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Abstract—The asymptotic minimax theorem for Bernoully two-
armed bandit problem states that the minimax risk has the order N1/2

as N → ∞, where N is the control horizon, and provides lower
and upper estimates. It can be easily extended to normal two-armed
bandit. For normal two-armed bandit, we generalize the asymptotic
minimax theorem as follows: the minimax risk is approximately equal
to 0.637N1/2 as N →∞.

Keywords—two-armed bandit problem, control in a random envi-
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I. INTRODUCTION

WE consider the two-armed bandit problem (see, e.g.
[1], [2]) which is also well-known as the problem of

expedient behavior in a random environment (see, e.g. [3],
[4]) and the problem of adaptive control (see, e.g. [5], [6]) in
the following setting. Let ξn, n = 1, . . . , N be a controlled
random process which values are treated as incomes, depend
only on currently chosen actions yn (yn ∈ {1, 2}) and are
normally distributed with probability densities

f(x|m`) = (2π)−1/2 exp
{
−(x−m`)2/2

}
,

if yn = ` (` = 1, 2). So, this is the so-called normal
(or Gaussian) two-armed bandit. It can be described by a
vector parameter θ = (m1,m2). The goal is to maximize
(in some sense) the total expected income. Control strategy
σ at the point of time n assigns a random choice of the
action yn depending on the current history of the process,
i.e. replies xn−1 = x1, . . . , xn−1 to applied actions yn−1 =
y1, . . . , yn−1:

Pr(yn = `|yn−1, xn−1) = σ`(yn−1, xn−1),

` = 1, 2. The set of strategies is denoted by Σ.
If parameter θ is known then the optimal strategy should

always apply the action corresponding to the larger value of
m1, m2. The total expected income would thus be equal to
N(m1 ∨m2). If parameter is unknown then the loss function

LN (σ, θ) = N(m1 ∨m2)− Eσ,θ

(
N∑

n=1

ξn

)
describes expected losses of total income with respect to its
maximal possible value due to incomplete information. Here
Eσ,θ denotes the mathematical expectation calculated over the
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measure generated by a strategy σ and a parameter θ. The set
of parameters is assumed to be the following

Θ = {θ : |m1 −m2| ≤ 2C},

where 0 < C < ∞. Restriction C < ∞ ensures the
boundedness of the loss function on Θ.

According to the minimax approach the maximal value
of the loss function on the set of parameters Θ should be
minimized over the set of strategies Σ. The value

RM
N (Θ) = inf

Σ
sup
Θ

LN (σ, θ) (1)

is called the minimax risk and corresponding strategy (if it
exists) is called the minimax strategy. The minimax approach
to the problem was proposed by H. Robbins in [7]. This article
caused a significant interest to considered problem. The classic
object of the most of arisen articles was the so-called Bernoulli
two-armed bandit which can be described by distribution

Pr(ξn = 1|yn = `) = p`, Pr(ξn = 0|yn = `) = q`,

p` + q` = 1, ` = 1, 2. Such bandit is described by a parameter
θ = (p1, p2) with the set of values Θ = {θ : 0 ≤ p` ≤ 1; ` =
1, 2}. It was shown in [8] that explicit determination of the
minimax strategy and minimax risk is practically impossible
already for N > 4. However, the following asymptotic
minimax theorem was proved by W. Vogel in [9]:

Theorem 1: The following estimates hold as N →∞ for
Bernoulli two-armed bandit:

0.612 ≤ (DN)−1/2RM
N (Θ) ≤ 0.752 (2)

with D = 0.25 being the maximal variance of one-step
income. Presented here the lower estimate was obtained in
[10]. The upper estimate was obtained in [9] for the following
strategy.

Thresholding strategy. Use actions turn-by-turn until the
absolute difference between total incomes for their applica-
tions exceeds the value of the threshold α(DN)1/2 or the
control time expires. If the threshold has been achieved and
the control time has not expired then at the rest of the control
horizon use only the action corresponding to the larger value
of total initial income. The optimal value of α is α ≈ 0.584
and the maximal value of expected losses corresponds to
|m1 −m2| ≈ 3.78(D/N)1/2.

Remark 1: The estimates (2) can be easily extended to
considered normal two-armed bandit with a glance that D = 1
in this case.

There are some different approaches to robust control in
the two-armed and multi-armed bandit problems, see, e.g.
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[6], [11], [12], [13]. In these articles stochastic approximation
method and mirror descent algorithm are used for the con-
trol. Instead of minimax risk, the authors often consider the
equivalent attitude called the guaranteed rate of convergency.
The order of the minimax risk for these algorithms is N1/2

or close to N1/2.
The goal of the present paper is to improve the estimates (2)

for the normal two-armed bandit. We propose the following
estimate:

lim
N→∞

(DN)−1/2RM
N (Θ) ≈ 0.637. (3)

The structure of the paper is the following. In section II
we present the approach based on the main theorem of
the theory of games. This approach allows to determine
explicitly the value of the minimax risk as Bayesian one
calculated over the worst-case prior distribution. In section III
we present the estimate (3) for the case of close expectations
|m1−m2| ≤ 2cN−1/2. In section IV we consider the control
at the initial stage which allows to generalize the estimate (3)
to distributions which expectations are not obligatory close,
i.e. |m1 −m2| ≤ 2C. Section V contains conclusion.

II. MAIN THEOREM OF THE THEORY OF GAMES
BASED ON APPROACH

Another well-known approach to the problem is a Bayesian
one. Denote by Λ a prior distribution of the parameter on the
set Θ. The value

RB
N (Λ) = inf

Σ

∫
Θ

LN (σ, θ)Λ(dθ) (4)

is called Bayesian risk and corresponding strategy is called
Bayesian strategy. Bayesian approach is very popular one
because it allows to write recursive equations for determination
of both Bayesian strategy and Bayesian risk by a dynamic pro-
gramming technique. Both minimax and Bayesian approaches
are integrated by the main theorem of the theory of games.
According to this theorem the minimax risk (1) is equal to the
Bayesian risk (4) calculated over the worst prior distribution
corresponding to the maximum of the Bayesian risk. And the
minimax strategy is equal to corresponding Bayesian strategy
as well.

Determination of the minimax strategy and minimax risk
as Bayesian ones corresponding to the worst-case prior dis-
tribution was considered in [14], [15], [16], [17]. To present
these results, it is convenient to modify parameterization. Let
m1 = m + v, m2 = m − v, then θ = (m + v,m − v)
and Θ = {θ : |v| ≤ C}. It was proved in [14], [15]
that asymptotically the worst prior distribution density can be
chosen the following

νa(m, v) = κa(m)ρ(v), (5)

where κa(m) is the uniform density on the interval |m| ≤ a,
ρ(v) is a symmetric density (i.e. ρ(−v) = ρ(v)) on the interval
|v| ≤ C and a →∞.

In the sequel, we consider strategies which at the initial
stage apply both actions turn-by-turn M0 times and the apply

each chosen action M times. If incomes arise sequentially,
one-by-one, these strategies allow to switch actions more
rarely. If incomes arise by groups, these strategies allow their
parallel processing.

Denote by n1, n2 total numbers of both actions applications,
by X1, X2 corresponding total incomes. The above kind of
a prior distribution density (5) results in the fact that control
at the time point n = n1 + n2 is completely described by a
triple (U, n1, n2) with U = (X1n2 −X2n1)n−1.

Determination of the Bayesian strategy and Bayesian risk
may be done as follows. Let’s introduce the following change
of variables: ε0 = M0N

−1, ε = MN−1, t1 = n1N
−1,

t2 = n2N
−1, t = nN−1, u = UN−1/2, w = vN1/2,

c = CN1/2, %(w) = N1/2ρ(v). Denote by fD(x) :=
(2πD)−1/2 exp(−x2/(2D)) a probability density of normal
distribution. The following theorem, which was proved in [14],
[15], holds.

Theorem 2: The optimal strategy at initial stage t ≤ 2ε0

(n ≤ 2ε0N) applies actions turn-by-turn. In the sequel it can
be determined by solving the following recursive Bellman-type
equation:

rε(u, t1, t2) = min
`=1, 2

r(`)
ε (u, t1, t2), (6)

where r
(1)
ε (u, t1, t2) = r

(2)
ε (u, t1, t2) = 0 if t1 + t2 = 1 and

then

r
(1)
ε (u, t1, t2) = εg(1)(u, t1, t2)

+

∞∫
−∞

rε(x, t1 + ε, t2)fεt22t−1(t+ε)−1(u− x)dx,

r
(2)
ε (u, t1, t2) = εg(2)(u, t1, t2)

+

∞∫
−∞

rε(x, t1, t2 + ε)fεt21t−1(t+ε)−1(u− x)dx

(7)

if t1 + t2 < 1. Here

g(`)(u, t1, t2)

=
∫ c

0

2w exp
(
(−1)`2uw − 2w2t1t2t

−1
)
%(w)dw,

` = 1, 2. When t > 2ε0 (n > 2ε0N) then the `-th
action is currently optimal, iff r

(`)
ε (u, t1, t2) has smaller value

(` = 1, 2). Bayesian risk corresponding to the worst-case prior
distribution is calculated according to the formula

N−1/2 lim
a→∞

RB
N (νa(m, v)) = 2l(%, ε0) + sε(%, ε0), (8)

where

2l(%, ε0) = 4ε0

∫ c

0

w%(w)dw,

sε(%, ε0) =
∫ ∞

−∞
rε(u, ε0, ε0)f0,5ε0(u)du

are expected losses at initial (t ≤ 2ε0) and at final (t > 2ε0)
stages of control respectively.
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III. LIMITING DESCRIPTION

Let’s denote by r(%;u, t1, t2) the Bayesian risk dependent
on a prior distribution %(w). The following results were
obtained in [15], [16], [17] for the set of close expectations
ΘN = {|m1 −m2| ≤ 2cN−1/2}.

Lemma 1: For all u, t1, t2, for which the solution
to equation (6), (7) is well defined, there exist limits
r(%;u, t1, t2) = lim

ε→0
rε(%;u, t1, t2), which can be extended by

continuity to all u, t1, t2 (t1 > 0, t2 > 0, t1 + t2 < 1). These
limits are uniformly bounded and satisfy Lipschitz conditions
in u.

Remark 2: This means that control becomes almost op-
timal if ε0, ε are small enough, e.g. equal to 0.02. Actually, it
means that control is almost optimal if it is implemented by
groups in 0.02−1 = 50 stages.

Theorem 3: The minimax risk on the set of close expec-
tations ΘN = {|m1 −m2| ≤ 2cN−1/2} satisfies the estimate

lim
N→∞

N−1/2RM
N (ΘN ) = sup

%
r(%; 0, 0, 0), (9)

where r(%; 0, 0, 0) = lim
ε0→0

r(%; 0, ε0, ε0).
The formula (9) allows to obtain the estimate (3) on the

set of close expectations. However, we need formulas to
calculate the limiting Bayesian risk r(u, t1, t2). Let’s assume
that rε(u, t1, t2) has continuous partial derivatives of proper
orders and show that equations (7) may be reduced to the form

r
(1)
ε (u, t1, t2) = rε(u, t1 + ε, t2)

+
εt22

2t(t + ε)
× ∂2rε(u, t1 + ε, t2)

∂u2

+εg(1)(u, t1, t2) + o(ε),

r
(2)
ε (u, t1, t2) = rε(u, t1, t2 + ε)

+
εt21

2t(t + ε)
× ∂2rε(u, t1, t2 + ε)

∂u2

+εg(2)(u, t1, t2) + o(ε).

(10)

Let’s check up the first equation (10). For this purpose we
present rε(u− x, t1 + ε, t2) as Taylor series:

rε(u− x, ·) = rε(u, ·)− x× ∂rε(u, ·)
∂u

+
x2

2
× ∂2rε(u, ·)

∂u2
+ o(x2).

(11)

Noting that∫ ∞

−∞
fε(x)dx = 1,

∫ ∞

−∞
xfε(x)dx = 0,

∫ ∞

−∞
x2fε(x)dx = ε,

and substituting (11) into the first equation (7), one obtains

r
(1)
ε (u, t1, t2) = εg(1)(u, t1, t2)

+

∞∫
−∞

rε(u− x, t1 + ε, t2)fεt22t−1(t+ε)−1(x)dx

= εg(1)(u, t1, t2) + rε(u, t1 + ε, t2)

+
εt22

2t(t + ε)
× ∂2rε(u, t1 + ε, t2)

∂u2
+ o(ε),

i.e. the first equation (10) is valid. The validity of the second
equation (10) is checked up in a similar way. Recall now that
equations (10) should be complemented by equation (6) which
can be written as

min
`=1, 2

(r(`)
ε (u, t1, t2)− rε(u, t1, t2)) = 0,

and as ε ↓ 0 we obtain the differential equation for r =
r(u, t1, t2):

min
`=1, 2

(
∂r

∂t`
+

t2
`

2t2
× ∂2r

∂u2
+ g(`)(u, t1, t2)

)
= 0 (12)

with ` = 3− ` and with initial and boundary conditions

r(u, t1, t2)‖t1+t2=1 = 0,
r(∞, t1, t2) = r(−∞, t1, t2) = 0.

(13)

Note that the `-th action should be chosen if the `-th member
in the left-hand side of (12) has minimal value.

To calculate numerically r(u, t1, t2) one should use the
following equation based on (6), (10):

r(u, t1, t2) = min
`=1, 2

r(`)(u, t1, t2), (14)

r(1)(u, t1, t2) = r(u, t1 + ∆t, t2)

+∆t

(
t22 ×D2r(u, t1 + ∆t, t2)

2t(t + ∆t)
+ g(1)(u, t1, t2)

)
,

r(2)(u, t1, t2) = r(u, t1, t2 + ∆t)

+∆t

(
t21 ×D2r(u, t1, t2 + ∆t)

2t(t + ∆t)
·+g(2)(u, t1, t2)

)
.

(15)

with

D2r(u) =
r(u + ∆u)− 2r(u) + r(u−∆u)

∆u2
,

and with initial and boundary conditions (13).
Calculations of r(%;u, t1, t2) according to formulas (14),

(15) were implemented with ∆u = 0.023, ∆t = 2000−1,
ε0 = 0.001 for |u| ≤ 2.3. It was assumed that %(w) is
degenerated distribution density concentrated at two points
w = ±d. For 0.5 ≤ d ≤ 2.5 maximum of 2dε0+r(%; 0, ε0, ε0)
was approximately equal to 0.637 at d ≈ 1.57.

IV. PARALLEL PROCESSING AND CONTROL
AT THE INITIAL STAGE

First, let’s explain why normal two-armed bandit is con-
sidered. The problem is investigated in application to control
of large data items processing. Let T = NK items of data
be given which may be processed by one of two alternative
methods. Processing may be successful (ξ′t = 1) or unsuc-
cessful (ξ′t = 0). Probabilities of successful and unsuccessful
processing depend only on chosen methods (actions), i.e.
Pr(ξ′t = 1|yt = `) = p`, Pr(ξ′t = 0|yt = `) = q`, ` = 1, 2.
Assume that one knows that p1, p2 are close to p (0 < p < 1).
We partition all data items into N packages each containing
K data items. For parallel data processing in each package
we use the same method. For control we use the values of
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Fig. 1. Ordinary control and control using modified Vogel’s strategy

the process ξn = (DK)−1/2

nK∑
t=(n−1)K+1

ξ′t, n = 1, . . . , N

with D = p(1 − p). According to the central limit theorem
distributions of ξn, n = 1, . . . , N , are close to normal ones
and their variances are close to unity just like in considered
setup.

This control is described by equation (6), (7) with ε = ε0 =
N−1 and may be close to optimal for moderate N , e.g. for
N = 50. However, at initial stage actions are applied turn-by-
turn. Therefore corresponding losses are equal to K|p1 − p2|
and may be greater than the minimax risk 0.637(DT )1/2 for
sufficiently distant p1, p2. For example, if T = 50000, N =
50, K = 1000, D = 0.25, |p1 − p2| = 0.1 then K|p1 −
p2| = 100 > 71.2 ≈ 0.637(DT )1/2. To avoid this situation
one should require the closeness of expectations or modify
control at the inial stage in order to early determine significant
difference of p1, p2 and then to apply the action corresponding
to the larger value of p1, p2 till the end of the control.

In [14] the following strategy is proposed. Assume that one
should process T = 125000 items of data and N = 50,
K = 2500, p1, p2 are close to p = 0, 5 and |p1 − p2| ≤ 0, 2
which corresponds to d ≤ 70. On Fig. 1 the line 1 describes
losses if the ordinary strategy is applied and its almost linear
growth for d > 20 is caused by equal application of both
actions at initial stage by 2500 times. The line 2 corresponds
to losses provided by the following modified Vogel’s strategy.
Let’s apply actions turn-by-turn until the absolute difference of
total incomes for their application exceeds the threshold a or
the initial stage of control expires. If the difference of incomes
exceeds the threshold then we apply the action corresponding
to the larger initial income till the end of the control horizon.
Otherwise we use considered in the paper Bayesian strategy
corresponding to the worst-case prior distribution. The losses
described by line 2 were obtained for a = 70. It means that
modified strategy allows to process distributions with close
and distant expectations.

Remark 3: All reasonings hold true if we assume that
{ξ′t} is normally distributed process. This case corresponds to
pure normal two-armed bandit.

V. CONCLUSION

A generalization to the asymptotic minimax theorem for
normal two-armed bandit has been given. A proposed strategy
separates distributions with distant mathematical expectations.
In this case it determines the superior action at the initial stage
and provides its application till the end of the control. In case
of distributions with close mathematical expectations it applies
the Bayesian strategy corresponding to the worst-case prior
distribution. Results can be applied to parallel processing of
data.
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