

Abstract An essential part of studies at faculties preparing

students in the area of computer science is the development of
student’s programming skills. Despite a heroic academic effort and
many different theoretical researches which deal with the question of
how to develop these skills, a substantial minority of students fail
introductory programming course. We observed this fact at our
university and noticed it is similar to other universities. To change
this disadvantageous situation we aimed our attention at a research
concerning students’ programming capabilities evaluation with
regard to the input Dehnadi’s test focused on programming aptitude.
Within research most often students’ mistakes have been deeply
examined and study materials have been innovated. The paper
describes our research and introduces an innovative study material
successfully supporting student´s programming skills development.

Keywords Algorithmic thinking and programming skills
development, programming skills evaluation.

I. INTRODUCTION
EHNADI et al. developed a programming aptitude test
which predicts whether a person can become a

programmer. The test does not require any prior programming
experience which is an important property that allows student
pre-screening and teaching adjustments before a programming
course begins. We have pursued a research project focused on
programming capabilities evaluation using Dehnadi’s
approach at the Faculty of Informatics and Management and at
the Faculty of Science, University of Hradec Králové since
2011.

During the research we examined the most common
mistakes students make, and we prepared new study materials
according to research results based on learning styles
preferences.

In the paper we briefly introduce the Algorithms and Data
Structures course, which is our introductory programming
course. Secondly, we discuss Dehnadi’s test and present the
main results of evaluating student programming capabilities
using the test. We conclude this paper with a summary of study
materials innovations which successfully support programming
skills and have been made with regard to most often mistakes
made by students.

II. ALGORITHMS AND DATA STRUCTURES
There are various research studies which deal with the

question of how to start developing algorithmic thinking in
students.

The education at secondary schools and colleges in the area
of computer science has changed in the Czech Republic and
students have only learnt a user approach. For many today’s
students, the algorithmic approach is almost unknown. In
university departments that are training students in computer-
related disciplines, the creation of algorithms is still taught
mostly within courses dealing with a programming language.

There are still long discussions regarding what kind of
programming language is suitable for beginners (cf. [1]). In the
late 1960s Niklaus Wirth designed, especially for educational
purposes, Pascal programming language, which was initially
intended to teach students a structured programming, see e.g.
the textbook [2]. Over the years it has been enhanced to many
variants including Delphi, the object oriented version of
Pascal.

Works written by Seymour Papert [3] covering children’s
programming languages and similar works based on his
approach (e.g. [4], [5]) have given another possibility of how
to develop programming skills of beginners.

There are also teachers using spreadsheets as an access to
the introduction of basic algorithms (e.g. [6]).

We went through all above-mentioned possibilities at the
university. However, the children’s programming language
seemed unsuitable for adult students. And using a program
language, students concentrated more on language syntax and
on options available in an environment rather than on
algorithms.

Since the late 1990s most students starting at the university
have had almost no concept of how to create an algorithm. We
therefore decided, in 1998, to build the Algorithms and Data
Structures (ALGDS) course aimed to basic algorithm
construction skills. (cf. [7] and [8])

ALGDS is placed into curriculum before other courses
which deal with algorithmic and programming skills. The
approach that we have been using is based on an idea of a box
of bricks, where only several basic shapes are available from
which children are able to create impressive buildings. We do
not use any programming language in the course. Students

Programming courses reflecting students’
aptitude testing and implementing learning style

preferences research results
Eva Milková, Karel Petránek

D

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 218

write algorithms on paper in Czech meta-language. The Czech
meta-language is nothing more than the basic commands of
Pascal programming language translated into Czech.

This process of algorithm design is reflected in the course
structure. Thus, when we lead students through their first steps
in the creation of algorithms we explain to them that it is like
building interesting objects out of just a few basic shapes. In
ALGDS it means that we start our teaching with basic
algorithmic structures (= basic elements from a box of bricks:
blocks of commands, incomplete and complete branching and
loop construction) and typical algorithmic structures (= a few
parts made out of these elements: structures concerning count
a value, find and determine an element with the given property
and its position, move, add and remove an element) and then
we let students into the secrets of making whole algorithms
(building whole constructions).

A. Lectures and seminars
All basic algorithmic structures are explained in the lectures.

The idea of each presented algorithm is illustrated by a
practical situation at first, and the whole procedure is
demonstrated step-by-step.

Dealing with the given topic we start to solve easier tasks
and consecutively proceed to more difficult ones. We carefully
discuss mutual relations among algorithms. Let us demonstrate
it in the following example:

Example
Let us suppose that we are working with a finite numerical

sequence (a1, a2, … , an) of n terms being already saved to the
array a of the length n, n ≥ 1. Let us create algorithms solving
the following tasks.

• Remove the first three terms a1, a2, a3 from the sequence.
• Remove the fifth till night terms, i.e. a5, …, a9, from the

sequence.
• From the sequence remove the terms ap, …, aq, supposing

p < q.
The students apply their knowledge during seminars to a

variety of tasks. They work in groups of two or three and each
group is responsible for solving one of the given tasks. The
students are given some time to prepare their solutions on a
piece of paper. Then the task is illustrated and presented on the
blackboard by two or three students, each from a different
group. The class discusses and compares the given solutions.
This approach is beneficial both for the students who are
pushed to try and find more solutions to a task, and for the
teacher who has an opportunity to open a discussion if there is
a problem with the solutions.

B. Study materials
The whole area explained within ALGDS is introduced in

the textbook [9], where more than 150 problem assignments,
questions and exercises are presented. The accuracy of a
solution can be verified with the help of the Algorithms
program (see below in the text) which is included together
with solutions of all the textbook provided tasks, on an
accompanying CD.

Students can view the electronic version of the textbook as
well as they can download the Algorithms program in the
virtual study environment used at the university. They can also
access other study materials corresponding to a lecture such as
additional lecture notes, problem statements of tasks solved in
seminars, presentations and animations used at the lecture.
There is also a detailed plan of lectures available as well as
credit conditions and sample of credit test, which contains not
only standard type of task but also the following ones:

I)
Complete the algorithm solving the following task. In the

sequence of n integers saved in the array a determine the first
minimum value and then sum all integers behind the found
minimum value.
begin
 minimum := a[1];
 sum :=;
 for i from 2 to n do
 begin
 sum := sum +;
 if a[i] ... min then
 begin
 minimum :=;
 sum :=;
 end;
 end;
end.

II)
There are n integers saved in the array a (see the table).

Determine the values in the array a after finishing the
following algorithm. Write them to the table below.
begin

n:=6;
x:=a[1];

 i := 2;
 while i ≤ n - 1 do
 begin
 if a[i] > x then
 begin
 a[1]:= a[i];
 a[i]:= x;
 end;
 i := i + 1;
 end;
end.

a[1] a[2] a[3] a[4] a[5] a[6]
11 8 19 7 16 17

C. Multimedia applications
Education scientists have been discussing “changing the

education paradigm” pointing out that the power of technology
has caused fundamental changes in all aspects of our lives,
including the educational process [10]. Multimedia
applications provide teachers with an excellent opportunity to
demonstrate and visualize the subject matter more clearly and
comprehensibly, as well as to enable them to prepare a study
material that optimizes students’ study habits. Multimedia

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 219

animations and presentations are usually used to describe a
topic and illustrate it using a visualization of objects and
processes. They mostly enable to test the coursework using
several prepared exercises. Multimedia programs offer not
only the options as presentations, but their biggest advantage is
that they can provide an infinite number of more needed
examples. (cf. [11] - [13])

Along with large multimedia software products developed
by a team of professionals there are also various smaller
presentations and multimedia applications appropriate to
course subject matter created by students themselves based on
a script given by the teacher.

One of such programs is the Algorithms program. It is
developed in the Borland Delphi environment and available on
http://lide.uhk.cz/prf/ucitel/milkoev1/en_index.htm, the page
ALGDS / Lectures / Students presentations). Several
animations prepared for the subject ALGDS are available there
as well.

The program is an excellent tool for all students attending
ALGDS. The program is user-friendly and provides entire
graphical support for users. Its options are designed to be
intuitive and at the same time to remind professional editors
and debuggers of well-known programming languages [14].

Using the program, students can place their solution(s) to
the given task, written in Czech meta-language, into the
program and the program shows them step-by-step how their
algorithm works and if it is correct or not. In each step of the
algorithm process the program shows current values of
variables.

III. DEHNADI’S TEST AND RESEARCH RESULTS
When introducing programming to freshmen students, there

seems to be a clear division between students who find
programming easy and those who have a hard time grasping
even the basic concepts. Dehnadi and Bornat [15] observed
that the level of mental model consistency that learners apply
when faced with a novel, seemingly nonsensical problem could
be a good predictor of programming capabilities. Saeed
Dehnadi designed a test focused on discovering future
programmers before they enter their first programming class
[16].

A. Dehnadi’s test
Dehnadi’s test [17] is based on assessing mental model

consistency in the assignment operation. The test consists of
twelve similar questions. Each question gives a sample C-like
program, declaring two or three variables and executing up
to three variable-to-variable assignment instructions.

The test is evaluated according to an answer sheet and a
mark sheet which together assign mental models to each
answer and combine them into a total score. There are 11
mental models described in [17], slightly modified in [18], see
Fig. 1. Except for the classical assignment operation model
known from C or Java, Dehnadi identified 10 other models
that were used by the applicants. The common ones include
the left-to-right assignment (as opposed to the standard right-

to-left), comparison or assignment without transfer to the next
line. If a person is able to choose any of these 11 models and
use it consistently through the whole test, he or she is
considered a good candidate to become a programmer. The
consistency threshold was set at 8 consistent answers out of
12. Dehnadi and Bornat [15] report that 44 % of the applicants
showed consistent models, 39 % used several models
inconsistently and 8 % have refused to fill the answers.
The remaining 9 % of students are not discussed in the paper.
[19]

M1. Value moves from right to left (a ← b and b ← 0 -
eighth line in figure 1).

M2. Value copied from right to left (a ← b - fourth line of
figure 1, and the 'correct' answer in Java).

M3. Value moves from left to right (b ← a and a ← 0 - third
line of figure 1).

M4. Value copied from left to right (b ← a - first line of
figure 1, a reversed version of the 'correct' answer).

M5. Right-hand value added to left (a ← a+b - second line of
figure 1).

M6. Right-hand value extracted and added to left (a ← a+b
and b ← 0 - tenth line of figure 1).

M7. Left-hand value added to right (b ← a+b - ninth line of
figure 1).

M8. Left-hand value extracted and added to right (b ← a+b
and a ← 0 - fifth line of figure 1).

M9. Nothing happens (sixth line of figure 1).

M10. A test of equality (first and fourth lines of figure 1).

M11. Variables swap values (seventh line in figure 1).

Fig. 1 Anticipated mental models of assignment a=b [18]

B. Dehnadi’s test applications
Dehnadi’s test promises to bring the holy grail of

programming education and aptitude testing – with a simple
test we should be able to decide whether a student will be a
fast or slow learner. This brings several possibilities to
enhancing education and certification:

• Students can be split into classes based on their
expected proficiency

• The teachers can direct their focus better by knowing
the audience

• Companies could easily filter applicants for a
programming position

• The students can adjust their focus according to their
test results

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 220

http://lide.uhk.cz/prf/ucitel/milkoev1/en_index.htm

A test of the qualities described in Dehnadi’s research
would thus be a great improvement of programming education.
Given the small sample size in the original paper and due to
some of its criticisms [20] we decided to verify Dehnadi’s
claims on our freshmen at University of Hradec Králové on a
bigger number of students than the original paper.

C. Research data
We first decided to use Dehnadi’s test in academic year

2011/2012 at the Faculty of Informatics and Management to
test our freshmen at the beginning of the first programming
ALGDS course. We hoped that Dehnadi’s test could serve as
an orientation resource both for students and teachers.
Students who belong to the inconsistent group should devote
a more thoughtful attention to the subject; they should study
regularly, discuss their solutions with the teacher
or experienced students and practise their programming skills
(preferably every day). Teachers would be able to use the
Dehnadi’s test results to divide students into appropriate
groups when explaining and practising algorithm design.
During academic years 2011/2012, 2012/2013, 2013/2014 and
2014/2015 data of 473 students who both filled Dehnadi’s test
and participated in the introductory programming course were
analysed.

Minding the fact that there are students starting the
university who had already a prior programming experience
before attending the first programing course we divide the
students to two groups: students with no prior programming
experience and students with prior programming experience.

D. Results
To avoid human errors during test evaluating, we prepared

automated software [21] that evaluates each student’s test
based on the grading sheets released by Dehnadi. Having the
possibility to use the automated software we are able to
evaluate hundreds of students’ test results.

Dehnadi’s test targets students with no previous exposure
to programming. The original test is supposed to be applied
primarily to non-exposed group of students. At the same time,
it is supposed to give biased results of students who were
previously exposed to programming. Our aim is to verify these
results – we compared the results of successful and
unsuccessful students and their performance in Dehnadi’s test
for both groups. We used Wilcoxon rank sum test (at
significance level 5 %) to check for significant differences in
expected score of successful and unsuccessful students.

The main result from our research is that Dehnadi’s test
cannot predict whether a person will be a proficient
programmer or not (judged by getting a credit for our
introductory programming course) when the person has not
been exposed to programming before. This contradicts
Dehnadi’s findings and thus we cannot confirm the conclusion
of his papers. See Fig. 2 for a visual comparison of student
scores for students who have no prior programming
experience. Obviously, Wilcoxon rank sum test does not reject
the null hypothesis that the two groups come from the same

population (p-value 0.274, significance level 0.05).

Fig. 2 Box plot showing the distribution of scores from our

introductory programming course ALGDS based on their success in
Dehnadi's test (1 means successful). Students needed 6 points to get
the credit. Only students with no prior programming experience are

included in this plot.

However, when Dehnadi’s test is applied to students who
have already been exposed to programming before, we show
that the test actually does have a discriminative power. If a
student with previous programming experience does not reach
a full score (12 points) in Dehnadi’s test, he or she will likely
fail the course.

Fig. 3 Box plot showing the distribution of Dehnadi's test scores for

students with previous programming experience that were
unsuccessful (left) and successful (right) in our introductory

programming course ALGDS.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 221

This result also makes an intuitive sense – Dehnadi’s test is
based on simple assignment tasks and if a student is unable to
comprehend these after a previous programming course, it is
unlikely he or she will perform better in our course. The
Wilcoxon rank sum test also reports a statistically significant
difference with p-value 0.003 given significance level 0.05.
Fig. 3 shows two distributions of Dehnadi’s test scores, both
for students who succeeded in our introductory course and
those who failed the course. We can observe easily that there
is only a handful of students with previous programming
experience who did not reach a full score and yet passed the
course. (cf. [22])

E. Applications and discussion
Contrary to the claims in [15], results of our research have

shown that the Dehnadi’s test cannot predict success in the
ALGDS course for students with no prior programming
experience (cf. [20]).

Nevertheless, using the test we are able to predict success
in ALGDS subject of students with prior programming
experience. Supposing that about a half students attending
ALGDS subject have prior programming experience, the
Dehnadi’s test can serve as useful information for students not
achieving a full score to devote a considerable care to the
subject.

Since 2014 we have had a fully automated on-line version
of the test where students see their score right after submitting
the test. While we do not count Dehnadi’s test results toward
the final score, students are required to fill it during the first
week of the semester and include information about their
previous programming experience. This serves two purposes –
the students who fail Dehnadi’s test experience the
psychological effect of a failed test and the teachers can see
the scores and experience of all their students and adjust their
lectures. While a failed test does not affect the final grade, it
still motivates many students to devote extra time to the
course. Especially students who had a previous programming
course and fail Dehnadi’s test feel compelled to “make up” for
this failed test – exactly the effect we want to achieve as this
group is most susceptible to fail the course. Based on many
years’ experience we are sure that the existence of students
who successfully passed Dehnadi’s test but did not succeed in
ALGDS can be explained as follows: Students with prior
programming experience usually think that their previous
programming skills are enough to pass the ALGDS subject and
do not devote the necessary attention to the subject matter. We
therefore use Dehnadi’s test as a wake-up call for these
students.

On the other hand, students with no previous programming
experience are able to pass ALGDS subject thanks to a
systematic development of algorithmic thinking. Dehnadi’s
test does not play a big role for this group because of its non-
existent discriminative power. Also the students with no
previous programming exposure tend to take the failed test
more lightly expecting that the course is supposed to teach
them how to answer questions like that.

IV. LEARNING STYLES
The individual learning styles model is one of the concepts

that is postulated by scientists to determine the different
students´ approaches to receiving, processing and further
presenting obtained information. In this regard extensive
global research has been undertaken, the results of which are
applied in different models of learning styles, see e.g. an
overview in [23]. This can then be integrated into all aspects of
the educational process.

People learn and process information in different ways.
Learning style assessments provide learners as well as teachers
an opportunity to learn how to respond under different
circumstances and how to approach information in a way that
best addresses students’ particular needs.

Out of plenty of learning style models we have chosen the
Felder-Silverman learning style model and on this model based
questionnaire called the Index of Learning Styles.

Felder [24] defines individual learning styles as follows
“The ways in which an individual characteristically acquires,
retains, and retrieves information are collectively termed the
individual’s learning style”.

The Felder-Silverman learning style model was created by
Richard M. Felder on Dr. Silverman’s expertise in educational
psychology and his experience in engineering education.

Felder and Silverman [25] propose that a student learning
style may be defined by the answers to five questions:

1. What type of information does the student preferentially
perceive: sensory (external) – sights, sounds, physical
sensations, or intuitively (internal) – possibilities, insights,
hunches?

2. Through which sensory channel is external information
most effectively perceived: visual – pictures, diagrams, graphs,
demonstrations, or auditory – through words or sounds?

3. With which organization of information is the student
most comfortable: inductive – where facts and observations
are given, and underlying principles are inferred, or deductive
– where principles are given, and consequences and
applications are deduced?

4. How does the student prefer to process information:
actively – through engagement in physical activity or
discussion, or reflectively – through introspection?

5. How does the student progress toward understanding:
sequentially – in continual steps, or globally – in large jumps,
holistically? (cf. [26] and [27])

Felder´s model includes four dichotomous learning style
dimensions which indicate students´ preferences for certain
poles of the dimensions:

Sensing or Intuitive - this spectrum determines how we
perceive or take in information,

Visual or Verbal, this spectrum determines how we prefer
the information to be presented,

Active or Reflective - this spectrum determines how we
prefer to process the information

Global or Sequential - this spectrum determines how we
prefer to organize and progress understanding information.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 222

A. The Index of Learning Styles
The Index of Learning Styles (ILS) was developed by

Richard M. Felder and Barbara A. Soloman and may be used
cost-free for non-commercial purposes by individuals who
would like to determine their own learning style profile and by
educators who would like to use it for teaching, advising, or
research. For more information see [28] - [29].

 ILS is a self-scoring web-based instrument that assesses
preferences on the active / reflective, sensing / intuitive,
visual / verbal, and sequential / global dimensions. The forty-
four multiple choice questions in the questionnaire reflect the
psychological and behavioural characteristics of four
dichotomous dimensions of learning styles mentioned above.
After submitting their answers, students are provided with
Learning Style Results (see Fig. 4), where if their score on the
scale is 1-3, they are considered fairly well balanced on the
two dimensions of that scale. If their score on the scale is 5-7,
they have a moderate preference for one dimension of the
scale and will learn more easily in a teaching environment
which favours that dimension, and if their score on the scale is
9-11, they have a very strong preference for one dimension of
the scale and are classified as purely single-style learners,
which may cause struggling and suffering when learning in an
environment which does not support their preference. [27]

Fig. 4 ILS graph showing student preferences

B. Research Data and Results
The main results concerning learning styles preferences of a

student attending ALGDS during three previous academic
years 2012/13, 2013/14 and 2014/15 can be summarized as
follows.

From our general observation of students most of them are
visual learners. The results show that in fact 87% are visual
learners, whereas 56% are strong visual learners.

About 72% students belong to sensing dimension, whereas
34% of them to the moderate till strong sensing dimension.

Concerning the other two dimensions, active/reflective and
sequential/ global, most students belong to the mild level of
these dimensions more of them to the „left side”, which means
to the mild active and mild sequential dimension. Surprisingly,

almost no students belong to the strong „right” side of any
dimension.

C. Study material for ALGDS reflecting learning style
preferences

Our aim has been to prepare lectures, lessons and suitable
study materials in a way that support all dimension described
above. This fact guarantees optimal study conditions for all
students. On one hand each student can find a study material
suitable for his/her learning style. On the other hand each
student is slightly pushed to enhance also his/her opposite
learning style dimension.

Let us explain it in detail.
Thanks to the way that students create an algorithm to a task

given at a seminar (see section II. A) both, active and
reflective dimension is supported.

Learners belonging to the sensing dimension remember and
understand information best if they can see how it is connected
with the real world. Therefore, we explain the idea of each
algorithm, that is presented in the lecture in a practical
situation and we usually demonstrate it with the help of
students.

 At lectures and seminars we devote enough time and space
to discussions concerning mutual relations among algorithms
that is a valuable support to both intuitive learners who prefer
to discover possibilities and relationships and to learners
belonging to the sensing dimension who need enhance
innovative thinking. (Remark: According [25] „Everybody is
sensing sometimes and intuitive sometimes. To be effective as
a learner and problem solver, you need to be able to function
both ways. If you overemphasize intuition, you may miss
important details or make careless mistakes in calculations or
hands-on work; if you overemphasize sensing, you may rely
too much on memorization and familiar methods and not
concentrate enough on understanding and innovative
thinking.”).

Using the Algorithms program both sequential and global
students can find their own way to support their self-study,
how to revise a subject matter and understand it more properly
and accurately.

Algorithms are described in words, which is the method that
verbal students prefer. However, there are several ways to
support visual students as well. For example, each algorithm
introduced in the first few lessons is also described using a
flowchart. Small animations visualizing basic algorithmic
structures and the Algorithms program (see section II. B)
visualizing changing values in variables during the whole
process, belong to another helpful method.

A new significant support that has been provided recently is
introduced in the following section.

V. ADDITIONAL NEW STUDY MATERIAL FOR ALGDS
In section II we mention that students can download the

textbook [9] and the Algorithms program from the virtual
study environment.

Using the results gained from the analyses of student

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 223

learning styles preference we made the following changes.
By academic year 2013/14 we had first explained the one-

dimensional data structure. After that we proceeded to two-
dimensional array problems. In 2015 we decided to change
this process. We explained each typical algorithmic structure
for both one-dimensional and two-dimensional arrays. We
found out that the students are able to comprehend better the
array index manipulation this way and thus better understand
the whole subject matter. Compared to the previous years the
fear of working with two-dimensional array indices almost
disappeared.

To support more and more visual learners we have prepared
another significant innovation. The texts describing the typical
array manipulation techniques were complemented by colours
emphasizing structures used in the given algorithm. We
demonstrate this method on an extract of the chapter Shift of
values within array published in the textbook [9], namely on
the algorithmic structure Inserting a new array element. The
demonstration follows.

Inserting a new array element
Let us introduce a typical algorithmic structure used in

algorithms for adding a new value x after the k-th term of a
numerical sequence (a1, a2, … , an), 1 ≤ k ≤ n, stored in an
array a.
 read(x);
 read(k);
 i := n;
 while i ≥ k + 1 do
 begin
 a[i + 1] := a[i];
 i := i - 1;
 end;
 a[k + 1] := x;
 n := n + 1;

Example
Let us create an algorithm which adds –1 after the last

minimum element of a numerical sequence (a1, a2, … , an),
1 ≤ k ≤ n, and writes out the resulting sequence.
begin
 read(n);
 for i := 1 to n do
 read(a[i]);
 min := a[1];
 indexMin := 1;
 for i := 2 to n do
 if a[i] ≤ min then
 begin
 min := a[i];
 indexMin := i;
 end;
 i := n;
 while i ≥ indexMin + 1 do
 begin
 a[i + 1] := a[i];
 i := i - 1;
 end;
 a[indexMin + 1] := -1;
 n := n + 1;
 for i := 1 to n do
 write(a[i]);
end.

VI. CONCLUSION
We present a detailed list of improvements to our

introductory programming course at University of Hradec
Králové that result from our research in programming aptitude
testing and learning style analysis.

We show that the programming aptitude test cannot be used
blindly with all students. Good discriminative results can be
achieved with students with a prior programming experience.

The learning styles preferences research shows that majority
of students tend to mild preference to the four dimensions of
learning styles. However, there are moderate and strong
preferences especially to sensing and visual dimensions. The
optimal condition is that teachers can help students acquire the
ability to use their less preferred style modalities when
appropriate and make those learners with strong preference to
certain learning styles move toward a position of greater
balance [30].

We have found out that devoting enough time explaining
mutual relationships among solved problems and carefully,
together with students, recognizing the differences among
almost the same algorithms is very helpful for beginners and
sometimes reveals hidden connections even for experienced
students.

The learning styles preferences research leads to a
technically simple, but an extremely helpful extension of the
textbook that uses colour coding to match sentences from an
exercise with corresponding lines of its algorithmic solution.

Results achieved from the credit tests show that our
improved pedagogical approach used in the first programming
course, Algorithms and Data Structures, is successful.

ACKNOWLEDGMENT
This research has been supported by Specific Research

Project of the University of Hradec Králové, Faculty of
Science No. 2113.

REFERENCES
[1] Guniš, J., Šnajder, L. (2012) The model of algorithmic thinking –

dimensions and levels. In: Information and Communication Technology
in Education (ICTE 2012), Ostrava: University of Ostrava, Rožnov pod
 Radhoštěm, Czech Republic, September 11–13, 2012, 69–78.

[2] Wirth, N. (1975) Algorithms + Data Structures = Programs, Prentice-
Hall, New Jersey.

[3] Papert, S. (1980) Mindstorms: Children, computers, and powerful
ideas, Basic Books, Inc.

[4] Blaho, A., Kalaš, I. (1995) Playing, developing and computing with
images in Comenius Logo for Windows. EuroLogo Proceedings,
pp.15–19.

[5] Hubalovský, Š., Musílek, M. (2013) Modeling, Simulation and
Visualization of Real Processes in LOGO Programming Language as a
Method of Development of Algorithm Thinking and Programming
Skills. International Journal of Mathematics and Computers in
Simulation. Vol. 7, No. 2, p. 144–152.

[6] Lovaszova, G., Hvorecky, J. (2005) Using spreadsheet calculations to
demonstrate concepts of programming. International Journal of
Continuing Engineering Education and Life Long Learning, 15(3), pp.
162–184.

[7] Milková, E. (2011) Multimedia Tools for the Development of
Algorithmic Thinking. Recent Patents on Computer Science. 4(2), 98–
107.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 224

http://cs.wikipedia.org/wiki/Algoritmy_%2B_datov%C3%A9_struktury_%3D_programy

[8] Milková, E. (2015) Multimedia Application for Educational Purposes:
Development of Algorithmic Thinking. Applied Computing and
Informatics Vol. 11, Issue 1, 76–88. doi: 10.1016/j.aci.2014.05.001

[9] Milková, E. et al. (2010) Algoritmy: typové konstrukce a příklady,
Hradec Králové: Gaudeamus.

[10] Robinson, K. (2011) Out of Our Minds: Learning to be Creative,
Capstone Publishing Ltd, Oxford.

[11] Sedivý, J. Multimedia support of parametric modeling. Engineering
education (EDUCATION 2012) : proceedings of the 9th WSEAS
international conference. Athens : World scientific and engineering
academy and society, 2012. 5p.

[12] Michalík, P., Toman, J. (2013) Possibilities of Implementing Practical
Teaching in Distance Education. International Journal of Modern
Education Forum, Vol. 2, No. 4, pp. 77-83.

[13] Němec, R., Hubalovský, Š. (2014) Software Design of System SMPSL,
WSEAS transactions on computers, Vol. 13, pp. 329-337.

[14] Voborník, P. (2011) Teaching algorithms using multimedia tools,
Proceedings of the 8th International Conference on Efficiency and
Responsibility in Education, Czech University of Life Sciences Prague,
pp. 312–321.

[15] Dehnadi, S., Bornat, R. (2006) The camel has two humps (working
title), Middlesex University, UK.

[16] Dehnadi, S., Bornat, R. & Adams, R. (2009) Meta-analysis of the effect
of consistency on success in early learning of programming, Psychology
Programming Interested Group (PPIG) Annual workshop.

[17] Dehnadi, S. (2006) Testing programming aptitude, Proceedings of the
18th Annual Workshop of the Psychology of Programming Interest
Group, pp. 22–37.

[18] Bornat, R. et al. (2008) Mental models, consistency and programming
aptitude. In Proceedings of the tenth conference on Australasian
computing education, Vol. 78. pp. 53–61.

[19] Milková, E., Petránek, K. & Janečka, P. (2012) Programming
capabilities evaluation, Proceedings of the 9th International
Conference on Efficiency and Responsibility in Education, Czech
University of Life Sciences Prague, pp. 310–318.

[20] Bennedsen, J. & Caspersen, M. E. (2007) Failure rates in introductory
programming, ACM SIGCSE Bulletin, Vol. 39, No. 2, pp. 32–36.

[21] Petránek, K., Janečka, P. (2013) Dehnadi Evaluation, Software for
automatic grading of Dehnadi’s test, available online at
https://github.com/karelp/dehnadi_evaluation

[22] Petránek, K., Janečka, P. (2013) Testing programming aptitude: An in-
depth analysis, Efficiency and Responsibility in Education, Czech
University of Life Sciences Prague, pp. 497–502.

[23] Saeed, N., Yang, Y., & Sinnappan, S. (2009). Emerging Web
Technologies in Higher Education: A Case of Incorporating Blogs,
Podcasts and Social Bookmarks in a Web Programming Course based
on Students' Learning Styles and Technology Preferences. Educational
Technology & Society, 12 (4), 98–109.

[24] Felder, R. (1995) Learning and Teaching Styles in Foreign and Second
Language Education, Foreign Language Annals, Vol. 28, No. 1, 1995,
pp. 21–31.

[25] Felder, R. M,. Silverman L. K. (1988) Learning and Teaching Styles in
Engineering Education, Engr. Education, Vol. 78, No. 7, pp. 674–681.

[26] El-Hmoudova, D., Milková, E. (2015) Variations and Frequencies in
Learning Styles in a Group of Czech English as Foreign Language
Learners. Procedia - Social and Behavioral Sciences, Vol. 182 (2015),
pp. 60-66. doi: 10.1016/j.sbspro.2015.04.738

[27] El-Hmoudová, D. (2015) Assessment of individual learning style
preferences with respect to the key language competences, Procedia -
Social and Behavioral Sciences, Vol. 171 (2015), pp. 40–48.
doi:10.1016/j.sbspro.2015.01.086

[28] http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Learning_Style
s.html

[29] http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSpage.html
[30] Felder, R. M., Spurlin, J. E. (2005). Application, reliability, and validity

of the Index of Learning Styles, Int. J. Engr. Education, 21(1), pp. 103-
112.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 225

http://dx.doi.org/10.1016/j.sbspro.2015.01.086
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Learning_Styles.html
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Learning_Styles.html
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSpage.html

