means
that the average degree of the network increases in time,
equivalently that the number of edges increases at a faster
rate than the number of nodes. In a banking network the
latter represents the possibility for a bank, which is already
in the system, to add new links, hence to start financial
interactions with new institutions in addition to those already
in place. Besides personal goals of each bank, as well
as unpredictable changes in the market regulation, may
suggest to some institution to change their deals, to find
new commercial partners or to close some of the existing
ones, moreover we have also to take into account that most
of the interbank transactions happened relatively quickly
compared to more standard contracts as in the case of
those stipulated between an institution and a private for an
house loan. From the point of view of the graph topology,
the aforementioned changes imply additions, removals and
rewiring of the edges. In what follows we will show how to
modify the standard Barabási-Albert model in order to taken
into account previous dynamics. At the initial time t = 0, the
network system is composed by N0 > 0 nodes and 0 edges.
At every time step one of the following three possibilities is
realized:

i 0 ≤ n ≤ N0 edges are added with probability p ∈ (0, 1),
moreover each of them is linked to a node randomly
selected using a uniform distribution, while a node
is chosen with probability depending on its degree
Π(kb) := kb+1∑

i(ki+1) ;
ii with probability q ∈ (0, 1 − p), n ≤ N0 contracts are

rewritten, i.e. a uniformly chosen financial institution b
rescinds a contract, and then the correspondent edge is
removed, from a randomly selected counterpart, replac-
ing it with a new contract, therefore a new edge is added,
with a different party chosen with probability Π(kb);

iii with probability 1−p−q a new financial institution enters
in the system, underwriting 0 ≤ n ≤ N0 contracts with
players, already in the system, which are are selected
at random with probability Π(ki), according on their
degree.

The dynamic characterized by the aforementioned rules (i)-
(iii), leads to the following equation

∂kb
∂t

= (p− q) n
N

+ nΠ(kb) ,

whose solution is given by

kb(t) = (A(p, q, n) + n+ 1)

(
t

tb

) 1
B(p,q,n)

−A(p, q, n)− 1 ,
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where

A(p, q, n) = (p− q)
(

2n(1− q)
1− p− q

+ 1

)
,

and

B(p, q, n) =
2n(1− q) + 1− p− q

n
,

so that the corresponding degree distribution is given by

P (k) ∼ (k +A(p, q, n) + 1)−B(p,q,n)−1 ,

see [3] for further details.
As a final remark, let us note that in the Barabási-

Albert model, one fundamental hypothesis is the monotonic
increasing development of the network, which is not a
realistic assumption for a financial network in general, and
for a interconnected set of banks in particular. In fact, from
a realistic financial perspective, every private institution is
subjected to potential failure which may substantially modify
its contracts structure, even in the case when such a failure
does not cause the permanent default of the associated bank.
The latter implies the possible cut of a certain number of
edges, namely of links between such a bank and institutions
previously linked to it. Concerning such an approach, in [13],
the authors studied some examples of undirected networks
where existing edges are withdrawn and they obtained that,
in the limit, the considered model still has a scale-free nature
where the degree exponent depends on how the removing
rate has been chosen.

1) Competition: In the interbank lending market, banks
borrow and lend money between each other in order to
manage liquidity and satisfy regulations such as reserve
requirements. As long as banks lend money to each other,
the interbank market can be considered rather stable. Never-
theless such an equilibrium point should be considered as an
unstable equilibrium, in fact its stability greatly depends on
a number of heterogeneous factors, both exogeneous and en-
dogeneous. If the combined action of such factors determines
a sufficiently large perturbation, then market crashes, banks
reduce their loans and start competing with each other to find
the necessary liquidity. In such a scenario, following, e.g.,
the work by Bianconi and Barabási, [14], each bank should
be characterized by a so called fitness parameter, tipically
indicated by η, namely a credit rating, depending on qualita-
tive information as, for example, the institute history, its type
of governance, its multiannual planning, and on quantitative
information, such, e.g., its financial statements or its ability
to compete with its counterparts. The introduction of this
parameter embodies another important feature: it allows to
young but solid banks, namely nodes which have been later
introduced in the network but characterized by high financial
performances, to quickly acquire new edges.

According with latter idea, at every time step a new
institution b enters the network embedded with a fitness pa-
rameter ηb, which is chosen from a priori stated distribution
ρ(η).

Such a new entry is then linked to n > 0 different
institutes that are already part of the system, with probability
Π(i) = ηiki∑

j ηjkj
.

The continuum theory for the rate of the b’s degree implies

∂kb
∂t

= n
ηbkb∑
j ηjkj

.

Denoted with tb its entering time and then considering the
initial condition kb(tb) = n, the unique solution for kb is
given by

kb(t) = n

(
t

tb

)β(ηb)
,

where
β(η) =

η

ρ(η)
η

1− β(η)
dη

.

IV. BANKING SYSTEM AND SIMULATION MODELING

In what follows we provide an improved model of banking
network in which, as the main difference with respect to the
work cited so far, we allow for new banks to enter in the
network, for a total number that it is upper bounded and
strictly depends on the state of the system.

It follows that previous mathematical results cannot be
applied to our model, and we underline that considering
entering nodes and preferential attachment mechanisms, al-
low to obtain new insights concerning more realistic banking
network dynamics.

A. Banking system and balance sheets

We consider a fixed number N0 ∈ N+ of financial
institutions, which are the nodes of the financial network.
For simplicity, we will call them banks in what follows.
Therefore, as explained in previous sections, each edge
represents a weighted directional lending between the two
banks. We assume that the probability pij that two ordered
banks i and j close a contract in which i lends money to
j, is constant across all pairs (i, j) and therefore, it will
simply denoted by p ∈ (0, 1). The latter implies that we are
considering homogeneous banks.

The balance sheet of each bank depends on three exoge-
nously imposed parameters, namely θ, γ and E, as explained
in the following paragraphs.

The assets of each bank i, denoted by ai, are composed of
the external assets ei and of the interbank assets ii, that are
the borrowing from the other banks, whereas its liabilities
li consists of the customer deposits ci and the interbank
borrowing bi. The capital buffer, or net worth ci, is the excess
of assets over liabilities. By the balance sheet identity ai =
li + ci. The solvency condition for bank i means that the
capital buffer has to be positive.

The total external assets of the banking system and their
percentage in total assets are fixed, and denoted by E and
1 − θ respectively. Naturally it follows that θ represents
the percentage of interbank assets in total assets. Moreover
we assume that the borrowings/loans between one and one
another are all of the same size w. This magnitude is
computed as the ratio between the total interbank exposure
and the number of links in the graph.

By knowing w and the structure of the network we can
compute the interbank assets and borrowings of each bank
i, in fact they are proportional by w to its out-degree and its
in-degree, respectively.

The external assets of each bank i are defined as follow

ei := bi − ii +
E −

∑N0

i=1 bi − ii
N0

,
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which means that ei equals the difference of its borrowing
and its loans, plus an amount which is equal for all the banks,
so as to meet the constraint E =

∑N
i1
ei.

Eventually, the net worth of each bank is set as a fixed
proportion γ of total assets at bank level, i.e. ci = γai, and
their consumer deposits are computed to meet the balance
sheet identity, i.e. di = ai − ci − bi.

B. Transmitting and withstanding shocks

In the first phase, e.g. as result of a fraud, an initial shock
hits one (evenly randomly chosen) bank, say the node i,
wiping out all the value associated to its external assets. The
volume of this shock is denoted by si. This loss is absorbed
by the net worth of the bank, ci. If this is not enough to
cover the shock, namely if ci < si, the bank i defaults and
the residual shock si − ci is transmitted to its creditors.

In the second phase, the residual shock is distributed
equally between the defaulting bank’s creditors, then its k
creditor banks experience a shock sj given by

sj = min

(
si − ci
k

,w

)
.

Note that a creditor bank cannot lose more than it has lent
at first. As before, the system suffers further failures if any
of the k creditors cannot withstand the transmitted shock,
which happens if sj > cj , for the same j. If the latter
happens, than the correspondent, insolvent, banks transmit
their residual shock in a third phase and so on and so forth.
As a consequence, such a mechanism may lead to a domino
falling.

Nevertheless, from the second phase on, we assume that
when, and even if, a bank in the network defaults, new
banks are willing to enter in the system. The random number
of entering banks is distributed according with a Gamma
distribution, with parameters (k̂, θ̂), where

k̂ =

(
Number of defaults in this phase

Initial number of banks in the network

)−1
× 10 ,

and θ̂ = 1.
The balance sheet of the new entering banks is built as

follows. The current state of the network and the average
balance sheet of the still working banks are computed and
used as a benchmark. Since the network is facing a period of
crisis, we assume that the banks which enter in the system
bring new cash in the interbank lending market. Therefore
they lend more money than they borrow: in particular we
assume that its in-degree and the out-degree are the average
degree of the node, rounded down and up respectively. The
volume of each loan/borrowing is still w. We assume that
the probability for these bank of closing a deal with a
counterpart i depends on the state of bank i, according to
a fitness parameter, i.e. a credit rating, Π(i). In our model,
the fitness parameter Π(i) is defined by

Π(i) = q
ci∑
k ck

+ (1− q) bi + ii∑
k bk + ck

,

where q is a positive value q ∈ [0, 1]. Note that for a bank
i is easier to close a deal if its net worth is high and if it
has already a lot of loan agreements with the other banks in
the network. Indeed the latter denotes a good state of i as
counterparty.

TABLE I
SUMMARY OF THE PARAMETERS’ VALUES

Parameter Benchmark Value
N0 25
p 0.2
E 100000
γ 5%
θ 20%

Percentage net worth
0% 1% 2% 3% 4% 5% 6%
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um
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25
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without entering banks

Fig. 1. Number of defaults for γ ∈ [0, 0.06]

Lastly, the volume of the external assets of the new banks
equals the average volume of the external assets of the initial
N0 banks, namely it equals E

N0
moreover, their net worth and

their customer deposits are computed as before.

C. Simulations

Summing up the peculiarities of the proposed model, it
follows that its characteristics can be summarized by five
parameters:

• N0, the initial number of banks in the network;
• p, the connection probability between any two nodes;
• E, the total external assets;
• γ, the percentage of net worth to total assets;
• θ, the percentage of interbank assets to total assets.

As a benchmark we consider the case when the aforemen-
tioned parameters take values as in Table I. The value of q
in the fitness parameter is set equal to 0.5. We perform 500
simulations for each set of parameters (N0, p, E, γ, θ) and
we report the average number of defaults among the initial
N0 banks. The obtained result is compared to the number
of defaults when no new banks enter in the network.

1) Impact of bank capitalization: Figure 1 shows how
many banks, among the initial N0 banks, default during the
crisis as a function of the bank capitalization, i.e. γ, both
when new banks enter in the system and when they do not.
It can be seen that mechanism which allows new banks to
enter the system, slows down the contagion transmission.

First, in our model the entering banks in each phase
are few and they are not enough to completely stop the
cascade falling. Second, the new banks enter in the system
from phase II on, therefore they simply can not avoid the
phase II defaults. It follows that, when the initial shock is
significantly hight and leads to the completely default of the
system, i.e. when the number of defaults equals the initial
number of nodes N0, or when the initial shock is as irrelevant
that even the first hit bank is able to withstand it, the liquidity
which the entering banks take into the system has no impact
on the number of defaulting banks.
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Fig. 2. Number of defaults as function of p whenγ = 1%
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Fig. 3. Number of defaults as function of p when γ = 3%
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2) Impact of connectivity: Figures 2 and 3 shows the
number of defaulting banks, between the N0 that are in
the network at time t = 0, as a function of the connection
probability p. Also in this case, both when γ = 0.03 and
when γ = 0.01, the entry of new banks decreases the average
number of defaulting banks.

All the previous considerations concerning the role of
the entering banks are still valid here. The mitigation of
contagion effect of the entering banks is evident especially
for p ∈ [0.08, 0.40] and p ∈ [0.05, 0.15] when γ equals 1%
and 3%, respectively.

V. CONCLUSIONS

We have exploited the theory behind the approaches
proposed by Erdős and Rény, and by Albert, and Barabási,
in the context of random graph analysis, mainly with the
aim to study the spread of default in highly interconnected
scenarios. Latter setting can be widely observed when study-
ing modern financial networks, in particular with respect to
the description of the complexity of their interconnections.
Nevertheless the aforementioned approaches are lacking of
basic properties that characterize real financial markets, in
particular with respect to the possibility to allow for the
non deterministic entering of new players establishing a
randomly chosen number of links. Such a generalisation,
allow to better describe the dynamic originated by the failure
of a big financial institution, as in the case of a central bank,
within the financial network of which it is part of.
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