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Abstract— This paper proposes a single-step hybrid block method
with generalized two off-step point for the direct solution of initial
value problem of second order ordinary differential equations. The
uses of power series approximate solution as an interpolation
polynomial at the off points is employed in developing this method,
while its second derivative is collocated at all points in the interval.
Furthermore, some basic properties of the generalized method such
as order, zero stability, consistency and convergence are also
established. In addition, two examples of specific points of the
developed method are considered to solve some initial value
problems of second order ordinary differential equations. The
numerical results confirm that the proposed method produces better
accuracy if compared with the existing methods.
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I. INTRODUCTION

In this article, the numerical solution to the general second
order initial value problem of ordinary differential equation
(ODEs) of the form

y" =f(x,y,y’), x e[ab] (1)
with two initial conditions y (a)=1zy,y'(a) =7 is considered.

The method of reducing (1) to its equivalent system of first
order has been found having some setback which includes:
wastage of computer time, a lot of human effort and
computational burden (see [4], [8] and [2]). Therefore,
scholars have paid more attention on the establishment of
direct methods for solving higher order ODEs whereby the
numerical results generated are better than the method of
reduction to system of first order ODEs ( see [15], [11] and
[3]). Some of the methods developed include the self — starting
Runge - Kutta type  which contains many functions to be
evaluated per step ( [5] and [13] ) and linear multistep methods
which are not self-starting but require little function to
evaluate per step[12]. The implementation of implicit linear
multistep method in the predictor-corrector mode is associated
with a lot of human effort and computer time which renders
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the method to be inefficient for the use of general purpose.
These weaknesses in predictor corrector method led to
development of block method without predictors and do not
require many functions to evaluate per step when compared
with Runge- Kutta type methods, [1].
It is observed that these methods mentioned above are
governed by Dahlquist barrier conditions which are
extensively discussed by [6] and the introduction of hybrid
methods has been used to circumvent the barrier (see [7] and
[12]).The development of hybrid method with specific off step
points have been considered by scholars [1], [10], [12] and
[14].
In order to bring improvement in the existing method, this
paper presents a single step method with generalized two off
step point for solving (1) directly. This paper is divided into
five sections: section two contains the derivation of the
method, section three establishes the generalized basic
properties of the method, section four includes specification of
the method and section five includes the numerical results
generated from the application of the method to second order
ODE.
Il. DERIVATION OF THE METHOD

Suppose the approximate solution is the power series of the

form
JI

v+m-1

Y(X): Z ai(
where -

X €[Xy Xp1] FOr n=0212--N -1,

a's are coefficient to be determined,

v is number of collocation points,

m is number of interpolation points,

h=x,-x,4 isaconstant step size of partition of interval

[a,b ] which is given by

X —Xp

. @

a=Xg<Xy<--<Xy_1<Xy =Db..
The second derivative of (2) is given by
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y(x)="f (x.y.y)

.. i [ 16 L
\Hill(l —l)ai [X _anl 2 (3) 0 00 00 R; fos
= 5 26
< h 00000 R? foa
00000 R®| 5 |fos
R, = wl RT= ‘ )
_ _ 00000 RS n-2
Interp_olatl_ng (2)_ at x,.. and x,.. and collocating (3) at 00000 R foa
all points in the interval " f,
i€ X, ¥n.., Xnp.., Xn.. gives the following equations 10000 0 Ry c T
which can be written in matrix form
] ] 0 0 0 R RI R -
1 s s?2 s3 4 5 24 325 26 fos
1 r r2 3 4 S 34 35 36 "2
an] Ty 0 0 0 Ry R3" R3 33 _|fna
2 8 Yn+s R; = w45 a6l R = ;
00 e 0 0 O Vo | [ynw 0 0 0 Ry R> Rj fn+s
s o 2 s 1252 2053 | |22 || fn @ 0 00 R* RY® R3® fn+f
h2 hZ h? nZ | |3 [Toss 0 0 0 R$* RE R -
0 o 2 6 12 200 | | T
W2 hZ hZ nZ |les] Lfea
0 0 2 6 12 20 and the elements of R, and R; are given as below
L h? h? h? h? | " r(2r3+2rzs—5r2+2r52—5rs—333+552)
- - - - - - - R —
Gaussian elimination method is applied on (4) to find the 3 60(r —s)(s -1)

coefficient a’s and then substituted into (2) to give the

implicit continuous hybrid method of the form s (3Ir3 —2r%s—5r2 — 2rs? + 5rs — 25° + 552)

60(r—s)(s 1)

1
y(x)= Zain . Zgjfmj . Zﬂifm-i (5) RIS :—rs(2r—s)(r+s)(r—25)
. =

R$® =

60(r —1)(s —1)

i=s,r i=s,r

—(2r4 +2r% — 53 4 2r%% — 5%+ 2rs® —5rs? — 3% +553)

where @, ., B B. B.and j, are givenin Appendix A 2
Evaluating (5) at non-interpolating points i.e. x,, and x,,, Rs" = 60hs (r —s)(s 1)
and evaluating its first derivative at all points gives the 4 a3 3 .29 o 3 s o4 3
following equation in matrix form R357—(3r = 2r°s — 517 — 2r°s" + 5r°s — 2rs” + 515”25 +5S)
o 3 - 60hr(r-s)(s -1)
Ry¥. = R,R'™ + h*R,R** + h’R,R* (6) 4 3 - s o4
r s 7 (2r —3r°s—3r°s° - 3rs° +2s )
0000 R$® =
r—s r—s 60h (r —1)(s -1)
1-r s-1
1 000 r R 2 2
r—s r—s Yois R45:f(rfs)(3r + 4rs — 5r + 3s 755)
! 1 o000 Ynr 3 60hr (r —1)
h(r—s) h(I’—S) Y+t 3
RO = l —l O 1 0 O ,Ym = y;]+s ) Réﬁ _ (2r+38)(l’—8)
h(r—s) h(r-s) . 60h (r —1)(s -1)
Yn+r
1 -1 . 2 2
TE R 00 1 0 Vit | R54_(r—s)(Sr + 4rs —5r+ 3s —Ss)
3 60hs (s —1)
1 -1
0 0 1
| h(r-s) h(r-s) | 55 (rfs)(12r2+6rs—15r+252755)
_ ; r . 3 =
00 -1000 Yn-2 60hr (r -1)
000000 Yna qss _—(3r+25)(r=s)’
_ y 3 T eon(r —1\(< 1)
R, = 00000 Logu_| 7" | 60h (r —1)(s —1)
00 0O 00 O Yn-2
000000 Y
00 0O OO0 O '
L - Yn
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o —(Zr4 +2r3 — 513 + 2r%? — 5r%s + 2rs +10r — 3s* + 5¢° —5)
R84 _
3 60hs (r —s)(s —1)
R 65 _ —3r*+2r% +5r3+2r2%2-5r%s+2rs® — 5rs? + 25* — 55° +10s-5
8 60hr(r —s)(s —1)
(2r4 — 33— 3r%s? — 3rs® +30rs — 20r + 2s* — 20s +15)
RS® =

60h (r —1)(s —1)

r (Zr3 ~3r% 512 _ 3rs? 1 15rs 4+ 25° - 532)
R16 _
3 =
60
R25 7(r ~1)(s-1)(r+s-2)(r-2s+1)(2r-s-1)
2 - 60rs
—(2r4 ~ 33— 5r3 — 3r%s? 4 15r%s — 3rs® + 15rs? + 257 — 5°
R36 =
60hrs
6 —(r —5)3(2r+33—5)
Ry" =
60hrs
56 (r —5)3(3r+25—5)
- 60hrs
R 66 3r% — 2r*+5r% +3r%2 —15r%+3rs® — 15152 + 30rs -10r-25% + 55° —10s+5
3=
60hrs

Multiplying Equation (6) by Rz* gives the hybrid block
method

RoYm =RRM+h%R,R?? + h?R,R% (8)
(1 0 0 0 0 O] [0 01 0 0 sh]
010000 00100 r
R0001000R100100h
“looo010 0/ "l0 0000 1
000010 000O0TO0 1
0 0000 1] 00000 1]
—sz(ZOS—Sr—5r3+2r2)
000O00O ”
r
r2(205—5r—5rs+2r2)
000O0TO 5
S
(20rs —5s —5r +2)
0000
RZ_ 60rs and
—s(25—6r+25r—52)
000O0TO on
r
r(65—2r+25r+r2)
000O0TO on
S
(6rs—25—2r+1)
000O0TO — D
L rs J
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0 0 52(53—10r+5rs—352) 34(23_5) 34(5,-_25)
60(r -1)(s -1) 60r (r —1)(r -s) 60(r -1)(s -1)
. 54 (25-5) r2(105—5r+5rs—3r2) 5*(2r -5s)
60s (r -1)(r -s) 60(r —s)(r -1) 60(r -1)(s -1)
0 -(5r-5) (5s-2) (10rs —5s —5r +3)
60s (s —1)(r -s) 60r (r -1)(r —s) 60(s -1)(r -1)
) s(4s—6r+4rs—3sz) —s3(s-2) s3(2r-s)
12h(r-s)(s-1) 12mh(r -1)(r -s) 12h(r-1)(s -1)
sS(r—Z) —r(63—4r—4rs+3r2) —r3(r—23)
12sh(s -1)(r -s) 12h(r-1)(r-s) 12h(r-1)(s -1)
0 —(2r-1) s(2s-1) s (6rs—4s—4r +3)

12sh(r -s)(s -1)

12rh(r -s)(s -1)

Equation (8) can also written as
hzsz(Ss —20rs —252)

Yn+s = Yn +hSy;] -

h?*(2s -5)

n

60r

hzsz(Ss —10r —5rs —352)

12h(r -1)(s -1)

f

f
6or (r—s)(r-1) "' "
. h2s4(5r —2s)
60(r -1)(s -1) "™

h2r2(205 —5r —5rs +2r2)

60(r —s)(s 1)

Yn+r =¥n +hw;1 +

h2r4(2r -5)

60s
hzrz(los —5rs +3r2)

+ f
60s (r —s)(s -1) nes ¥
h2r(2r -5s)

60(r -1)(s -1) "™

h?(20rs —5s —5r +2),

60(r —s)(r-1)

Yn1=Yn +hy;1 +

h2(5r -2)

n

60sr
h?(5s - 2)

60s (r —s)(s -1) n+s+60r(r—s)(r—1) e

_hz(losr—SS—Sr +3)

60(r-1)(s-1) "

hS(ZS —6r +

2rs —52)

Ynss =Yn— 12r

hs(4s —6r +4rs —352)

n

hs3(s—2)

12(r-s)(s -1
hs3(2r—s)
T2(r-1)s-1) "

Foss _12r(r -s)(r-1)

fn

f

n+s

fI’H—I’

n+r




INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

hr(Gs —2r —2rs —r2)
12r

=Yp+
hrs(r—Z)
'125(r—s)(s —l)f"+s "
~ hr3(r—25)
12(r-1)(s -1) "*

Ynar fo
hr(63 —4r —4rs +3r2)
12(r =s)(r -1)

fn+r

h(6rs —2s —2r +1)
12rs

- hr3(2r—1) ;
"o12s(r-s)(s-1) "
h(6rs —4s —4r +3)

12(r -1)(s -1)

. .
Ynit=Ynt

_ h(2s-1 .
T12r(r-s)(r-1) "

n+1

I1l. PROPERTIES OF THE METHOD

A. Order of the Method

Definition 1: The linear difference operator L associated with
(7) is defined as
L[y (x):h]=R%, ~h?RZRZ _p?R%RH

where y(x) is an arbitrary test function continuously
differentiable on [a,b ].

_RIgH

©)

Expanding ¥,,and R*component respectively in Taylor’s
series and collecting terms in powers of h gives

);h]:goy (x)+g1hy'(x)
+C?2h y”(x)+---+gphpyp(x)+

Ly (x (10)

where ¢;, j = 0,1, - are vectors

Definition 2: The hybrid block method (7) and the associated
linear difference operator (9) are said to have order rp

CO—Cl—CZ— —Cp—Cp+1—0 and Cp+2¢0 Cp+2
called vector of error constant.

is

Expand (9) in Taylor series about x,, gives
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0

hJ h252(55—20rs—252) ”_52(55—10r75rs—352)i(s)1hi+2 j+2
& Yo (60r) " 6o(r-s)(s-1) & i Yo
s'(25-5) (r)jhj+2 j42 s*(5r-25) < hi*? j+2 ,
; N —sh -
60I'(I’—S)(I'—1)jgo i Yn 60(I’—1)(S—1)J 0 i Y SN Yy —=Yn
= (r) hi j7h2r2(203—5r—5rs+2r2) . rier-s) Z(s) hi+2 42
jzo i on 60s y 605(r—5)(5—1)_: T
r (105 5rs+3r)°° J+2h1+2 Ji2, 2r Ss 2 hi
60r s z ZO —rhy o
j=
ii - h?(20rs 55 - SHZ)y”— (5r—2) oc‘(S)jhﬁzywz
~ 60sr " 605(r—s)(s—1)_7 jro "
(55-2)  <&(r) h* o (10sr-Bs—5r+3)hi*2 |,

_hy’
sor(r-s)(r-)4& it Yo 60(r -1)(s -1) ,Z::o e Yo
i ini ) h(25—6r+2rs—52) . 53(2r—s) iLﬂ j+2
& Yo+ 12r Yn 12(r—1)(s—1)j:0 jron

© hJ+1 " 5(45,5”45,352) © (s)ihM )
_ j+2
12” ) Z T Py PRy 2
J i=0
2 (r)ih ’ hr(65—2r—2rs—r )1t L,
jz il Yn YH_TYH 144]ZTyn
(65 —4r —4rs +3r ) il h”l i ( 2 « (s)jhj+1 ;
j+2
2] JZ " e 1)2 jr
Shl g h(6rs 25-2r+1) | (6rs—4s-4r+3)ahit L,
-y - y Y
,-Z::o” f 12rs " 2(r-1)(s -0 JZ:; jr "
(3-1)  &()'nt oL, By &) e,
- y + - y
2r(r-s)(r- 1)12;40 T 125(“5)(5*1)125 T
0T
0
_|0
0
0
10]

Comparlng the coefficient of h led to
co_cl_cz_ca_c4_c5_[ooooooj

Therefore, the order of the method is [4.4.4.4.4,4]7
for all

s% - 2s 2r+r

3}
{-E24-

5s-10
with general error constants vector

1-2r
2-5r

¥

2r }
3r2—5r} {
udr

55-3

10s-5

s, r (0,1)\

5r-10

}
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54(25 —5r +2rs —52)
1440
444@5—2r—257rﬁ
1440
—(5rs —2s —2r +1)
1440
53(55 —10r +5rs —352)
1440
r3(5r —10s +5rs —3r2)
1440
—(10sr —5s —5r +3)
1440

B. Zero stability of the method

Definition 4: The hybrid block method (7) is said to be zero
stable if the first characteristic polynomial 7(z) having roots

such that |z,|<1 and if |z,|=1 then the multiplicity of z,
must not greater than two.

ﬂ(Z):‘ZRO—Rl‘

100 000][0010 0 shj

010000 (00100 rh
_,|0 01000/ |00100 h

000100 (000001

000010 (000001

000001 [0000O0 1]
= 2%z —1)2

whose solution is z =0,0,0,0,1,1. Hence, our method is zero
stable forall s, r (0,1

C. Consistency

Definition 3: The one step hybrid block method (7) is said to
be consistent if order of the method greater than or equal one
ie Px1

Since in our new method Cg =C 4420, , this implies P =4.
Hence, our method is consistent by definition 3.

D. Convergence

Theoreml. [9]: Consistency and zero stability are sufficient
conditions for a linear multistep method to be convergent
Therefore, since the new hybrid block method is consistence
and zero stabile, it can be concluded that the method is
convergent.
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F. Region of Absolute Stability

In this article, the locus method was adopted to determine the
region of absolute stability. The method (7) is said to be
absolutely stable if for a given h all roots of the characteristic

polynomial 7(z,h)=p(z)~ho(z), satieties |z¢|<1. The test

equation y” =—-4%y is substituted in (7) where h = 2?h? and
A :gl. Substituting z =cos@—ising and considering real
y
part yields
— 1440cos6-1440
(o) ( ) (12)

(2r232+4rs —3r32—3r25+r252c059)

IV. SPECIFICATION

This section considers two specific numerical methods of
two hybrid points.

Method A

Substituting s

into equation (8), the following

— ., r==

block of one step with two hybrid points and its derivative are
obtained
h2

57h?
n+ fn+
540000

+
20000

1
10

y 1 =Yn+h—y,

1

143h?

h 2
+ f 1
54000 n+—
10

2000

2
n+—
10

h 2
270000

49h?
7500

1 .
yn+£:)’n+§hyn+ foa
10

n

46h?
3375

h2

L f
6000

1
n+=
5

1
n+-—
10
17h?
432
_50h?
27
h

e
2400 " 28800 "*

19h 5h

1920 ‘n+p 72
_h h
30 30
13h 2h

_f+_
6 " 9

. 3h?
Yna=Yn+hy, +Tfn+ foa

2
25h f
16

+ f

1

1
n+= n+—
5 10

y' 1 =Yn 1
n+—
10
f 1
n+—
10
2,
15 n+

25h
fn+l+Tf

Y 2 =Yn
N+
10

1+
n+=
5

n 1

10

Ynsi=Yn t 1
nig
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Replacing s :%, r :% into Equation(11) gives the order of

the method A to be [4,4,4,4,4,4]T with error constant

[ 5.347222¢ 78
~2.222222¢ 78
= | -34722227*
~9.930556e ~’
-1.111112 7
| ~1.180556¢

After substituting the values of s and r_ in (12), we get the
stability interval of (-46154, 0) as shown in Figure 1.

_®  soom
40000 ™

280 30

Fig. 1 Stability Region of single step hybrid block method A

Method B

37h?

1, . 433h?
I'1+ fn+
9720

YL~ Yn 14580

h
net 3 Yn 1
3

59h2
1800

_ 208h°
18225

3+
n+>
4

1
n+=
3

_y+3w3gmw
" " 2560

+27h2
ne 4
4

" 5120

y fra

5103h?
25600

3h?
1600 n+-;

1
n+=
3

2 h2

Using the same
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procedure as previously described, the order

of the block method B is [4,4,4,4,4,4]T with error constant

Replacing s = %

[ 2.310052¢ 5 |
1.968384¢ ™
= | -5787037e°
~1.264575%
~6.103516e ~°
| -5.787037e °

T :% in (12) gives the stability interval of

(-11520, 0). Referto Figure 2.

Fig. 2 stability Region of single step hybrid block method B

V.

The
methods(method

performance of the

NUMERICAL EXPERIMENT

two specific hybrid block
A and method B) is tasted on the following

two second initial value problems

Problem 1:

Exact solution: y =1+%In(§+xj

N |-

y'=x(y')" =0,y (0)=1y'(0)=

with h =~
320

+ 19h
Ynt1=Yn +hYn +m fn

63h2
200

4 —'+ﬁf+ﬂ
yn+% Yntom T

_16h . 1h

— +— f
243 nl 4 nel
4 3

C_L2h s
m%’y” 256 " 512 "

3h 243h

+—1f 3+
16 n+> 512
4
h

Y —y' +E fo+—
n+l n 9 n 12
16h 9h

+—f +—f
45 n:2720 el
4 3

16h2
+
225

f

3+
n+s
4

y

f

1
n+=
3

fn+l
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120

n+l

1
n+=
3

fn+1

+1

Table 1 Exact solution and computed solution of the new

method A for solving Problem 1

X Exact solution Computed solution in A
0.1 1.050041729278491400  1.050041729278492000
0.2 1.100335347731075300 1.100335347731076000
0.3 1.151140435936466500 1.151140435936468100
0.4 1.202732554054081600  1.202732554054083400
0.5 1.255412811882994600  1.255412811882994100
0.6 1.309519604203111900  1.309519604203104500
0.7 1.365443754271397100  1.365443754271378400
0.8 1.423648930193603500  1.423648930193562400
0.9 1.484700278594054600 1.484700278593966500
1.0 1.549306144334058600 1.549306144333876900

176
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Table 2 Exact solution and computed solution of the new

method

B for solving Problem 1

X

Exact solution

Computed solution

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.050041729278491400
1.100335347731075300
1.151140435936466500
1.202732554054081600
1.255412811882994600
1.309519604203111900
1.365443754271397100
1.423648930193603500
1.484700278594054600
1.549306144334058600

1.05004172927849030
1.10033534773107400
1.15114043593646390
1.20273255405407540
1.25541281188297900
1.30951960420307810
1.36544375427133140
1.42364893019348430
1.48470027859383440
1.54930614433365490

Table 3 Comparison of the new methods with [2] for solving
Problem 1

X ERRORIN A Error in [2] Errorin B
0.1 2.2204g7  2.5056g~ %2 1.11022e %
0.2 6.66131%  2.0446e~ % 1.3322671%
0.3 1.5543e7*  7.0966¢~1* 2.66453g~ 1%
0.4 1.7763e7*  1.7482¢10 6.21724e~ 1%
0.5 444085~ 3.5004g~ " 1.55431 g~
0.6 732747  6.6068g~ 10 3.37507g 714
0.7 1.8651s~%* 1.1328z7% 6.572525 %
0.8 410787 1.8543¢7" 1.19238¢12
0.9 8.8151z~*  2.9461s7% 2.20268¢ 12
1.0 1.8163g7 % 4.601327% 4.03677g~ %2

Problem 2:

y"+[xgjy'+(xiz]y =0.y(1)=1y'(1)=1

5 2 .

Exact solution: y =——-— with h :i.
3x  3x4 320

Table 4 Exact solution and computed solution of the new
method A for solving Problem 2

X

Exact solution

Computed solution
A

1.0094 1.0089449950888376 1.0089449950886735
1.0125 1.0117410181679887 1.0117410181676894
1.0156 1.0144475426864139 1.0144475426859429
1.0188 1.0170664942356729 1.0170664942349952
1.0219 1.0195997547562881 1.0195997547553703
1.0250 1.0220491636294322 1.0220491636282434
1.0281 1.0244165187384029 1.0244165187369134
1.0313 1.0267035775008062 1.0271515055533533
1.0094 1.0089449950888376 1.0089449950886735
1.0125 1.0117410181679887 1.0117410181676894
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Table 5 Exact solution and computed solution of the new
method B for solving Problem 2

X

Exact solution

Computed solution in

B
1.0094 1.0089449950888376 1.0089449950888227
1.0125 1.0117410181679887 1.0117410181679631
1.0156 1.0144475426864139 1.0144475426863755
1.0188 1.0170664942356729 1.0170664942356189
1.0219 1.0195997547562880 1.0195997547562161
1.0250 1.0220491636294322 1.0220491636293405
1.0281 1.0244165187384029 1.0244165187382896
1.0313 1.0267035775008062 1.0267035775006690
1.0094 1.0089449950888376 1.0089449950888227
1.0125 1.0117410181679887 1.0117410181679631

Table 6 Comparison of the new methods with [2] for solving

Problem 2
X ERROR IN A Error in[2] Errorin B
1.0094 1.6409¢~** 2.0169¢~ " 1.4876e~*
1.0125 2.9931e™** 4,5540e~ " 255357
1.0156 4.7095¢** 7.9967¢7 " 3.8413e7 ™
1.0188 6.7768e™** 1.2305¢™°  5.3956e"**
1.0219 9.1771e™*# 1.7440e™%  7.1942e™*
1.0250 1.1888e~** 2.3365¢™%  9.1704e™*
1.0281 1.4894e-1% 3.0043e~°  1.1324¢7 %
1.0313 1.8887¢~%% 3.7441e™® 1.3722¢7 %

VI

. COONCLUSION

This paper has successfully developed a new single-step
hybrid block method with generalized two off-step points for
solving second ODEs. The zero stability, consistency,
convergence, order, region of absolute stability and error
constant of the developed method are also examined. The
proposed method not only possesses good properties of a
numerical method, it has also been proven to be superior than
the existing methods in term of accuracy when solving the
same initial value problems of second order ODEs directly.
Hence, this method should be considered as a viable
alternative for solving initial value problem of second order
ODEs. Furthermore, the developed method can be extended to
solve a system of initial value problem of higher ODEs
directly.
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Appendix A
_ *(xn *.¥+h.5)
o= T hir—s)
o ().‘" —.r—|—hr)
&= Thir—s
Bo = ((xn = x+ 1) (Xn —x + hr) 2R3 — 303 s — 5k — 3k rs® + 15k rs + Bxf;

(60rsh3)
—sh3s? 4 2k x — 2h% P x, — 3h%rsx + 3h2rsx, — Shirx + Sh¥rx, + 2h*s2x + Shx>

—5h%sx + 5h®sx, + Zhrx?; + 2hsx® — dhsxx, + 2hsx?; —|— th?; — 3 4 2035° + 2hr?

—4hrxx, + 9x?‘x,, — 9x.rff _— 2h252x,, — 10hxx,,)

_ (xp—x+hs)(xy, —x+hr)
P = (60h3s(s — 1)(r—s))

—|—3.rﬁ + 5h3s2 +2h%r2x — 2h2P2x, + 2h%rsx — 2h%rsx, — Sh®rx + Shrx,, — 3h%s%x

R P + 203 s — 5372 + 213 rs? — shrs — 303

—3x> 4 Sh¥sx + 2hrx* — 4hrxx, + 2hr.r,2, — 3hsx? + 6hsxx,, — 3hs: ~+ Shx? + 9x%x,,

—Shzsx” — ].Dh.rxn + 3h252-ru -+ Sh.r,z, — Qx.rﬁ)

. (.1'" —x—|—hs)(x,,—x—|—hr}
Br = (60h3r(r— 1)(r—s))

+5h3s? 3R P x — 3h% rzx,, — 2h%rsx + 2h? rsX,; — Shirx + Shzrx,, — 2h% 5% 4 3x°

(33 — 2032 s — k32 — 23 rs® + Sk rs — 2k°s°

+5h%sx — 5h’sx, + 3hrx® — 6hrxx, + 3!1."):,2i — 2hsx® + 4hsxx, — zhs.rﬁ —Sha?

—5;1.1',21 -+ IOhxxn =+ thsz.f" — 9.1’21‘,; + gxx?; — 3.1'5?}

_ (xp—x+hs)(x, —x+hr)
Pr=-— (603 (s— ) (r—1))

—2h%r2x, — 3h%rsx + 3hPrsx, + 2h%s2x — 2h%s%x, + 2hrx® — dhrxx, + 2hrxf;

(213F3 — 303125 — 31°rs® 4 21355 + 212 rx

2

—Ahsxx, + 2hsx2 + 2hsx® 4+ 9x%x, — 9xx2 + 3x; — 3x°)
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