

Abstract—The traditional object-oriented programming

frameworks are currently the most widely used method for creating

large information systems. Configuration frameworks are their

alternative or rather an extension, which are not yet widespread in

practical use for desktop applications, despite their huge potential. This

innovative method offers many advantages, such as deployment of

new modules and whole versions without reinstallation on

workstations and disrupting business, easy iterative development and

maintenance etc. The paper presents this original approach on

a concrete example of the test management administration interface

and also shows possibilities of analogical processing other similar

systems. Using a technology of the configuration framework for the

development of a such systems could bring significant benefits to

developers and to users, e.g. easy and fast installation and updates, low

memory requirements, small application size, easy system

maintenance without necessity of experts etc. As this article illustrates,

creating of a unique completely original configuration framework for

any specific needs is not so difficult, and it is worthwhile in many cases

due to the subsequent savings.

Keywords—Framework, configuration, XML, database, form,

table, tree, information system, programming.

I. INTRODUCTION

NIVERSAL Testing Environment is an electronic online

testing system designed for the creation, operation and

administration of the tests, independently or in cooperation with

LMS [1]. User part of the application (testing and

administration interface) is created as the Rich Internet

Application (RIA) at the Silverlight1 technology. The system

originated as a dissertation of the same name [2]. [3]

An integral part of this system is the administration interface

that enables the assembly and settings of the tests, management

of questions, users and groups, evaluating the results of testing,

etc. While creating this part, the standard procedure, in which

each window (page) of the application is created separately,

was not used. Instead, an original configuration framework has

been created for this purpose due to a multiple repetition of

windows types. This enabled creating a predominant part of the

administration interface using only the configuration data in

a simple XML file (e.g. see [4]).

Framework is a software structure that assists in the

development of another software product. The aim of a such

structure is taking over the typical problems that are often

encountered and fully automating their solution. The developer

This research has been supported by Specific research project of University

of Hradec Kralove, Faculty of Science in 2015.

P. Voborník is with the Department of Informatics, Faculty of Science,

University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03,
Czech Republic (e-mail: petr.vobornik@uhk.cz, orcid: 0000-0003-1841-3455).

does not need to delay unnecessary overhead around well-

known and already investigated issues and he can concentrate

fully to implement new specific problems. [5]

Fig. 1. Scheme of the configuration framework

Configuration frameworks are based on the idea that it is not

necessary to program the whole content of the entire system,

but only the framework (core) [6]. The framework generates

each window dynamically, based on the configuration data (see

Fig. 1). These can be stored in a short file or in a database. The

structure of the application can be changed without its

recompilation, update, and even without its shutdown.

Solution of the administration interface for Universal Testing

Environment [2] will be described as an example of such

framework. However, this principle can be advantageously

used in many different projects containing repetitive types of

windows. A classic example may be desktop information

systems, which may consist of many dozens of windows, but

only of a few kinds (mostly data overview in a table and detail

of a record) [7].

II. THE STRUCTURE OF CONFIGURATION XML

The entry of configuration data which define the individual

windows of the entire system can be done by many ways. The

data of each window can be e.g. kept in a separate file, stored

in a database as individual records or saved within a single file.

The last method was chosen due to a relatively small scope of

this application. Fig. 2 shows the basic structure of the XML

configuration file beginning with the root element <pages>.

In this scheme, an asterisk (*) before an element name means

that the element can be repeated multiple times at this point; an

ellipsis (…) after an element name indicates its other branching

(not visible in this scheme). From the elements <grid> and

<detail>, only one can be used, exclusively. The <grid>

element for overviews in a table and branched overviews, the

other element, <detail>, for forms of detail. There are also

special types of windows, which can have a completely

1 Silverlight is a software plugin for development lavishly furnished internet
applications that run within a web browser. It is developed by Microsoft,

executed using the plugin which is a smaller version of the .NET framework.

[19]

Configuration

Core

Application Data

Configuration Frameworks

P. Voborník

U

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 180

mailto:petr.vobornik@uhk.cz
http://orcid.org/0000-0003-1841-3455

different structure (e.g. a window for testing a question or

a whole test). All these types will be described in more detail

hereinafter.

Fig. 2. The structure of the configuration XML which defining

windows of the application

The definition of the individual windows can be divided into

the following:

 What data are needed for the window

 How the window should look like (layout of visual

components)

 Which other windows can be accessed from the current one

 Specific behaviour for certain events

A. Parameters

Parameters are values transferred between windows. For

example, if we want to open a table with sub-overview of results

only for the selected user from list of all users, the identifier

(ID) of selected user must be transferred to the new window, to

be able to filter and display only the desired data. There are also

global parameters (e.g. IdOrganization, as an identifier of

the organization whose data are currently administrated) that

are automatically transmitted by the framework to each newly

generated window. Transmission of other parameters depends

on each individual window.

B. Data loading

The principle described in [8] was used for loading data. It is

an original custom component that provides communication of

a client application with the server. The component keeps the

data in the memory structured into objects on the client side,

and using the serialized communication [9], it is able to

effectively and non-redundantly synchronize them with

a central database on the server. The client application simply

submits a request for data and then just waits for confirmation

that the data are ready.

This component is created as universal and can be used in

any project, however, it also holds the auxiliary methods that

are specifically designed to support the configuration

frameworks. More specifically, the possibility of composing of

an object request for data from a text string or XML. A text

string uses its own mini-language for querying the data in

a simple way; XML version grants the possibility of assembling

even more complicated queries including the support of

parameters.

A_QUESTIONS(ID_GROUP=%IdTest%);A_RESULTS(

ID_TEST=21);A_TESTS(*);A_SOLVINGS

Code 1. Sample request for data from four different tables, the first two

are filtered

Requests are separated for each table by a semicolon. A filter

for limiting the desired set of data records can be written in

parentheses after the name of the database table. This filter can

also include parameters (embraced with the percent signs, e.g.

%parameter%, see Code 1). The filter preferences can be

composed by using operators & (and) and | (or). An asterisk (or

nothing) means that all the records of the table will be loaded.

A_QUESTIONS[%Id%]:DATA,NOTE;A_RESULTS[1]:

TEST_DATA,RESULT;A_TESTS[1]:*;A_SOLVINGS[1]

Code 2. Sample request for delayed data from one record of four

different tables

Square brackets (see Code 2) are used for loading a specific

record by using its primary ID key which can be defined by the

means of a parameter, or a value. Loading one particular record

is performed when showing its detailed form. The so called

“delayed data” can be downloaded only by this way (only for

one particular record, see [8]). These values are usually more

data-extensive (e.g. long description, XML data, article, etc.)

and they are not loaded collectively for multiple records at once.

This is partly due to the reduction of the volume of transmitted

data and also because they are not displayed in tabular

overviews due to their vastness, anyway.

Because not all properties of the record will be displayed in

the detail form every time, their enumeration can be specified

in the context of the query mini-language after a colon, or

followed by an asterisk (or nothing) to load all the delayed

values. Queries for specific records or for bulk data can also be

combined into a single query string.

These queries can be put either to the data attribute in the

<dataSet> element or split into multiple XML sub-elements

(see Code 3).

If a more detailed breakdown of the query into XML is used,

the requests for each table are defined in the <table> elements,

where again the data attributes may include detailed queries in

the described mini-language. Only the name of the database

table can also be put into the name attribute and it is possible to

itemize the filters into <filter> sub-elements. A refresh

attribute indicates which data to load from the server when the

function for data refresh is called from the window.

p
ag

es

*page

*caption

grid

columns...

filters...

triggers...

detail g...

dataSet *table...

subPages
*page

*hr

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 181

<dataSet>

 <table name="A_RESULTS" refresh="1">

 <filter param="IdOrganization">ID_LIMIT.ID_PERIOD.

 ID_ORGANIZATION.ID=%IdOrganization%</filter>

 <filter param="IdUser">ID_USER.ID=%IdUser%</filter>

 <filter param="IdTest">ID_TEST.ID=%IdTest%</filter>

 <filter param="IdLimit">ID_LIMIT.ID=%IdLimit%</filter>

 </table>

 <table name="A_USERS">

 <filter param="IdOrganization">

 Contains:Organizations~ID_ORGANIZATION.ID=

 %IdOrganization%</filter>

 <filter param="IdUser">ID=%IdUser%</filter>

 </table>

 <table name="A_TESTS">

 <filter param="IdOrganization">

 Contains:Organizations~ID_ORGANIZATION.ID=

 %IdOrganization%</filter>

 <filter param="IdTest">ID=%IdTest%</filter>

 </table>

 <table name="A_COMPUTERS" />

 <table name="A_TEST_LIMITS">

 <filter param="IdLimit">ID=%IdLimit%</filter>

 <filter param="IdTest">ID_TEST.ID=%IdTest%</filter>

 </table>

 <table name="A_PERIODS" refresh="1">

 <filter param="IdTest">

 Contains:Limits~ID_TEST.ID=%IdTest%|Contains:

 LimitsResults~ID_TEST.ID=%IdTest%</filter>

 <filter param="IdLimit">Contains:Limits~ID=%IdLimit%|

 Contains:LimitsResults~ID=%IdLimit%</filter>

 </table>

 <table name="A_ORG_GROUPS">

 <filter param="IdOrganization">ID_ORGANIZATION.ID=

 %IdOrganization%</filter>

 </table>

</dataSet>

Code 3. Sample definition of data requests for overview of results

Individual parts of the filter are connected with the and

operator. A param attribute in the <filter> element not only

indicates which parameters are to be replaced by their values,

but it also specifies that if the window does not know any of

these parameters, this condition will not be included in the

filter. It is also the main difference between the XML query and

the query string, where all the filter conditions are always used.

This enables the same window with a completely different

content to be opened. In this case (see Code 3) it is a summary

of the results of the testing, which can be filtered only for

a particular test, for a particular user, for the group of users, for

a particular term, etc., and for their combinations (e.g., “results

of the user A from test B”).

III. DESIGN DEFINITION OF INDIVIDUAL WINDOW TYPES

Only a small group of window types usually exists in most

systems, which covers the vast majority of the system. Tables

and details are the most common. However, a similar procedure

can be applied to any other type of windows.

2 DevExpress Grid –

https://www.devexpress.com/Products/NET/Controls/Silverlight/Grid/

A type of window, which is defined in the <page> element,

is determined by its attribute type. This framework supports

the following windows types.

 grid – table overview

 tree – branched overview

 detail – detail form

 designFrame – design of a question

 testerFrame – testing of a test

 upload – uploading of files

A. Table overviews

Table overviews are windows usually containing data from

a certain database table, interconnection of tables or views,

displayed in a tabular form (grid), i.e. as columns and rows.

Data in the table should offer the ability to sort, filter, group,

summarize, search, etc. These functions are usually directly

provided by a component (in this case DXGrid2, see [10]) used

on the client side. Window type detail is used to view more

details of a specific record (row) and its editing (see chap. 3.2).

A detail needs to be opened with the Id parameter, which is the

ID of the selected record in the table overview. Also other

windows with sub-overviews for the selected records can be

opened (e.g. to open the overview of results of selected user

from the list of users).

For the definition of the table overview, it is usually enough

to define which columns it should contain and how to represent

its data (see Code 4 and its result in Fig. 3). For example,

numbers can have a specific display format (currency,

percentages, decimals, integers), as well as dates and times;

boolean values (yes/no) may be showed as checkboxes.

<grid table="Result">

 <columns>

 <col name="TestName" caption="Test"

 hideIfParam="IdTest" />

 <col name="UserName" caption="User"

 hideIfParam="IdUser" />

 <col name="PeriodName" caption="Period" visible="0" />

 <col name="Start" caption="Start"

 formatString="dd.MM.yyyy HH:mm" sort="0D" />

 <col name="End" caption="End" formatString="HH:mm" />

 <col name="TestTimeSpan" caption="Duration"

 formatString="HH:mm:ss" />

 <col name="Score" caption="Achieved result"

 formatString="#0.00%" />

 <col name="ScoreBonus" caption="Penalties"

 formatString="#0.00%;-#0.00%; " ro="0" />

 <col name="ScoreFinall" caption="Total result"

 edit="Score" />

 <col name="ComputerName" caption="Computer" ro="0" />

 <col name="IpStart" caption="IP" visible="0" />

 <col name="ResultsShowCount" caption="Views" />

 <col name="Note" caption="Note" edit="Memo" ro="0" />

 <col name="IsArchived" caption="Archive" ro="0" />

 </columns>

 ...

</grid>

Code 4. Sample column definitions for overview of results

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 182

https://www.devexpress.com/Products/NET/Controls/Silverlight/Grid/

The settings of individual columns are determined by the

attributes of the <col> element. Their enumeration is as

follows:

 name – the name of the property of an object, the value of

which will be displayed in the column.

 caption – is a caption in the column header.

 formatString – specifies the format string for non-text

data. These strings are directly supported both by the

programming language (C#, see [11]) and by the used grid

component, so it is sufficient to set it to the column and the

data will be displayed in this format.

 ro – determines if the column is read-only (1 = yes – default)

or enabled for direct editing within the table (0 = no).

 edit – determines the type of editor that is used not only for

direct editing of data, but also enables their proper formatting

for a mere display. If it's not stated directly, it is derived from

the data type of the property displayed in the column. This

enables, for example, using different editors for the same data

types (e.g. single-line or multiline editor "Memo" for a text

string), and also custom editors and data displayers (e.g.

"Score") can be created.

 sort – enables setting the default sorting for data in the table

by selected columns. The first character determines the

priority of a sorting and the second (last) character

determines the direction (A – ascending, D – descending).

 visible – defines, whether the column is displayed or

hidden by default. Users can manually display hidden

columns or hide the ones they do not need to see.

 hideIfParam – hides the column if the specified parameter

of a window exists. It is thus possible e.g. to hide a column

with the name of a test in the overview of test results (if it is

displayed only for a single test).

These attributes can be defined differently for another

system, the support of any additional attributes can also be

added.

Fig. 3. Sample overview of test results (some columns are hidden for

clarity)

The general rule is that more extensive definitions should

have a shortcut and the default value for omitted attributes

should cover the highest possible proportion of cases.

Filters

Data from the database tables are loaded into the table

overviews. Which part of this database table is necessary for the

overview, is exactly defined by the filters for each overview in

the <dataSet> sub-elements (see Code 3). Nevertheless, these

filters are not applied when displaying data. Therefore, there is

no risk that some data are missing in the overview. It may

happen that there are some records in the overview that do not

belong there (e.g. if an overview of user A results is displayed

as the first and an overview of user B results is displayed as the

second, the results of both users will be included in the second

overview, because they draw from the same data source that is

not further filtered on the client side). For this reason, there is

a <filters> section included in the overviews (<grid>). This

enables defining the filtered data downloaded onto the client

side (see Code 5).

<filters>

 <filter param="IdUser">IdUser=%IdUser%</filter>

 <filter param="IdTest">IdTest=%IdTest%</filter>

 <filter param="IdLimit">

 IdLimit=%IdLimit%

 </filter>

</filters>

Code 5. Sample of filter definitions of data for overviews on the client

side

The individual filters are entered in a <filter> elements the

value of which is the condition of the filter. The param attribute

indicates which parameter is used in a condition and thus it is

required. If this parameter is not passed when creating of the

overview, the filter will not be applied. The conditions of

individual filters are connected by an and operator.

Triggers

Element <triggers> can only be used for table overviews,

because a new record is usually created only from them, even

though it is opened in detail form. When a new record is created,

some of its values is possible to pre-set automatically. Section

<triggers> takes care of it (see Code 6).

<triggers>

 <insert property="IdTest" param="IdTest" />

 <insert property="IdGroup" param="Id"

 only="file" />

 <insert property="Period" new="Period">

 <insert property="IdOrganization"

 param="IdOrganization" />

 <insert property="From" value="now" />

 <insert property="To" value="now+600" />

 </insert>

</triggers>

Code 6. Sample of triggers from a branched overview of questions in

a test

Only <insert> elements can be used as sub-elements which

are handled when a new record is creating. These elements may

contain the following attributes.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 183

 property – the name of the property of an object, to which

the value will be set

 param – a parameter name of the current window whose

value will be set to the object property

 value – a constant value which will be set to the property of

the new record (“now” set the current date and time)

 new – only for properties of the type

of data object – it creates the new

object into this property (the name of

its class is the attribute value)

 only – restrictions of validity of the

element to folders or to items (only

for branched overviews, see below)

In the case of the new attribute when

a new object is created for the property,

the <insert> element may be also

branched out to other sub-elements

<insert>, which then sets the values

for the new sub-object.

B. Branched overviews

Branched overviews are similar to

table overviews, but they display data in

a tree (hierarchical) structure (e.g. user

groups + users or questions in groups).

Two types of items are distinguished in branched overview –

a folder and an item (sometimes file). Folders have a minimum

of three values: ID, id referring to the ancestor and the name.

Thanks to the first two values the data can be easily organized

into a hierarchical structure3 and the name allows uniform

clearly displaying of this data. Items can then be assigned into

folders in two ways: directly (1:n, see Fig. 4 top) or via a link

table (m:n, see Fig. 4 bottom). In the first case, each item will

be only once in the list, in the second case it can be there

multiple times, respectively not even once.

Fig. 4. Data model of classification of users into groups by binding of

1:n (top) and m:n (bottom)

Appearance of the window depends very much on the used

component for displaying branched overview. The standard

3 folders of the first level (root) have ID of ancestor set to null, in numeric

(int) expressing it is zero
4 Silverlight Toolkit – http://silverlight.codeplex.com

component from the Silverlight Toolkit4 is capable of

displaying only a single value (name), but not a comprehensive

overview with more columns. The component from

DevExpress5 was used in this case, which allows to use a fully-

fledged tabular overview including branched structures (see

Fig. 5).

Fig. 5. Sample of the branched overview of questions from the test

about Algorithms

<columns>

 <col name="Name" caption="Question name"

 ro="0" sort="0A" />

 <col name="Level" caption="Level" ro="0" />

 <col name="Weight" caption="Weight" ro="0" />

 <col name="IsAllways" caption="Allways" ro="0" />

 <col name="IsMix" caption="Mixing" ro="0"

 only="folder" visible="0" />

 <col name="QuestionCount" ro="0" only="folder"

 caption="Questions count" />

 <col name="IsTogether" caption="Keep together"

 ro="0" only="folder" />

 <col name="TimeLimtSpan" only="file"

 caption="Time limit" ro="0" />

 <col name="Index" caption="Order" ro="0"

 visible="0" />

</columns>

Code 7. Sample of column definitions in branched overview of test

questions

Definition of the layout is almost identical to the classic

overview (see Code 7), i.e. a division into columns, their

relations to the data, header title, editor etc. Moreover, there is

an option to add an attribute only and to set its value to “folder”

or “file”. This property limits the use only for a specific type of

item, i.e. only for a folder (folder) or only for an item (file). The

5 DevExpress Tree View –

https://www.devexpress.com/Products/NET/Controls/Silverlight/Tree_List/

A_USERS

PK ID

FK1 ID_GROUP
 FIRST_NAME
 SURNAME
 ...

A_GROUPS

PK ID

FK1 ID_PARENT
 NAME

A_GROUPS

PK ID

FK1 ID_PARENT
 NAME

A_USERS

PK ID

 FIRST_NAME
 SURNAME
 ...

A_USERS_IN_GROUPS

PK,FK1 ID_GROUP
PK,FK2 ID_USER

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 184

http://silverlight.codeplex.com/
https://www.devexpress.com/Products/NET/Controls/Silverlight/Tree_List/

value in the column of the second item type, then cannot be edit

and always remains empty (null).

Another difference in the definition of branched overview is

a necessity instead of a single data source (the name of the

object class), the two data sources must be defined and the

relationships between them. These additional attributes are

therefore defined in the <grid> element.

 folder – the name of the class with data for folders (e.g.

“QueGroup”)

 file – the name of the class with data for items (e.g.

“Question”)

 fileIdParent – the name of the property of an item with

a group identifier (e.g. “IdGroup”)

 fileName – the name of the property of an item with its

name (e.g. “Name”)

 fileIcon – the name of the item icon

 canMoveFilesToRoot – permission or prohibition of

moving items out of folders into the root

 treeListItemSubType – the name of the class which

encapsulating both types of values into a single

Folders have standardized some properties apart from items.

They are always derived from a common ancestor – TreeBase

class. Therefore, all references are unnecessary to define in the

specification, as is the case with items. Specifically, it is the

properties with the reference to the ancestor (IdParent), the

name (Name) and the icon.

public class QueuestionsAndGroups : TreeListItem

{

 public bool IsAllways

 {

 get {

 return IsFolder ? Folder.IsAllways

 : File.IsAllways;

 }

 set {

 if (IsFolder)

 Folder.IsAllways = value;

 else

 File.IsAllways = value;

 }

 }

 public int? QuestionCount

 {

 get {

 return IsFolder ? Folder.QuestionCount

 : null;

 }

 set {

 if (IsFolder)

 Folder.QuestionCount = value;

 }

 }

 ...

}

Code 8. Sample of the code of the QueuestionsAndGroups class that

encapsulates the property IsAlways shared for folders and items, and

the property QuestionCount that have only folders

Components of displaying hierarchical data usually accept

only one data source that contains only objects of the same

class. In addition, this class must be completely identical for all

objects, not only inherited. This is a problem when combining

folders and items, because they cannot be used directly.

A modification of design pattern Decorator [12, pp. 9-21]

was used for the solution. Packing class has been created, which

always holds only the reference to an encapsulated object and

includes properties referring to its properties, which must be

a common for a folder and for an item in the source list for

a valid display. This object always exactly knows which of

these two types encapsulates, and accordingly handles its

properties (see Code 8).

C. Details

The table is no longer the dominant element in the windows

displaying detailed information of one record, but it is the form

consisting of labels and editors. These should be appropriately

(visually, logically and intuitively) placed in the window so that

their filling and editing is as easy as possible for the users.

<detail table="User">

 <g>

 <g>

 <g o="h" caption="User">

 <g>

 <itm name="TitleBefore" caption="Title before" />

 <itm name="FirstName" caption="First name" />

 <itm name="MiddleName" caption="Middle name" />

 <itm name="Surname" caption="Surname" />

 <itm name="TitleAfter" caption="Title after" />

 </g>

 <g>

 <itm name="Login" caption="Login" ro="1" />

 <itm name="Email" caption="Email" ro="1" />

 <itm name="IsEmailVerify" caption="Verified"

 ro="1" />

 <itm name="IsArchived" caption="Archive" />

 </g>

 </g>

 <g o="h">

 <g caption="Group membership">

 <itm name="Groups" edit="List"

 source="OrgGroup" labelPos="top" />

 </g>

 <g subObject="OrgUser"

 caption="User in the organization">

 <itm name="Uuid" caption="UUID" ro="1" />

 <itm name="Ip" caption="Registration IP" ro="1" />

 <itm name="OrgState" caption="Status" />

 <g labelGrid="local">

 <itm name="MarkId" caption="Marking identifier" />

 <itm name="IsAppTrust"

 caption="Allow access from apps" />

 </g>

 <itm name="Note" caption="Notes" edit="Memo"

 vAlign="stretch" labelPos="top" />

 </g>

 </g>

 </g>

 </g>

</detail>

Code 9. Sample definition of the form for user detail

Distribution of components into logical units is realized by

the groups, which are represented by a <g> element in the

layout definition. This element may have several attributes. One

is the o, which defines the orientation of the sorting of elements

in the group, either vertically (v, default value) or horizontally

(h). The second attribute is the caption that enables setting the

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 185

title of the group. If the title is not listed, a header and a border

of a group are also not displayed. It can be used for example for

visual sorting of elements into multiple columns within a single

parent frame. Another attribute, subObject, enables defining

a group's data context6 to the property of the edited object. This

property is an object itself with its own properties. All items of

this group will then refer to the properties of this sub-object (see

Code 9 and its result in Fig. 6).

A labelGrid attribute in the group element <g> enables

setting the value to "local", which excludes items of this group

from a global system of aligning within the form and these

items are aligned separately. The dimensions of the label from

the other groups are therefore ignored and, vice versa, the other

groups ignore this group. If only one item is to be handled like

this, it is enough to wrap it with the <g> element without

a caption attribute.

The whole detail form is always one main group, the content

of which is generated recursively.

Fig. 6. Sample of user detail form

Individual items of the form are composed by a label and an

editor. Their definition is entered into the <itm> element (item)

and they may have the following attributes.

 name – the name of the object’s property, the value of which

is displayed and can be edited by the item

 caption – the label before (or above) an item explaining its

meaning

6 data context is a property of a container (Panel) grouping of edit controls

which determines the object, with its properties are these items linked and if
necessary these properties are edited by them [20]

 edit – enables changing the editor (see below), otherwise

the type of the editor is automatically chosen according to the

data type of the object property

 labelPos – determines where a label of an item will be

placed, in front of it (left) or above it (top)

 formatString – determines the mask for displaying and

editing certain data types (date, time, numbers, etc., see

formatString in overviews)

 ro – determines whether an item is read-only or not (default

value)

 width – enables setting a specific width for an edit control

(e.g. smaller width for the editors of codes or numbers and

larger for the editors of names or addresses)

 height – enables setting a specific height for an edit control

(appropriate e.g. for the editors of longer texts, "Memo")

 minWidth – enables setting a minimum width for an edit

control, which must be respected by the editor even if the

form would not fit into the size of the window and

a horizontal scrollbar was thus displayed

 minHeight – enables setting a minimum height for an edit

control

 align – horizontal alignment of the content in an edit

control

 vAlign – vertical alignment of an edit control; it enables

setting a “stretch” value which causes its vertical expansion

in a free space of the window

 hAlign – horizontal alignment of an edit control

 font – font name for an edit control (can be changed e.g. for

editing an XML code)

 fontSize – font size for an edit control

Some items with specific editors can take other attributes.

This system supports the following edit controls.

 Text – short single-line text (standard for string, e.g. the

name)

 Memo – long multiline text (e.g. a description)

 Integer – for integers

 Float – decimal (standard for float and decimal, e.g. score)

 Check – check box (standard for boolean, e.g. allowing

access - yes/no)

 DateTime – date, date and time, according to formatString

(standard for DateTime, e.g. launch time of the test)

 TimeSpan – time (standard for TimeSpan, e.g. duration of

the test)

 Combo – selection menu; requires additional setup of source

attribute for data source and a display attribute for

determining the property for the text that is displayed in the

menu (standard for data objects, e.g. selecting group for

testing)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 186

 Enum – same as Combo, only values for choice are

automatically assembled from all possible values of the

enumeration (standard for enum, e.g. user status in the

organization)

 Picture – selecting an image from imported images (e.g.

test icon)

 PicturePreview – image thumbnail resized to the desired

dimensions or to the size of the window (e.g. the image

previews in the list of imported sources)

 List – specific editor showing a list of items from another

data source and allowing to add or remove these items to the

m:n relationship between the edited object and the objects of

the source (e.g. user's membership in groups)

 TestSettings – custom specific editor for editing test

settings

D. Special types of windows

Special types of windows, unlike the previous ones, were

created for a specific purpose and they are not re-usable for

different data therefore it will be mentioned only in passing.

DesignFrame is a window designed for creating and testing

of a specific test question. It works with XML code, which is

transformed into the final QML7 of which it can run fully

functional question in a fictitious test with the predefined

settings.8

TesterFrame is a window that is only an intermediary

between the test application interface. It is opened within the

window of the system administration with a full test. Here can

be tested primarily test settings. The test can be launched either

directly with the general settings as well as for its individual

limits9 for launching, always with their specific settings. In both

cases, it is purely a testing launch, working outside the

definition of time availability of the test and without saving

results.

Upload is a window designed for uploading multimedia files

(e.g. images) to the server.

Another window with specific properties is not a problem at

any time to add for any additional needs. However, as can be

seen, these cases occur really rarely, and the majority part of the

application is covered by the universal windows.

E. Sub-windows

Basic windows (e.g. an overview of the tests) can be opened

directly from the main menu10. Other overviews are opening

from these windows as their sub-windows. They also take over

the parameters from the windows from which they were

launched. Usually it is an identifier (ID) of any of the records

(objects), whose detail form or sub-overview11 to be opened.

7 QML – Question Markup Language - XML based language for definition

of test questions with rich interactive and randomly-changing content, see [2,
pp. 39-66]

8 editor of questions can directly be tested on

http://app.alltest.eu/Design.aspx
9 test limit – permit access to the test for launching it for specified tested

users through the test interface (other part of the system) with set conditions

(date and time of accessibility of the test, number of questions, time limit,
mixing, level etc.)

<subPages>

 <page name="TestDetail" caption="New test"

 params="Id:ID;TestName:Name" for="new" />

 <page name="TestDetail"

 caption="Detail of the test"

 params="Id:ID;TestName:Name" />

 <hr />

 <page name="TestQuestionsGroups"

 caption="Test questions"

 params="IdTest:ID;TestName:Name" />

 <page name="TestLimits" caption="Test limits"

 params="IdTest:ID;TestName:Name" />

 <page name="Results" caption="Results"

 params="IdTest:ID;TestName:Name" />

 <hr />

 <page name="TesterFrame" caption="Try the test"

 params="IdTest:ID;TestName:Name" />

</subPages>

Code 10. Definition of sub-windows of the tests overview

Data of each sub-window, that can be opened from the

current window, is defined in by <page> elements in the

<subPages> element (see Code 10). Element <hr> may also

been here, which add a separator (separating line) to the ribbon

menu with buttons that link to each sub-window and thereby to

divide them into thematic groups (see Fig. 7). Each <page>

element contains the following attributes.

 name – window codename, identifying an element in the

main branch (by the name attribute) of system defining

XML, whose data will be loaded for the page

 caption – displayed name of the window and also the label

on the button which to open it

 params – parameters passed to the sub-window in a special

format (see below)

 for – value “new” means that before the window opens,

a new record (object) of the same type as the source of the

current list or detail is created, and this record with all his

default properties will be transmitted to the preparing sub-

window

Params attribute thus allows to specify the parameters that

will be transmitted to the new sub-window. They are written in

pairs separated by semicolons, and paired pairs are separated by

a colon. The first of each pair specifies the name of the

parameter under which it will be able to retrieve the sub-

window. The second is the name of the properties of the current

object12 from which a transmitted value will be loaded.

10 windows, that can be run directly from the main menu (i.e. not as sub-

windows), has the main attribute set to 1 in element <page>
11 sub-overview – an overview contains only the records related to

a particular parent object (e.g. the results of only certain user)
12 the current object – it is the object (record) in overviews currently selected

(marked) in the list; in the detail form it is the edited record whose data are just

retrieved

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 187

http://app.alltest.eu/Design.aspx

Fig. 7. Sample buttons for opening sub-windows from the table

overview of tests

F. Headings

One of the attributes of the <page> element is the caption

indicating the user name of the window (e.g. “Results”). This

may however vary, according to other limitations that are

defined by input parameters (e.g., “Results of John Smith”). For

this purpose, all the windows can use the elements <caption>,

which allow them to define the name depending on availability

of parameters (see Code 11).

<page name="Results" caption="Results"

 type="grid" main="0">

 <caption param="UserName,TestName"

 caption="Results of the user %UserName% from

 the test %TestName%" />

 <caption param="UserName"

 caption="Results of the user %UserName%" />

 <caption param="TestName"

 caption="Results of the test %TestName%" />

 ...

</page>

Code 11. Sample of use of elements <caption> to define the user

name of the window depending on the input parameters

The main attribute of the <caption> element has the same

name caption and its defines its name. It may contain

parameters (words from both sides introduced by a percent sign

%), which will be replaced by

the value of the parameter.

Which <caption> element

will be used for the window

title depends primarily on the

presence of all input

parameters specified in the

attribute param (if there are

more, they are separated by

a comma), and secondly on

the order of elements. If the

condition fits more elements,

the first of them will be used

to select the name.

IV. CONFIGURATION

DIRECTLY IN THE CODE USING

ATTRIBUTES

One of the special types of

editors is the test settings (TestSettings) that allows to define

13 the functionality of the test settings editor can try on

http://app.alltest.eu/Design.aspx

individual values of the settings of the test13 (see Fig. 9). There

are more of these settings, they have a various type (yes/no,

number, text, selection, etc.), and they are divided into groups

for a clarity. There are several degrees of the same settings

(default settings, test settings, settings of the one accessibility

of the test and settings through by API), whereas apply that the

higher overrides lower (see Fig. 8).

Fig. 8. Illustrative example of the overlap of various levels of the same

settings

The form for this settings could be created by several ways.

One of them is the above described method of creating the detail

forms in configuration XML. This method has not been

selected, due to its extensiveness and especially due to necessity

of its reuse in different windows as their part. Another option

was to create a special custom component (UserControl), with

a fixed pre-defined items and this control using for editing of

the whole setting. Since the setting is stored in XML format as

one data item, this option is also suitable from this standpoint.

However, this method has been used only in part.

Fig. 9. Sample of the test settings editor

Default settings

Test settings

Settings for the limit

Settings by API

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 188

http://app.alltest.eu/Design.aspx

Component for editing of the test settings was created as

universal so that all its content is automatically generated based

on the configuration data. However, these data are not in an

external XML file, but they are integrated directly into the

application code. More specifically, the values required for the

automated generation of the editor are written as program

attributes [11, p. 449] for the definition of classes and their

properties that are used for storing of loaded data objects in

memory during editing (see Code 12). This procedure is based

on methods of aspect oriented programming (see [13]), when

a routine parts of the code are separated and encapsulated

outside the main part of the code and they activate themselves

only on the basis of certain symptoms [14], [15].

Captions and descriptions are assigned to classes and

properties directly in the code and they then appear in the edit

form. The editor is generated by the method with an input

information about the type of major classes TestSettings,

that has only 7 properties which are groups of individual

settings. These properties are checked using the reflection [16,

p. 489] and if their types (classes) contain attribute XmlClass

(see Fig. 10), custom tab with label defined by this attribute is

created for them in the form (see Fig. 9). Individual items linked

with the properties of an object using the Data Binding14 [17, p.

275] method is then generated on the panel under this tab.

Caption and note are taken from the attribute XmlProperty

and the type of item editor is chosen based on the data type of

each property.

Checkboxes Inherited or Custom at right inform about the

origin of each value. If the value is inherited (checked), then an

information about the settings not saved into the XML at this

level and is taken from a more general setting. If the value is

custom (box is unchecked and his label says “Custom”) then it

is stored into the XML with settings. When the box is checked

again the item resets the value to the value of its ancestor.

Fig. 10. Diagram of configuration classes XmlClassAttribute and
XmlPropertyAttribute

14 similar function of auto generating of a form based on the properties of

the class also provides a component DataFrom from the Silverlight Toolkit

plugin (http://silverlight.codeplex.com), see [20, pp. 78-81]

Values of each setting item are determined in a way that each

of them is trying to retrieve sequentially from the XML stored

at different levels (see Fig. 8). If the value is found in one of the

XML, a further search procedure is stopped and searching of

the value for the next item begins.

[XmlClass("Mixing")]

public class Mixing : DepenencyObjectBase,

 INotifyPropertyChanged

{

 private bool mixQuestions = true;

 [XmlProperty("Mixing of questions",

 "Mix the order of questions in a test")]

 public bool QuestionsCount

 {

 get { return mixQuestions; }

 set { mixQuestions = value;

 PropertyChanged("MixQuestions"); }

 }

 private int questionsCount = 0;

 [XmlProperty("Questions count",

 "Only this count select to the test …")]

 public int QuestionsCount

 {

 get { return questionsCount; }

 set { questionsCount = value;

 PropertyChanged("QuestionsCount");}

 }

 ...

}

Code 12. Sample code of the class Mixing which contains

configuration attributes

A. Localization

Text labels in a specific language are stored in the

configuration XML in addition to general information about the

data, edit controls, links, etc. The same applies to the

configuration directly in the code. That could be an issue if the

system was meant to be multi-lingual.

The solution could be to enter key strings instead of specific

texts. These keys would refer either to the classic items in the

so-called resources15 or to other external sources [18]. The

specific texts for each label would be loaded from the resources,

if necessary. The relevant file with resources would be assigned

according to the user-selected national settings.

V. CONCLUSION

Configuration frameworks are an alternative to the

traditional structural and currently the most widely used object-

oriented programming frameworks. These frameworks in their

pure form are not yet widespread in practical use for desktop

applications, despite their huge potential. They offer many

advantages, such as iterative development, deployment of new

modules without reinstallation on workstations, distribution of

new versions without disrupting business, easy development

and maintenance etc.

15 Localizing Silverlight-based Applications –

http://msdn.microsoft.com/en-us/library/cc838238(VS.96)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 189

http://silverlight.codeplex.com/
http://msdn.microsoft.com/en-us/library/cc838238(VS.96)

This approach could be very useful in the field of information

systems, for their developers, administrators, and users too. For

example, if a label has to be changed, or an item has to be added

or removed from any of the window of desktop application,

creation and distribution of a new version of the whole

application or a library, which is complicated, laborious,

administratively difficult and lengthy at the testing, is not

required. A mere editing of the corresponding XML element

stored e.g. in the global database would result in this action

affecting all client workstations at the time the window next

opens, without having to shut down the application. A plain text

editor or a simple administrative web interface is sufficient for

that action, rather than complicated and computationally

intensive development environment or a compiler.

Of course, the same immediate updates are allowed

inherently with the online web systems created in HTML, but

also in this case, the use of the configuration framework may be

advantageous. Although larger systems tend to use frameworks

that e.g. standardize the look and the layout on all pages, the

layout of controls and their functionality are usually necessary

to be solved programmatically on each page, separately, even if

only by calling global methods. Complete abstraction of the

entire user interface from the code determining the behavior of

the system, windows (pages) and elements, presented in this

article, is more demanding on the initial implementation, but it

will pay off dramatically with as little as middle-large

applications, during their further development and subsequent

maintenance.

If such a system was based on the configuration framework,

it could bring significant benefits to both its authors and users,

e.g. small size of applications, low memory requirements, easy

installation, uncomplicated update during runtime, the fact that

even a non-expert can handle the framework maintenance etc.

In order to simplify the generation of configuration data,

a custom WYSIWYG editor could also be easily created.

Many ready solutions already exist for deployment on the

web (e.g. DotNetNuke16, Joomla17, Drupal18 and basically even

the Moodle19 and others), which use a similar principle. These

systems usually come with a content management system that

completely encapsulates the management of configuration data

into more user-friendly form-based editors. However, these

systems are not always suitable for all particular purposes.

Configuration frameworks are then rather exceptional in the

area of user-friendly thick clients (desktop applications). The

situation is similar in the area of rich Internet applications that

take advantage of a thick client at the architecture of a thin client

such as Flash or Silverlight, used in this case. Modern universal

Windows applications are kept up to date through Windows

Store, but such an update may still take several days and

reinstallation of the entire application is required. As shown

above, creating a custom completely original framework for

any specific needs is not difficult, and due to the acquired

subsequent savings it is worthwhile in many cases.

16 DotNetNuke – dotnetnuke.codeplex.com
17 Joomla – www.joomla.org

REFERENCES

[1] Š. Hubálovský and J. Šedivý, “Education of student’s project team

cooperation using virtual communication supported by LMS system,” in
14th International Conference on Interactive Collaborative Learning

(ICL2011) – 11th International Conference Virtual University (VU'11),

Bratislava: Slovenská Technická Univerzita, 2011, pp. 456–459, ISBN
978-1-4577-1746-8.

[2] P. Voborník, Universal Testing Environment. Ph.D. dissertation, Faculty

of Informatics and Management, University of Hradec Králové, Hradec
Králové, Czech Republic, 2012. Available: http://download.

petrvobornik.cz/docs/disertace.pdf.

[3] P. Voborník, “Universal Testing Environment as an External Tool of
Moodle,” in 10th International Scientific Conference on Distance

Learning in Applied Informatics (DiVAI 2014), Štúrovo, Slovakia:

Wolters Kluwer, 2014, pp. 215–225, ISBN 978-80-7478-497-2.
[4] S. Jarzabek, P. Bassett, H. Zhang and W. Zhang, “XVCL: XML-based

Variant Configuration Language,” in Proceedings of the 25th

International Conference on Software Engineering (ICSE '03),
Washington DC: IEEE Computer Society, 2003, pp. 810–811, ISBN 0-

7695-1877-X.

[5] Z. Smištík, Modern technology for developing web applications and their

performance. Thesis, Faculty of Information Technology, Brno

University of Technology, Brno, Czech Republic, 2008.

[6] P. Voborník, “Concept for development of large-scale applications
through configuration frameworks,” in Recent Advances on Systems,

Signals, Control, Communications and Computers, Budapest, Hungary,

WSEAS Press, 2015, pp. 83–90, ISBN 978-1-61804-355-9, ISSN 1790-
5117.

[7] S. Szénási, “Distributed Region Growing Algorithm for Medical Image

Segmentation,” International Journal of Circuits, Systems and Signal
Processing, vol. 8, no. 1, 2014, pp.173–181, ISSN 1998-4464.

[8] P. Voborník, “Effective object-relational mapping data transfer in the

cloud computing,” in Information Technology for Practice 2011, Ostrava:
VŠB-TUO, 2011, pp. 189–197, ISBN 978-80-248-2487-1.

[9] V. Strnadová, Interpersonal communication. Hradec Králové:

Gaudeamus, 2011, 543 p., ISBN 978-80-7435-157-0.
[10] R. Ferdiana, “Agile Software Engineering Framework for Evaluating

Mobile Application Development,” International Journal of Scientific

& Engineering Research, vol. 3, issue 12, 2012, pp. 89–93.
[11] J. Liberty and D. Xie, Programming C# 3.0. Vol. 5, Sebastopol: O’Reilly

Media, 2008, ISBN 978-0-596-52743-3.

[12] J. Bishop, C# 3.0 Design Patterns. Sebastopol: O'Reilly Media, 2007,
ISBN 978-0-596-52773-0.

[13] I. Půdelka, Aspect oriented programming and its support. Thesis,

Masaryk university, Brno, 2010.
[14] W. Schult and A. Polze, Aspect-oriented programming with C# and .NET.

Washington, DC: IEEE Computer Society, 2002, pp. 241–248, ISBN 0-

7695-1558-4.
[15] P. Voborník, “Tool and mechanisms for efficient transfer of data in cloud

client-server applications,” in Recent Advances on Systems, Signals,

Control, Communications and Computers, Budapest, Hungary, WSEAS
Press, 2015, pp. 166–171, ISBN 978-1-61804-355-9, ISSN 1790-5117.

[16] J. Hilyard and S. Teilhet, C# 3.0 Cookbook. 3rd ed., Sebastopol: O’Reilly
Media, 2007, ISBN 978-0-596-51610-9.

[17] J. Ghosh and R. Cameron, Silverlight Recipes: A Problem Solution

Approach. New York: Apress, 2009, ISBN 978-1-4302-2435-8.
[18] J. Cardenosa, C. Gallardo and A. Martin, “Internationalization and

localization after system development: A practical case,” in Proceedings

of the Fourth International Conference “Information Research and

Applications” i.TECH 2006, Varna, Bulgaria, Sofia: FOI-COMMERCE,

2006, pp. 207–214, ISBN 978-954-16-0036-8.

[19] T. Lammarsch, W. Aigner, A. Bertone, S. Miksch, T. Turic and J. Gärtner,
“A Comparison of Programming Platforms for Interactive Visualization

in Web Browser Based Applications,” in International Conference

Information Visualisation, Washington DC, USA: IEEE Computer
Society, 2008, ISBN 978-0-7695-3268-4.

[20] M. Moldaschl, Rich internet application development. Bachelor thesis,

Vienna University of Economics and Business, Vienna, 2011.

18 Drupal – www.drupal.org
19 Moodle – www.moodle.cz

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 190

https://dotnetnuke.codeplex.com/
http://www.joomla.org/
http://download.petrvobornik.cz/docs/disertace.pdf
http://download.petrvobornik.cz/docs/disertace.pdf
http://www.drupal.org/
http://www.moodle.cz/

Petr Voborník was born in the Czech Republic in 1982. He

received a master degree (Ing.) in Information Management and
a doctoral degree (Ph.D.) in Information and Knowledge

Management from the University of Hradec Králové in 2006

and 2012. He is now an Assistant Professor at the Department
of Informatics, Faculty of Science, University of Hradec

Králové. His current research interests include developing new algorithms and

mini-languages for optimization of electronic testing for his Universal Testing
Environment. He also participates in several researches as a programmer, he

teaches and popularizes programming and he creates independent applications

and games.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 191

