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Abstract—This paper deals with the development of two
strategies of control, for multivariable systems, combining Sliding
Mode Control (SMC) and Model Predictive Control (MPC). This
is an extension of our previous works synthesized in the case of
single input single output. The first proposed controller is the
Sliding Mode Control with Predictive Sliding Function (SMC-
PSF) and the second proposed controller is the Predictive Sliding
Mode Control (PSMC). These types of scheme improve the perfor-
mances of the SMC and the MPC. Simulation results demonstrate
that the (SMC-PSF) and (PSMC) give better performances, for
multivariable systems, in terms of strong robustness to external
disturbance and parameters variation, chattering elimination and
fast convergence, in comparison with the SMC. In comparison
between each other, the SMC-PSF in better then the PSMC, at
the presence of hard parameter variation.

Keywords—Multivariable systems, Sliding Mode Control, Model
Predictive Control, Predictive Sliding function, Chattering phe-
nomenon.

I. INTRODUCTION

The growth in the complexity of modern industrial systems
make difficult the design of an exact mathematical model and
the development of a suitable control. In fact, these systems are
non linear, multivariable, also with external disturbances, pa-
rameter uncertainties and time delays. Therefore Sliding Mode
Control (SMC) and Model based predictive control(MPC)
are excellent candidates to utilize as a control law for these
systems.[1].
For a large class of systems, the SMC is particularly interesting
due to its ability to deal with non linearities, uncertainties,
modeling errors and disturbances [4]. The main idea behind
SMC is to synthesize a discontinuous control input to force
the states trajectories to reach a specific surface called the
sliding surface in finite time and to stay on it. However, in spite
of the robustness of the sliding mode control, the chattering
phenomenon, caused by the discontinuous term of the control
law, is still the main problem of the SMC which consists in
a sudden and rapid variation of the control signal leading to
undesirable results [1].
Many approaches have been proposed to solve this problem
such as high order sliding mode control [2], [3].
On the other hand, in recent years, model based predictive
control(MPC) has received a lot of attention in the control
theory and applications. It has been successfully implemented
in many industrial applications, showing good performances.

The basic idea of MPC is to calculate a sequence of future
control signals in such a way that it minimizes a multistage
cost function defined over a prediction horizon. The index to be
optimized is a difference between the predictive system output
and predictive reference sequence over the prediction horizon
plus a quadratic function measuring control effort [4], [5], [6].
Nevertheless the control law is model dependent, so a perfect
model is required to guarantee the success of MPC control
strategies. Because of the finite horizon, the stability and the
robustness of the process is difficult to analyze and guarantee,
especially when constraints are present [7], [8].
As a solution, we have proposed in [9], [10], [11], [12], [13],
[14] the predictive sliding mode controller (PSMC) which
combine the design of SMC and MPC for single input single
output systems. This combination improves the performances
of the two control laws and overcome most of their specific
drawbacks.
In other works, we have proposed another combination, which,
is consisting on a sliding mode controller, where the optimal
sliding function is allowed by a model predictive control block
based on a specific objective [10], [15]. The main idea of
this work is to extend our previous works, concerning the
Sliding Mode Controler with predictive sliding function (SMC-
PSF) and the predictive sliding mode controller (PSMC), to
multivariable systems.
The paper is organized as follows: Section II gives the syn-
thesis of the classical discrete sliding mode control for mul-
tivariable systems. The synthesis of the multivariable sliding
mode controll with predictive sliding function is presented in
section III. The Multivariable Predictive Sliding Mode Control
is synthesized in section IV. In the following section, the two
proposed controller are tested on a simulation example, and
compared to SMC control and with each other. Finally, section
V draws conclusions of the paper.

II. THE CLASSICAL DISCRETE MULTIVARIABLE SLIDING
MODE CONTROL

Consider a discrete multivariable system subjected to ex-
ternal disturbances and parameters variation, defined by [16]:
{

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)(u(k) + v(k))
y(k) = Hx(k) + Du(k)

(1)
where:
x(k) ∈ <n is the state vector at the instant k, u(k) ∈ <m is

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 232



the input vector at the instant k, y(k) ∈ <p is the output vector
at the instant k, v(k) ∈ <m is the disturbance input vector at
the instant k.
The matrices A ∈ <n×n, B ∈ <n×m, H ∈ <p×n and D ∈
<p×m are the nominal model matrices.
∆A ∈ <n×n and ∆B ∈ <n×m are the parameter uncertainties
matrices.

The system (1) can be presented by the following form:
{

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Hx(k) + Du(k) (2)

with:

w(k) = ∆Ax(k) + ∆Bu(k) + (B + ∆B) v(k) (3)

where w(k) ∈ <n.
The sliding function is defined as [17]:

S(k) = Cx(k) = [s1(k) · · · sm(k)]T (4)

where the dimension of the matrix C are (m,n).
The sliding function vector is chosen in order to verify the
following reaching law [18], [19]:

S(k + 1) = ΦS(k)−




m1sign(s1(k))
m2sign(s2(k))

...
mmsign(sm(k))


 (5)

where Φ is a diagonal matrix with (m,m) dimension and
verifying 0 ≤ Φi,i < 1 and mi > 0 for i ∈ [1 m].
and sign is the signum function defined as :

sign(si(k)) =
{ −1 if si(k) < 0

+1 if si(k) > 0 ; i ∈ [1 m]

Thus, using equation (5), the control law ensuring the quasi-
sliding mode is calculated as follows [20]:

u(k) = (CB)−1


−CAx(k) + ΦS(k)−




m1sign(s1(k))
m2sign(s2(k))

...
mmsign(sm(k))







(6)
(CB) is inversible.

III. SYNTHESIS OF DISCRETE MULTIVARIABLE SLIDING
MODE CONTROL WITH PREDICTIVE SLIDING FUNCTION

A block diagram of the SMC-PSF is shown in Figure1,
where the primary loop is a Model Predictive Control (MPC)
and the secondary loop is a Sliding Mode Control (SMC)[10],
[15].

Model Predictive
Control
(MPC)

SMIMO

Sliding Mode
Control
(SMC)

u

Fig. 1. SMC-PSF Controller bloc diagram.

The main purpose is to apply the discrete sliding mode
control for multivariable systems which the sliding function is
given optimally by the Model predictive control, based on a
specific objective
We consider, now, the sliding mode control problem for
multivariable system (1). The objective is to design sliding
mode controller with predictive sliding function taking the
reaching law (5). Define the vector ∆Ueq(k + 1) as:

∆Ueq(k + 1) =




∂ueq(k + 1)
∂ueq(k + 2)

...
∂ueq(k + M)

0
...
0




=




ueq(k + 1)− ueq(k)
ueq(k + 2)− ueq(k + 1)

...
ueq(k + M)− ueq(k + M − 1)

0
...
0




(7)

Or, the equivalent control vector is given by:

ueq(k) = (CB)−1 [ΦS(k)− CAx(k)]

So the vector ∆Ueq(k + 1) can be written as:

∆Ueq(k + 1) =




(CB)−1Φ [S(k + 1)− S(k)]
(CB)−1Φ [S(k + 2)− S(k + 1)]

...
(CB)−1Φ [S(k + N)− S(k + N − 1)]




−




(CB)−1CA [x(k + 1)− x(k)]
(CB)−1CA [x(k + 2)− x(k + 1)]

...
(CB)−1CA [x(k + N)− x(k + N − 1)]




(8)
or, we have:
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



x(k + 2)− x(k + 1) = A(x(k + 1)− x(k))
+ B(ueq(k + 1)− ueq(k))

x(k + 3)− x(k + 2) = A2(x(k + 1)− x(k))
+ AB(ueq(k + 1)− ueq(k))

+ B(ueq(k + 2)− ueq(k + 1))
...
x(k + M)− x(k + M − 1) = AM−1(x(k + 1)− x(k))

+ AM−2B(ueq(k + 1)− ueq(k))
+ AM−3B(ueq(k + 2)− ueq(k + 1))
+ · · ·
+ B(ueq(k + M − 1)− ueq(k + M − 2))

...
x(k + N)− x(k + N − 1) = AN−1(x(k + 1)− x(k))

+ AN−2B(ueq(k + 1)− ueq(k))
+ AN−3B(ueq(k + 2)− ueq(k + 1))
+ · · ·
+ AN−M−1B(ueq(k + M)− ueq(k + M − 1))

Then the vector ∆Ueq(k + 1) can be presented by:

∆Ueq(k + 1) =




(CB)−1Φ [S(k + 1)− S(k)]
(CB)−1Φ [S(k + 2)− S(k + 1)]

...
(CB)−1Φ [S(k + N)− S(k + N − 1)]




−




(CB)−1CA
(CB)−1CA2

...
(CB)−1CAN


 (x(k + 1)− x(k))

−ΨMimo∆Ueq(k + 1)
(9)

So, the equation (9) can be written as:

∆Ueq(k + 1) = ∆SΦMIMO
(k + 1)−ΠMimo [x(k + 1)− x(k)]

−ΨMimo∆Ueq(k + 1)
(10)

with:

∆SΦMIMO
= (k+1)




(CB)−1Φ [S(k + 1)− S(k)]
(CB)−1Φ [S(k + 2)− S(k + 1)]

...
(CB)−1Φ [S(k + N)− S(k + N − 1)]




ΠMIMO =




(CB)−1CA
(CB)−1CA2

...
(CB)−1CAN




and

ΨMIMO=




0 · · · · · · · · · · · · 0
TAB 0 · · · · · · · · · 0
TA2B TAB 0 · · · · · · 0
TA3B TA2B TAB 0 · · · 0

...
...

...
...

...
...

TANB TAN−1B · · · TAN−MB · · · 0




with T = (CB)−1C.

Equation (10) can be written as:

(I + ΨMimo)∆Ueq(k + 1) = ∆SΦMIMO
(k + 1)

−ΠMimo [x(k + 1)− x(k)]
(11)

∆Ueq(k + 1) can be given by:

∆Ueq(k + 1) = (I + ΨMimo)−1∆SΦ(k + 1)

−ΠMimo [x(k + 1)− x(k)]]
(12)

So:

∆Ueq(k+1) = KMIMO∆SΦ(k+1)+LMIMO [x(k + 1)− x(k)]
(13)

with: {
KMIMO = (I + ΨMimo)−1

LMIMO = −(I + ΨMimo)−1ΠMimo
(14)

To find the predictive function vector, the following corre-
sponding optimization cost function is defined:

jSMC−PSF (k) =
N∑

j=1

qj [δSΦ(k + j)− δSr(k + j)]2

+
M∑
l=1

gl [δueq(k + l − 1)]2

(15)
where δSr(k + j) is the increment of the sliding mode
references trajectories vector, δSΦ(k + j) is the increment of
the predictive sliding function vector, multiplied by the term
(CB)−1Φ, qj and gl are weight coefficients.
In order to simplify the synthesis of the controller, we con-
sider qj = q and gl = g. So, the following corresponding
optimization cost function (15) is written by:

jSMC−PSF (k) =
N∑

j=1

q [δSΦ(k + j)− δSr(k + j)]2

+
M∑
l=1

g [δueq(k + l − 1)]2
(16)

Rewrite equation (16) in vector form:

JSMC−PSF (k) = ‖∆SΦMIMO
(k)−∆Sr MIMO(k)‖2Q

+ ‖∆Ueq(k)‖2G
(17)

where

∆Sr MIMO(k + 1) = [δSr(k + 1), δSr(k + 2), ..., δSr(k + N)]T

G = [gIm, gIm, ..., gIm]

Q = [qIm, qIm, ..., qIm]
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Since the control objective is to keep states on the sliding
surface, the desired sliding mode reference trajectory vector
is approximated by the predictive sliding function vector and
should verify:

Sr(k) =




0
0
...
0




(m×1)

, so ∆Sr MIMO =




0
...
0
0
...
0
...
0
...
0




(mN×1)
So, the optimization cost function can be written as:

JSMC−PSF (k) = ‖∆SΦMIMO (k)‖2Q + ‖∆Ueq(k)‖2G (18)

Rewrite equation(13), JSMC−PSF (k) can be written as:

JSMC−PSF (k) = ∆SΦMIMO
(k)T Q ∆SΦMIMO

(k)+
[KMIMO∆SΦMIMO (k)+LMIMO(x(k)− x(k − 1))]T

G [KMIMO∆SΦMIMO
(k) + LMIMO(x(k)− x(k − 1))]

(19)
The optimal sequence of the increment of the predictive
sliding function vector is obtained by minimizing the cost
function JSMC−PSF :

∂JSMC−PSF (k)
∂∆SΦMIMO (k)

= 0 (20)

So, the increment of the predictive sliding function vector can
be calculated as:

∆SΦMIMO (k) = −(GKT
MIMOKMIMO + Q)−1

GKT
MIMOLMIMO(x(k)− x(k − 1))

(21)
We suppose that δSΦ(k) is the vector of the m first elements
of the vector ∆SΦMIMO , so, the predictive sliding function
vector SΦ(k) is given as:

SΦ(k) = SΦ(k − 1) + δSΦ(k) (22)

with: SΦ(k) = (CB)−1ΦS(k)
So, the control law ueq(k) is given by the equation:

ueq(k) = (CB)−1 [ΦS(k)− CAx(k)] (23)

Then:
ueq(k) = SΦ(k)− (CB)−1CAx(k) (24)

Or, we have:

udis(k) = −(CB)−1




m1sign(s1(k))
m2sign(s2(k))

...
mmsign(sm(k))


 (25)

So:

u(k) = ueq(k) + udis(k) (26)

IV. SYNTHESIS OF DISCRETE MULTIVARIABLE
PREDICTIVE SLIDING MODE CONTROL

The principle of the Discrete Predictive Sliding Mode
Controller (DPSMC) is given by the block diagram shown in
Figure2, where the primary loop is a Sliding Mode Control
(SMC) and the secondary loop is a Model Predictive Control
(MPC)[9], [13].

Sliding
Mode Control

(SMC)

Model
Predictive Control

(MPC)

x
S̃p MIMO

Sr MIMO

δu

Fig. 2. DPSMC Controller bloc diagram.

The main purpose is to approximate the predictive sliding
functions vector Sp MIMO to the sliding reference functions
vector Sr MIMO, penalizing at the same time the variation in
the control signal.
We consider, now, the sliding mode control problem for
multivariable system (1). The objective is to design a predictive
sliding mode controller taking the reaching law (5). The
reference sliding mode trajectory is chosen as:





Sr(k + 1) = ΦSr(k)−




m1sign(sr1(k))
m2sign(sr2(k))

...
mmsign(srm(k))




Sr(k) = S(k)

(27)

We consider that w(k) is equal to null matrix.
The sliding functions vector at the instant k + 1, k + 2 and
k + 3 can be written as:

S(k + 1) = Cx(k + 1)
= CAx(k) + CB(u(k)− u(k − 1)) + CBu(k − 1)
= CAx(k) + CBδu(k) + CBu(k − 1)

S(k + 2) = Cx(k + 2)
= CA2x(k) + CBδu(k + 1) + CBδu(k)
+CABδu(k) + CBu(k − 1) + CABu(k − 1)
= CA2x(k) + CBδu(k + 1)
+C(A + I)Bδu(k) + C(A + I)Bu(k − 1)

S(k + 3) = Cx(k + 3)
= CA [A [Ax(k) + Bu(k)]] + CABu(k + 1)
+CBu(k + 2)
= CA3x(k) + CBδu(k + 2) + C(A + I)Bδu(k + 1)
+C(A2 + A + I)Bδu(k) + C(A2 + A + I)Bu(k − 1)

Then, S(k + p) can be calculated as:

S(k + p) = CApx(k) + CBδu(k + p− 1)

+C(A + I)Bδu(k + p− 2) + · · ·+ C

[
p−1∑
j=0

Aj

]
Bδu(k)

+C

[
p−1∑
j=0

Aj

]
Bu(k − 1)

(28)
where:
δu(k) = u(k) − u(k − 1) ; I is the identity matrix with the
dimension n× n.
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We introduce, then the predictive sliding functions vector of
multivariable system Sp MIMO as:

Sp MIMO(k+1) =




S(k + 1)
S(k + 2)

...
S(k + N)


 =







s1(k + 1)
s2(k + 1)

...
sm(k + 1)







s1(k + 2)
s2(k + 2)

...
sm(k + 2)




...


s1(k + N)
s2(k + N)

...
sm(k + N)







(29)
With N is prediction horizon.
Equation (29) can be described as follows::

Sp MIMO(k + 1) = ΓMIMOx(k) + ΩF
MIMO∆U(k)

+ΩP
MIMOu(k − 1) (30)

where:

∆U(k) =


δu(k), δu(k + 1), · · · , δu(k + M − 1), 0 , · · · , 0︸ ︷︷ ︸

m×(N−M+1)




With M is control horizon.

ΓMIMO =




CA
CA2

...
CAN


 (31)

ΩF
MIMO =




CB 0 · · · · · · 0
C(A + I) CB 0 · · · 0

...
...

...
...

...

C(
M−1∑
j=0

Aj)B C(
M−2∑
j=0

Aj)B · · · · · · CB

C(
M∑

j=0

Aj)B C(
M−1∑
j=0

Aj)B · · · · · · · · · C(A + I)B

...
...

...
...

...

C(
N−1∑
j=0

Aj)B C(
N−2∑
j=0

Aj)B · · · · · · C(
N−M∑
j=0

Aj)B




ΩP
MIMO =




CB
C(A + I)B

...

C(
M−1∑
j=0

Aj)B

...

C(
N−1∑
j=0

Aj)B




(32)

In practice, to make correction to the future predictive sliding
function vector Sp MIMO(k + p), we introduce the error
between the sliding functions vector S(k) and the predictive
sliding functions vector S(k/k− p). Therefore, the predictive
sliding functions vector is given as follows:

S̃p MIMO(k + p) = S(k + p) + hpe(k)

= CApx(k) + CBδu(k + p− 1) + C (A + I) δu(k + p− 2)

+ · · ·+ C

[
p−1∑
j=0

Aj

]
Bδu(k) + C

[
p−1∑
j=0

Aj

]
Bu(k − 1)+hpe(k)

(33)
hp is a correct coefficient.
The equation (33), can be given as:

S̃p MIMO(k + 1) = Sp MIMO(k + 1) + HpE(k) (34)

where:

S̃p MIMO(k + 1) =
[
S̃p(k + 1), S̃p(k + 2), ..., S̃p(k + N)

]T

Hp = diag [h1Im, h2Im, ..., hNIm]
E(k) = Sv(k)− Smp(k)
Sv(k) = [S(k), S(k), ..., S(k)]
Smp(k) = [S(k/k − 1), S(k/k − 2), ..., S(k/k −N)]T

Knowing that:

S(k/k − p) = CApx(k − p) +
p∑

j=1

CAj−1Bu(k − j)

(35)
The following corresponding optimization cost function is
defined by:

jDPSMC =
N∑

j=1

qj

[
S̃p(k + j)− Sr(k + j)

]2

+
M∑
l=1

gl [δu(k + l − 1)]2
(36)

where Sr(k + j) is the sliding mode references trajectories
vector, qj and gl are weight coefficients.
In order to simplify the synthesis of the controller, we con-
sider qj = q and gl = g. So, the following corresponding
optimization cost function (36) is written by:

jDPSMC =
N∑

j=1

q
[
S̃p(k + j)− Sr(k + j)

]2

+
M∑

l=1

g [δu(k + l − 1)]2

(37)
The equation (37) can be rewritten as:

JDPSMC =
∥∥∥S̃p MIMO(k + 1)− Sr MIMO(k + 1)

∥∥∥
2

Q

+ ‖∆U(k)‖2G
=

[
ΓMIMOx(k) + ΩF

MIMO∆U(k) + ΩP
MIMOu(k − 1)

+HpE(k)− Sr MIMO(k + 1)]T Q [ΓMIMOx(k)
+ΩF

MIMO∆U(k)) + Ωp
MIMOu(k − 1) + HpE(k)

−Sr MIMO(k + 1)] + ∆U(k)T G∆U(k)
(38)

where

Sr MIMO(k + 1) = [Sr(k + 1), Sr(k + 2), ..., Sr(k + N)]T

G = [gIm, gIm, ..., gIm]
Q = [qIm, qIm, ..., qIm]
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The optimal control law can be obtained by:

∂JDPSMC

∂∆U(k)
= 0

So,

∆U(k) = −((ΩF
MIMO)T ΩF

MIMO + G)−1(ΩF
MIMO)T

[ΓMIMOx(k) + HpE(k) + Ωp
MIMOu(k − 1)

−Sr MIMO(k + 1)]
(39)

Only the m present increment of control input signals vector
are implemented, the next time increment of control signals
vector δu(k) will be calculated recursively by:

δu(k) = [1, 1, ..., 1, 0, ...0]T ∆U(k) (40)

So, we have:

u(k) = u(k − 1) + δu(k) (41)

V. SIMULATION RESULTS

To evaluate the robustness of the control laws (equations 6,
26 and 39 ) in presence of constant or periodic disturbances and
parameters uncertainties, we consider a discrete multivariable
process described by the following equation:

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)(u(k) + v(k))

where:

A =
[

0 1
0.24 0.2

]
; B =

[
1.5 0
0 1

]

The retained synthesis parameters are:

C =
[

0.6667 0
0 1

]

and m1 = 0.01, m2 = 0.01, Φ = [0.01 0; 0 0.01],
N = 10, M = 5, Hp = 0.001I(N,N),
and G = 0.001I(N, N)
The sliding functions vector is given by:

S(k) = Cx(k) = C =
[

0.6667 0
0 1

] [
x1(k)
x2(k)

]
=

[
s1(k)
s2(k)

]

A. Case of constant disturbances

The results presented in this section are obtained with the
presence of constant disturbances which are given by:

v(k) =
[

0.15
0.2

]
, ∀k ≥ 100

The parameters variation are given by:

∆A = 0.1
[

5 sin(− 2kπ
10 ) 6 sin(− 2kπ

10 )
3 sin(− 2kπ

10 ) 3 sin(− 2kπ
10 )

]

∆B = 0.1
[

2 sin(− 2kπ
10 ) 5 sin(− 2kπ

10 )
3 sin(− 2kπ

10 ) 5 sin(− 2kπ
10 )

]
, ∀k ≥ 300

The evolution of the states x1(k) and x2(k), the control inputs
u1(k) and u2(k) and the sliding mode functions s1(k) and
s2(k) with SMC-PSF and SMC are given, respectively, in
Figures 3 to 7.
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Fig. 3. Evolution of the state x1(k).
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Fig. 4. Evolution of the state x2(k).
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Fig. 5. Evolution of the control signal u1(k).
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Fig. 6. Evolution of the control signal u2(k).
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Fig. 7. Evolution of the sliding function s2(k).

It can be seen that the performances of multivariable SMC-
PSF and PSMC are better then the SMC, not only, for rejecting
constant disturbances, but also, for eliminating chattering.
In fact, without disturbances and parameters uncertainties, the
results of SMC, PSMC and SMC-PSF are comparable. But,
in presence of constant disturbances (k ≥ 100), we find that
the proposed control laws ensure good performances in term
of rejection of external disturbances and fast convergence.
When we add parameters uncertainties, at the instant (k ≥
300), the oscillation encountered, in the case of classical SMC,
are reduced.

B. Case of periodic disturbances

The results presented in this section are obtained with
the presence of disturbances, whose evolutions are given in
figures 8 and 9, and with the following parameters variation:

∆A = 0.1
[

5 sin(− 2kπ
10 ) 6 sin(− 2kπ

10 )
3 sin(− 2kπ

10 ) 3 sin(− 2kπ
10 )

]

∆B = 0.1
[

2 sin(− 2kπ
10 ) 5 sin(− 2kπ

10 )
3 sin(− 2kπ

10 ) 5 sin(− 2kπ
10 )

]
, ∀k ≥ 300
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Fig. 8. Evolution of the disturbances v1(k).
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Fig. 9. Evolution of the disturbance v2(k).

The evolution of the states x1(k) and x2(k), the sliding
mode functions s1(k) and s2(k) and the control inputs u1(k)
and u2(k) ,with SMC-PSF, PSMC and SMC are given, respec-
tively, in figures 10 to 15.
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Fig. 10. Evolution of the state x1(k).
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Fig. 11. Evolution of the state x2(k).
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Fig. 12. Evolution of the control signal u1(k).
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Fig. 13. Evolution of the control signal u2(k).
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Fig. 14. Evolution of the sliding function s1(k).
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Fig. 15. Evolution of the sliding function s2(k).

A comparison between the SMC-PSF, PSMC and SMC,
in the case of multivariable systems, reveals that the use of
the new control strategies SMC-PSF and PSMC reduces the
chattering problem effectively (k ≥ 300).
Furthermore, the results obtained prove the capability of the
proposed control laws to reduce periodic disturbances (k ≥
100) and parameter uncertainties (k ≥ 300).

C. Comparison between multivariable PSMC and SMC-PSF

Comparing, only, between the PSMC and the SMC-PSF,
we can deduce, of the previous figures, that at the presence of
constant disturbances , results given by the two control laws
are comparable.
At the presence of periodic disturbances, the evolution of the
states x1(k) and x2(k), the sliding mode functions s1(k) and
s2(k) and the control inputs u1(k) and u2(k) ,with SMC-PSF
and PSMC are given, respectively, in figures 16 to 21.
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Fig. 16. Evolution of the state x1(k).
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Fig. 17. Evolution of the state x2(k).
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Fig. 18. Evolution of the control signal u1(k).

0 50 100 150 200 250 300 350 400
−0.4

−0.2

0

0.2

0.4

 

 

NPSMC
SMC−PSF k

u2(k)

Fig. 19. Evolution of the control signal u2(k).
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Fig. 20. Evolution of the sliding function s1(k).
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Fig. 21. Evolution of the sliding function s2(k).

With periodic disturbances, and without parameter vari-
antion (for 100 ≤ k ≤ 300), the PSMC reduce better
disturbances then the SMC-PSF.
But at the presence of parameter variation (for k ≥ 300), SMC-
PSF is more able to to eliminate chattering. In fact, it can
eliminates oscillation better, than PSMC.

VI. CONCLUSION

In this paper, a sliding mode controller with predictive
sliding function and a Predictive Sliding Mode Controller,
for multivariable systems are proposed. These two controllers
combine the design technique of the SMC and the MPC.
These methods are tested on a multivariable system, and
compared to the results given by the SMC controller. It is
shown that mixing both control techniques, for multivariable
systems, gives news controller with better robustness properties
in rejecting disturbances, hard parameter variations and in
eliminating the chattering problem.
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