
 

 

    
Abstract An essential part of studies at faculties preparing 

students in the area of computer science is the development of 
student’s programming skills. Despite a heroic academic effort and 
many different theoretical researches which deal with the question of 
how to develop these skills, a substantial minority of students fail 
introductory programming course. We observed this fact at our 
university and noticed it is similar to other universities. To change 
this disadvantageous situation we aimed our attention at a research 
concerning students’ programming capabilities evaluation with 
regard to the input Dehnadi’s test focused on programming aptitude. 
Within research most often students’ mistakes have been deeply 
examined and study materials have been innovated. The paper 
describes our research and introduces an innovative study material 
successfully supporting student´s programming skills development.  
 

Keywords Algorithmic thinking and programming skills 
development, programming skills evaluation. 

I. INTRODUCTION 
EHNADI et al. developed a programming aptitude test 
which predicts whether a person can become a 

programmer. The test does not require any prior programming 
experience which is an important property that allows student 
pre-screening and teaching adjustments before a programming 
course begins. We have pursued a research project focused on 
programming capabilities evaluation using Dehnadi’s 
approach at the Faculty of Informatics and Management and at 
the Faculty of Science, University of Hradec Králové since 
2011.  

During the research we examined the most common 
mistakes students make, and we prepared new study materials 
according to research results based on learning styles 
preferences. 

In the paper we briefly introduce the Algorithms and Data 
Structures course, which is our introductory programming 
course. Secondly, we discuss Dehnadi’s test and present the 
main results of evaluating student programming capabilities 
using the test. We conclude this paper with a summary of study 
materials innovations which successfully support programming 
skills and have been made with regard to most often mistakes 
made by students. 

 
 

II. ALGORITHMS AND DATA STRUCTURES 
There are various research studies which deal with the 

question of how to start developing algorithmic thinking in 
students.  

The education at secondary schools and colleges in the area 
of computer science has changed in the Czech Republic and 
students have only learnt a user approach. For many today’s 
students, the algorithmic approach is almost unknown. In 
university departments that are training students in computer-
related disciplines, the creation of algorithms is still taught 
mostly within courses dealing with a programming language. 

There are still long discussions regarding what kind of 
programming language is suitable for beginners (cf. [1]). In the 
late 1960s Niklaus Wirth designed, especially for educational 
purposes, Pascal programming language, which was initially 
intended to teach students a structured programming, see e.g. 
the textbook [2]. Over the years it has been enhanced to many 
variants including Delphi, the object oriented version of 
Pascal. 

Works written by Seymour Papert [3] covering children’s 
programming languages and similar works based on his 
approach (e.g. [4], [5]) have given another possibility of how 
to develop programming skills of beginners.  

There are also teachers using spreadsheets as an access to 
the introduction of basic algorithms (e.g. [6]). 

We went through all above-mentioned possibilities at the 
university. However, the children’s programming language 
seemed unsuitable for adult students. And using a program 
language, students concentrated more on language syntax and 
on options available in an environment rather than on 
algorithms. 

Since the late 1990s most students starting at the university 
have had almost no concept of how to create an algorithm. We 
therefore decided, in 1998, to build the Algorithms and Data 
Structures (ALGDS) course aimed to basic algorithm 
construction skills. (cf. [7] and [8]) 

ALGDS is placed into curriculum before other courses 
which deal with algorithmic and programming skills. The 
approach that we have been using is based on an idea of a box 
of bricks, where only several basic shapes are available from 
which children are able to create impressive buildings. We do 
not use any programming language in the course. Students 
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write algorithms on paper in Czech meta-language. The Czech 
meta-language is nothing more than the basic commands of 
Pascal programming language translated into Czech.  

This process of algorithm design is reflected in the course 
structure. Thus, when we lead students through their first steps 
in the creation of algorithms we explain to them that it is like 
building interesting objects out of just a few basic shapes. In 
ALGDS it means that we start our teaching with basic 
algorithmic structures (= basic elements from a box of bricks: 
blocks of commands, incomplete and complete branching and 
loop construction) and typical algorithmic structures (= a few 
parts made out of these elements: structures concerning count 
a value, find and determine an element with the given property 
and its position, move, add and remove an element) and then 
we let students into the secrets of making whole algorithms 
(building whole constructions). 

A. Lectures and seminars 
All basic algorithmic structures are explained in the lectures. 

The idea of each presented algorithm is illustrated by a 
practical situation at first, and the whole procedure is 
demonstrated step-by-step.  

Dealing with the given topic we start to solve easier tasks 
and consecutively proceed to more difficult ones. We carefully 
discuss mutual relations among algorithms. Let us demonstrate 
it in the following example: 

Example  
Let us suppose that we are working with a finite numerical 

sequence (a1, a2, … , an) of n terms being already saved to the 
array a of the length n, n ≥ 1. Let us create algorithms solving 
the following tasks. 

• Remove the first three terms a1, a2, a3 from the sequence. 
• Remove the fifth till night terms, i.e. a5, …, a9, from the 

sequence. 
• From the sequence remove the terms ap, …, aq, supposing 

p < q. 
The students apply their knowledge during seminars to a 

variety of tasks. They work in groups of two or three and each 
group is responsible for solving one of the given tasks. The 
students are given some time to prepare their solutions on a 
piece of paper. Then the task is illustrated and presented on the 
blackboard by two or three students, each from a different 
group. The class discusses and compares the given solutions. 
This approach is beneficial both for the students who are 
pushed to try and find more solutions to a task, and for the 
teacher who has an opportunity to open a discussion if there is 
a problem with the solutions.   

B. Study materials 
The whole area explained within ALGDS is introduced in 

the textbook [9], where more than 150 problem assignments, 
questions and exercises are presented. The accuracy of a 
solution can be verified with the help of the Algorithms 
program (see below in the text) which is included together 
with solutions of all the textbook provided tasks, on an 
accompanying CD.  

Students can view the electronic version of the textbook as 
well as they can download the Algorithms program in the 
virtual study environment used at the university. They can also 
access other study materials corresponding to a lecture such as 
additional lecture notes, problem statements of tasks solved in 
seminars, presentations and animations used at the lecture. 
There is also a detailed plan of lectures available as well as 
credit conditions and sample of credit test, which contains not 
only standard type of task but also the following ones: 

I) 
Complete the algorithm solving the following task. In the 

sequence of n integers saved in the array a determine the first 
minimum value and then sum all integers behind the found 
minimum value.  
begin 
   minimum := a[1]; 
   sum := ..........; 
   for i from 2 to n do 
   begin 
     sum := sum + ..........; 
     if a[i] ... min then 
     begin 
       minimum := ..........; 
       sum := ..........; 
     end; 
   end; 
end. 

II) 
There are n integers saved in the array a (see the table). 

Determine the values in the array a after finishing the 
following algorithm. Write them to the table below. 
begin 

n:=6; 
x:=a[1]; 

 i := 2; 
 while i ≤ n - 1 do 
 begin 
  if a[i] > x then 
   begin 
   a[1]:= a[i]; 
   a[i]:= x; 
 end; 
 i := i + 1; 
 end;  
end. 
 

a[1] a[2] a[3] a[4] a[5] a[6] 
11 8 19 7 16 17 
      

 

C. Multimedia applications 
Education scientists have been discussing “changing the 

education paradigm” pointing out that the power of technology 
has caused fundamental changes in all aspects of our lives, 
including the educational process [10]. Multimedia 
applications provide teachers with an excellent opportunity to 
demonstrate and visualize the subject matter more clearly and 
comprehensibly, as well as to enable them to prepare a study 
material that optimizes students’ study habits. Multimedia 
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animations and presentations are usually used to describe a 
topic and illustrate it using a visualization of objects and 
processes. They mostly enable to test the coursework using 
several prepared exercises. Multimedia programs offer not 
only the options as presentations, but their biggest advantage is 
that they can provide an infinite number of more needed 
examples. (cf. [11] - [13]) 

Along with large multimedia software products developed 
by a team of professionals there are also various smaller 
presentations and multimedia applications appropriate to 
course subject matter created by students themselves based on 
a script given by the teacher.  

One of such programs is the Algorithms program. It is 
developed in the Borland Delphi environment and available on 
http://lide.uhk.cz/prf/ucitel/milkoev1/en_index.htm, the page 
ALGDS / Lectures / Students presentations). Several 
animations prepared for the subject ALGDS are available there 
as well.  

The program is an excellent tool for all students attending 
ALGDS. The program is user-friendly and provides entire 
graphical support for users. Its options are designed to be 
intuitive and at the same time to remind professional editors 
and debuggers of well-known programming languages [14].  

Using the program, students can place their solution(s) to 
the given task, written in Czech meta-language, into the 
program and the program shows them step-by-step how their 
algorithm works and if it is correct or not. In each step of the 
algorithm process the program shows current values of 
variables.  

III. DEHNADI’S TEST AND RESEARCH RESULTS 
When introducing programming to freshmen students, there 

seems to be a clear division between students who find 
programming easy and those who have a hard time grasping 
even the basic concepts. Dehnadi and Bornat [15] observed 
that the level of mental model consistency that learners apply 
when faced with a novel, seemingly nonsensical problem could 
be a good predictor of programming capabilities. Saeed 
Dehnadi designed a test focused on discovering future 
programmers before they enter their first programming class 
[16]. 

A. Dehnadi’s test 
Dehnadi’s test [17] is based on assessing mental model 

consistency in the assignment operation. The test consists of 
twelve similar questions. Each question gives a sample C-like 
program, declaring two or three variables and executing up 
to three variable-to-variable assignment instructions.  

The test is evaluated according to an answer sheet and a 
mark sheet which together assign mental models to each 
answer and combine them into a total score. There are 11 
mental models described in [17], slightly modified in [18], see 
Fig. 1. Except for the classical assignment operation model 
known from C or Java, Dehnadi identified 10 other models 
that were used by the applicants. The common ones include 
the left-to-right assignment (as opposed to the standard right-

to-left), comparison or assignment without transfer to the next 
line. If a person is able to choose any of these 11 models and 
use it consistently through the whole test, he or she is 
considered a good candidate to become a programmer. The 
consistency threshold was set at 8 consistent answers out of 
12. Dehnadi and Bornat [15] report that 44 % of the applicants 
showed consistent models, 39 % used several models 
inconsistently and 8 % have refused to fill the answers. 
The remaining 9 % of students are not discussed in the paper. 
[19] 

M1. Value moves from right to left (a ← b and b ← 0 - 
eighth line in figure 1). 

M2. Value copied from right to left (a ← b - fourth line of 
figure 1, and the 'correct' answer in Java). 

M3. Value moves from left to right (b ← a and a ← 0 - third 
line of figure 1). 

M4. Value copied from left to right (b ← a - first line of 
figure 1, a reversed version of the 'correct' answer). 

M5. Right-hand value added to left (a ← a+b - second line of 
figure 1). 

M6. Right-hand value extracted and added to left (a ← a+b 
and b ← 0 - tenth line of figure 1). 

M7. Left-hand value added to right (b ← a+b - ninth line of 
figure 1). 

M8. Left-hand value extracted and added to right (b ← a+b 
and a ← 0 - fifth line of figure 1). 

M9. Nothing happens (sixth line of figure 1). 

M10. A test of equality (first and fourth lines of figure 1). 

M11. Variables swap values (seventh line in figure 1). 

Fig. 1 Anticipated mental models of assignment a=b [18] 
 

B. Dehnadi’s test applications 
Dehnadi’s test promises to bring the holy grail of 

programming education and aptitude testing – with a simple 
test we should be able to decide whether a student will be a 
fast or slow learner. This brings several possibilities to 
enhancing education and certification: 

• Students can be split into classes based on their 
expected proficiency 

• The teachers can direct their focus better by knowing 
the audience 

• Companies could easily filter applicants for a 
programming position 

• The students can adjust their focus according to their 
test results 
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A test of the qualities described in Dehnadi’s research 
would thus be a great improvement of programming education. 
Given the small sample size in the original paper and due to 
some of its criticisms [20] we decided to verify Dehnadi’s 
claims on our freshmen at University of Hradec Králové on a 
bigger number of students than the original paper. 

C. Research data 
We first decided to use Dehnadi’s test in academic year 

2011/2012 at the Faculty of Informatics and Management to 
test our freshmen at the beginning of the first programming 
ALGDS course. We hoped that Dehnadi’s test could serve as 
an orientation resource both for students and teachers. 
Students who belong to the inconsistent group should devote 
a more thoughtful attention to the subject; they should study 
regularly, discuss their solutions with the teacher 
or experienced students and practise their programming skills 
(preferably every day). Teachers would be able to use the 
Dehnadi’s test results to divide students into appropriate 
groups when explaining and practising algorithm design. 
During academic years 2011/2012, 2012/2013, 2013/2014 and 
2014/2015 data of 473 students who both filled Dehnadi’s test 
and participated in the introductory programming course were 
analysed. 

Minding the fact that there are students starting the 
university who had already a prior programming experience 
before attending the first programing course we divide the 
students to two groups: students with no prior programming 
experience and students with prior programming experience.  

D. Results 
To avoid human errors during test evaluating, we prepared 

automated software [21] that evaluates each student’s test 
based on the grading sheets released by Dehnadi. Having the 
possibility to use the automated software we are able to 
evaluate hundreds of students’ test results. 

Dehnadi’s test targets students with no previous exposure 
to programming. The original test is supposed to be applied 
primarily to non-exposed group of students. At the same time, 
it is supposed to give biased results of students who were 
previously exposed to programming. Our aim is to verify these 
results – we compared the results of successful and 
unsuccessful students and their performance in Dehnadi’s test 
for both groups. We used Wilcoxon rank sum test (at 
significance level 5 %) to check for significant differences in 
expected score of successful and unsuccessful students. 

The main result from our research is that Dehnadi’s test 
cannot predict whether a person will be a proficient 
programmer or not (judged by getting a credit for our 
introductory programming course) when the person has not 
been exposed to programming before. This contradicts 
Dehnadi’s findings and thus we cannot confirm the conclusion 
of his papers. See Fig. 2 for a visual comparison of student 
scores for students who have no prior programming 
experience. Obviously, Wilcoxon rank sum test does not reject 
the null hypothesis that the two groups come from the same 

population (p-value 0.274, significance level 0.05). 

 
Fig. 2 Box plot showing the distribution of scores from our 

introductory programming course ALGDS based on their success in 
Dehnadi's test (1 means successful). Students needed 6 points to get 
the credit. Only students with no prior programming experience are 

included in this plot. 
 

However, when Dehnadi’s test is applied to students who 
have already been exposed to programming before, we show 
that the test actually does have a discriminative power. If a 
student with previous programming experience does not reach 
a full score (12 points) in Dehnadi’s test, he or she will likely 
fail the course.  

 
Fig. 3 Box plot showing the distribution of Dehnadi's test scores for 

students with previous programming experience that were 
unsuccessful (left) and successful (right) in our introductory 

programming course ALGDS. 
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This result also makes an intuitive sense – Dehnadi’s test is 
based on simple assignment tasks and if a student is unable to 
comprehend these after a previous programming course, it is 
unlikely he or she will perform better in our course. The 
Wilcoxon rank sum test also reports a statistically significant 
difference with p-value 0.003 given significance level 0.05. 
Fig. 3 shows two distributions of Dehnadi’s test scores, both 
for students who succeeded in our introductory course and 
those who failed the course. We can observe easily that there 
is only a handful of students with previous programming 
experience who did not reach a full score and yet passed the 
course. (cf. [22]) 

E. Applications and discussion 
Contrary to the claims in [15], results of our research have 

shown that the Dehnadi’s test cannot predict success in the 
ALGDS course for students with no prior programming 
experience (cf. [20]). 

Nevertheless, using the test we are able to predict success 
in ALGDS subject of students with prior programming 
experience. Supposing that about a half students attending 
ALGDS subject have prior programming experience, the 
Dehnadi’s test can serve as useful information for students not 
achieving a full score to devote a considerable care to the 
subject.  

Since 2014 we have had a fully automated on-line version 
of the test where students see their score right after submitting 
the test. While we do not count Dehnadi’s test results toward 
the final score, students are required to fill it during the first 
week of the semester and include information about their 
previous programming experience. This serves two purposes – 
the students who fail Dehnadi’s test experience the 
psychological effect of a failed test and the teachers can see 
the scores and experience of all their students and adjust their 
lectures. While a failed test does not affect the final grade, it 
still motivates many students to devote extra time to the 
course. Especially students who had a previous programming 
course and fail Dehnadi’s test feel compelled to “make up” for 
this failed test – exactly the effect we want to achieve as this 
group is most susceptible to fail the course. Based on many 
years’ experience we are sure that the existence of students 
who successfully passed Dehnadi’s test but did not succeed in 
ALGDS can be explained as follows: Students with prior 
programming experience usually think that their previous 
programming skills are enough to pass the ALGDS subject and 
do not devote the necessary attention to the subject matter. We 
therefore use Dehnadi’s test as a wake-up call for these 
students. 

On the other hand, students with no previous programming 
experience are able to pass ALGDS subject thanks to a 
systematic development of algorithmic thinking. Dehnadi’s 
test does not play a big role for this group because of its non-
existent discriminative power. Also the students with no 
previous programming exposure tend to take the failed test 
more lightly expecting that the course is supposed to teach 
them how to answer questions like that.  

IV. LEARNING STYLES 
The individual learning styles model is one of the concepts 

that is postulated by scientists to determine the different 
students´ approaches to receiving, processing and further 
presenting obtained information. In this regard extensive 
global research has been undertaken, the results of which are 
applied in different models of learning styles, see e.g. an 
overview in [23]. This can then be integrated into all aspects of 
the educational process.  

People learn and process information in different ways. 
Learning style assessments provide learners as well as teachers 
an opportunity to learn how to respond under different 
circumstances and how to approach information in a way that 
best addresses students’ particular needs. 

Out of plenty of learning style models we have chosen the 
Felder-Silverman learning style model and on this model based 
questionnaire called the Index of Learning Styles.  

Felder [24] defines individual learning styles as follows 
“The ways in which an individual characteristically acquires, 
retains, and retrieves information are collectively termed the 
individual’s learning style”. 

The Felder-Silverman learning style model was created by 
Richard M. Felder on Dr. Silverman’s expertise in educational 
psychology and his experience in engineering education.  

Felder and Silverman [25] propose that a student learning 
style may be defined by the answers to five questions: 

1. What type of information does the student preferentially 
perceive: sensory (external) – sights, sounds, physical 
sensations, or intuitively (internal) – possibilities, insights, 
hunches? 

2. Through which sensory channel is external information 
most effectively perceived: visual – pictures, diagrams, graphs, 
demonstrations, or auditory – through words or sounds? 

3. With which organization of information is the student 
most comfortable: inductive – where facts and observations 
are given, and underlying principles are inferred, or deductive 
– where principles are given, and consequences and 
applications are deduced? 

4. How does the student prefer to process information: 
actively – through engagement in physical activity or 
discussion, or reflectively – through introspection? 

5. How does the student progress toward understanding: 
sequentially – in continual steps, or globally – in large jumps, 
holistically? (cf. [26] and [27]) 

Felder´s model includes four dichotomous learning style 
dimensions which indicate students´ preferences for certain 
poles of the dimensions:  

Sensing or Intuitive - this spectrum determines how we 
perceive or take in information,  

Visual or Verbal, this spectrum determines how we prefer 
the information to be presented,  

Active or Reflective - this spectrum determines how we 
prefer to process the information  

Global or Sequential - this spectrum determines how we 
prefer to organize and progress understanding information. 
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A. The Index of Learning Styles 
The Index of Learning Styles (ILS) was developed by 

Richard M. Felder and Barbara A. Soloman and may be used 
cost-free for non-commercial purposes by individuals who 
would like to determine their own learning style profile and by 
educators who would like to use it for teaching, advising, or 
research. For more information see [28] - [29].  

 ILS is a self-scoring web-based instrument that assesses 
preferences on the active / reflective, sensing / intuitive, 
visual / verbal, and sequential / global dimensions. The forty-
four multiple choice questions in the questionnaire reflect the 
psychological and behavioural characteristics of four 
dichotomous dimensions of learning styles mentioned above. 
After submitting their answers, students are provided with 
Learning Style Results (see Fig. 4), where if their score on the 
scale is 1-3, they are considered fairly well balanced on the 
two dimensions of that scale. If their score on the scale is 5-7, 
they have a moderate preference for one dimension of the 
scale and will learn more easily in a teaching environment 
which favours that dimension, and if their score on the scale is 
9-11, they have a very strong preference for one dimension of 
the scale and are classified as purely single-style learners, 
which may cause struggling and suffering when learning in an 
environment which does not support their preference. [27] 

 
Fig. 4 ILS graph showing student preferences 

B. Research Data and Results 
The main results concerning learning styles preferences of a 

student attending ALGDS during three previous academic 
years 2012/13, 2013/14 and 2014/15 can be summarized as 
follows. 

From our general observation of students most of them are 
visual learners. The results show that in fact 87% are visual 
learners, whereas 56% are strong visual learners. 

About 72% students belong to sensing dimension, whereas 
34% of them to the moderate till strong sensing dimension. 

Concerning the other two dimensions, active/reflective and 
sequential/ global, most students belong to the mild level of 
these dimensions more of them to the „left side”, which means 
to the mild active and mild sequential dimension. Surprisingly, 

almost no students belong to the strong „right” side of any 
dimension. 

C. Study material for ALGDS reflecting learning style 
preferences 

Our aim has been to prepare lectures, lessons and suitable 
study materials in a way that support all dimension described 
above. This fact guarantees optimal study conditions for all 
students. On one hand each student can find a study material 
suitable for his/her learning style. On the other hand each 
student is slightly pushed to enhance also his/her opposite 
learning style dimension.  

Let us explain it in detail. 
Thanks to the way that students create an algorithm to a task 

given at a seminar (see section II. A) both, active and 
reflective dimension is supported.  

Learners belonging to the sensing dimension remember and 
understand information best if they can see how it is connected 
with the real world. Therefore, we explain the idea of each 
algorithm, that is presented in the lecture in a practical 
situation and we usually demonstrate it with the help of 
students. 

 At lectures and seminars we devote enough time and space 
to discussions concerning mutual relations among algorithms 
that is a valuable support to both intuitive learners who prefer 
to discover possibilities and relationships and to learners 
belonging to the sensing dimension who need enhance 
innovative thinking. (Remark: According [25] „Everybody is 
sensing sometimes and intuitive sometimes. To be effective as 
a learner and problem solver, you need to be able to function 
both ways. If you overemphasize intuition, you may miss 
important details or make careless mistakes in calculations or 
hands-on work; if you overemphasize sensing, you may rely 
too much on memorization and familiar methods and not 
concentrate enough on understanding and innovative 
thinking.”). 

Using the Algorithms program both sequential and global 
students can find their own way to support their self-study, 
how to revise a subject matter and understand it more properly 
and accurately.  

Algorithms are described in words, which is the method that 
verbal students prefer. However, there are several ways to 
support visual students as well. For example, each algorithm 
introduced in the first few lessons is also described using a 
flowchart. Small animations visualizing basic algorithmic 
structures and the Algorithms program (see section II. B) 
visualizing changing values in variables during the whole 
process, belong to another helpful method.   

A new significant support that has been provided recently is 
introduced in the following section. 

V. ADDITIONAL NEW STUDY MATERIAL FOR ALGDS 
In section II we mention that students can download the 

textbook [9] and the Algorithms program from the virtual 
study environment. 

Using the results gained from the analyses of student 
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learning styles preference we made the following changes. 
By academic year 2013/14 we had first explained the one-

dimensional data structure. After that we proceeded to two-
dimensional array problems. In 2015 we decided to change 
this process. We explained each typical algorithmic structure 
for both one-dimensional and two-dimensional arrays. We 
found out that the students are able to comprehend better the 
array index manipulation this way and thus better understand 
the whole subject matter. Compared to the previous years the 
fear of working with two-dimensional array indices almost 
disappeared. 

To support more and more visual learners we have prepared 
another significant innovation. The texts describing the typical 
array manipulation techniques were complemented by colours 
emphasizing structures used in the given algorithm. We 
demonstrate this method on an extract of the chapter Shift of 
values within array published in the textbook [9], namely on 
the algorithmic structure Inserting a new array element. The 
demonstration follows. 

Inserting a new array element 
Let us introduce a typical algorithmic structure used in 

algorithms for adding a new value x after the k-th term of a 
numerical sequence (a1, a2, … , an), 1 ≤ k ≤ n, stored in an 
array a.  
 read(x); 
   read(k); 
  i := n;  
  while i ≥ k + 1 do   
 begin   
    a[i + 1] := a[i];  
    i := i - 1;   
  end; 
 a[k + 1] := x;    
 n := n + 1;   

Example 
Let us create an algorithm which adds –1 after the last 

minimum element of a numerical sequence (a1, a2, … , an), 
1 ≤ k ≤ n, and writes out the resulting sequence.  
begin 
 read(n); 
 for i := 1 to n do 
   read(a[i]); 
 min := a[1]; 
 indexMin := 1;   
  for i := 2 to n do 
    if a[i] ≤ min then 
    begin  
      min := a[i];  
      indexMin := i;  
   end; 
 i := n;  
  while i ≥ indexMin + 1 do     
 begin   
    a[i + 1] := a[i];  
    i := i - 1;   
  end; 
 a[indexMin + 1] := -1;  
  n := n + 1;   
 for i := 1 to n do  
    write(a[i]);  
end. 

VI. CONCLUSION 
We present a detailed list of improvements to our 

introductory programming course at University of Hradec 
Králové that result from our research in programming aptitude 
testing and learning style analysis.  

We show that the programming aptitude test cannot be used 
blindly with all students.  Good discriminative results can be 
achieved with students with a prior programming experience.  

The learning styles preferences research shows that majority 
of students tend to mild preference to the four dimensions of 
learning styles. However, there are moderate and strong 
preferences especially to sensing and visual dimensions. The 
optimal condition is that teachers can help students acquire the 
ability to use their less preferred style modalities when 
appropriate and make those learners with strong preference to 
certain learning styles move toward a position of greater 
balance [30].  

We have found out that devoting enough time explaining 
mutual relationships among solved problems and carefully, 
together with students, recognizing the differences among 
almost the same algorithms is very helpful for beginners and 
sometimes reveals hidden connections even for experienced 
students.  

The learning styles preferences research leads to a 
technically simple, but an extremely helpful extension of the 
textbook that uses colour coding to match sentences from an 
exercise with corresponding lines of its algorithmic solution. 

Results achieved from the credit tests show that our 
improved pedagogical approach used in the first programming 
course, Algorithms and Data Structures, is successful.  
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