
 

 

  
Abstract—Catastrophe modelling and simulations are risk 

management tools using computer technology to help insurers, 
reinsurers and risk managers better assess the potential losses caused 
by natural and man-made catastrophes. This article aims to present 
methods for modelling and simulation of extreme insured losses 
using quantile function based on data caused the world natural 
catastrophes in time period 1970-2014, published in Swiss Re Sigma 
No2/2015. Our interest focuses particularly on the extreme 
observations in the upper tail of loss distributions. We have shown 
that it is possible to simulate the losses in upper tail of distribution 
without simulating the central values. This advantage will be used for 
simulation a few values of the highest insured losses in the world's 
natural catastrophes in the future.  
 

Keywords—Extreme claims, quantile function, Pareto 
distribution, simulation, Weibull distribution.  

I. INTRODUCTION 
he occurrences of catastrophic events are becoming more 
frequent (Fig.1) and also grow indemnity of insurance and 

reinsurance companies at these events (Fig.2).  
 

 
Fig.1 Number of catastrophic events, 1970-2014 

Source: SwissRe economic Research&Consulting and Cat Perils 
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is deep and long. Not only we need to investigate the causes of 
such events and develop plans to protect against them, but also 
we have to resolve the resulting huge financial losses. 

 

  
Fig.2 Natural catastrophes insured vs uninsured losses, 

         1975–2014, in 2014 USD billions 
Source: SwissRe economic Research&Consulting and Cat Perils 

 
From these facts it follows the need of knowledge the 

probability models for prediction of consequences of the 
catastrophe events and thus select the best options to cover 
risks and correct setting premiums or reinsurance. 

The modelling process evolved in the late 1980s as 
companies become increasingly aware of their exposure to 
catastrophic risks. After Hurricane Andrew in 1992 and 
Northridge earthquake in 1994, the use of catastrophe models 
took of as companies sought to more accurately analyze, write 
and price for natural catastrophe risk. 

Developments of the financial consequences of disasters 
have a major impact on the global insurance market and 
forcing the insurance and reinsurance companies to seek for 
new approaches and ways to cover these risks. Are the valid 
concerns that the capacity of the world's insurance and 
reinsurance markets in the future will not be sufficient to cover 
these risks. 

In the modelling of extreme losses statistical methods are 
commonly used for inference from historical data. Different 
approaches had been proposed for certain circumstances, for 
example Block Maxima Models and Excess over Threshold 
Method [5], [6]. In this article we will present method for 
modelling and simulation based quantile functions [2], [4], [9], 
[12], [13], [14].    
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II. LOSS DISTRIBUTIONS  

A. Selected probability models 
The conditions under which claims are performed allow us 

to consider the claim amounts arising from natural 
catastrophes to be samples from specific heavy-tailed 
probability distributions. Such distributions are positively 
skewed and very often they have high probabilities in the 
upper tails. So they are described as long tailed or heavy tailed 
distributions [1], [3], [7], [8], [11], [17].     

The distributions used in this article include 2-parametric 
Pareto [10], [14] and 3-parametric Weibull [8], [15], which are 
particularly appropriate for modelling of insured losses in 
natural catastrophes. These distributions are used as 
appropriate models in case when we need to obtain well-fitted 
upper tail. The simple form of their quantile functions allow to 
simulate the highest catastrophic losses. 

Pareto Distribution (2-parameters) 
The Pareto cumulative distribution function of the losses Xa 

that exceed known threshold a is [10], [12], [15]: 
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Probability density function (PDF) ) is in the form 
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The quantile function QF we can derive by inverting the 

CDF (1) to the form 
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Weibull Distribution (3-parameters) 
The cumulative distribution function is given by formula 

[8], [15] 
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with parameters: shape 0,α >  scale 0,β > threshold θ. 

Probability density function (PDF) is in the form 
 

( ) ( )1( ) expf x x xα

ααα θ θ β
β

−= − − −          (5) 

For 0 1p< <  quantile function as the inverse distribution 
function is  

( ) ( )
1

1( ) ln 1Q p F p p αθ β−= = + ⋅ − −         (6) 

B. Distribution Fitting  
The Maximum Likelihood (ML) method [3], [12] is the 

most often used to estimate the parameters of the selected 
probability distributions. This method can be applied in a wide 
range of situations and the parameters obtained by ML 
generally have very good properties compared to estimates 
obtained by other methods (e. g. method of moments, method 
of quantile). In this article procedure Distribution Fitting in 
Statgraphics Centurion XV package will be used to obtain the 
maximum likelihood estimators. 

Kolmogorov-Smirnov test (K-S test) was chosen from seven 
different goodness-of-fit tests, which offers the Distribution 
Fitting procedure. 

Kolmogorov-Smirnov test (K-S test) compares the empirical 
cumulative distribution function ( )nF x  of the data to the fitted 

cumulative distribution function ( )F x . The test statistic is 
given by formula  
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The empirical CDF ( )xFn  is expressed as follows: 
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where data are sorted from smallest to the largest in sequence 

( ) ( ) ( )1 2 ...... .nx x x≤ ≤ ≤  

C. Simulation Using Quantile Function 
The Quantile Function, QF, denoted by ( ) ,Q p  expresses 

the p-quantile px  as a function of  p: ( ) ,px Q p= the value of 

x for which ( ) ( ).p pp P X x F x= ≤ =  

The definitions of the QF and the CDF can by written for 
any pairs of values ( ),x p  as ( )x Q p=  and ( ).p F x=  These 
functions are simple inverses of each other, provided that they 
are both continuous increasing functions. Thus, we can also 
write ( ) ( )1 ,Q p F x−=  and ( ) ( )1F x Q p−=  [2], [13]. 

We denoted a set of ordered sampling data of losses by  

( ) ( ) ( ) ( ) ( )1 2 1, , ..., , ..., ,r n nx x x x x− . 

The corresponding random variables are being denoted by  

( ) ( ) ( ) ( ) ( )1 2 1, , ..., , ..., , .r n nX X X X X−  

Thus ( )nX  for example is the random variable representing 

the largest observation of the sample of n. The n random 
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variables are referred as the n order statistics. These statistics 
play a major role in modelling with quantile function ( ).Q p  

Consider first the distribution of the largest observations 

( )nX with distribution function denoted as ( ) ( ) ( ) .n nF x p=  The 
probability 

( ) ( ) ( ) ( )( )n n nF x p P X x= = ≤  

is also probability that all n independent observations on  X are 
less than or equal to this value x, which for each one is p. By 
the multiplication law of probability  

( )
n

np p= so ( )
1 n
np p=  and ( ) ( )

1 .n
nF x p p= =  

Inverting ( )F x  to get the quantile function we have 

( ) ( )( ) ( )( )1 n
n n nQ p Q p=           (9) 

So the quantile function of the largest observation is thus 
found from the original quantile function by very simple 
calculation. 

For the general r-th order statistic ( )rX  calculation becomes 

more difficult. The probability that the r-th larges observations 
is less than some value z is marked as  

 

( ) ( ) ( ) ( )( )r r rp F z P X z= = ≤  
 

This is also probability that at least r of the n independent 
observations is less or equal to z. The probability of s 

observations being less than or equal to z is ,sp  where 
( )zFp =  is given by the binomial expression [2] 
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If it can be inverted, then we can write 

( )( ), , 1 .rp BETAINV p r n r= − +  

From the last two expressions we get  

( ) ( )( ) ( )( )( ), , 1r r rQ p Q BETAINV p r n r= − +      (10) 

BETAINV ( )⋅ is a standard function in packages such 
as Excel. Thus, the quantiles of the order statistics can be 
evaluated directly from the distribution ( )Q p  of the data. The 
quantile function thus provides the natural way to simulate 
values for those distributions for which it is an explicit 
function of p [2]. 

D. Simulation of the extreme values 
In a number of applications of quantile functions in general 

insurance interest focuses particularly on the extreme 
observations in the tails of the data. Fortunately it is possible 
to simulate the observations in one tail without simulating 
the central values. We will present here how to do this. 

Consider the right-hand tail. The distribution of the largest 

observation has been shown to be ( )1 .nQ p  Thus the largest 

observation can be simulated as ( ) ( )( )n nx Q u= , where ( )
1 n
nnu v=  

and nv  is a random number from interval [0, 1]. If we now 
generate a set of transformed variables by 

 

( )
1 n
nnu v=  

( ) ( ) ( )

1
1

11
n
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where iv , , 1, 2, ...i n n n= − −  is simply simulated set of 
independent random uniform variables, not ordered in any 
way. It will be seen from their definitions that ( )iu , 

, 1, 2, ...i n n n= − −  form a decreasing series of values with 

( ) ( )1i iu u− < . 

In fact, values ( )iu  form an ordering sequence from 

a uniform distribution. Notice that once ( )nu  is obtained, the 

relations have the general form 

( ) ( ) ( )

1

1
m

mm mu v u += ⋅ , 1, 2, ...m n n= − −  

The order statistics for the largest observations on X are 
then simulated by  

 

( ) ( )( )n nx Q u=  

( ) ( )( )1 1n nx Q u− −=             (12) 

( ) ( )( )2 2n nx Q u− −=  

  
  
In most simulation studies of n observations are generated 

and the sample analyses m times to give an overall view of 
their behavior. A technique that is sometimes used as an 
alternative to such simulation is to use a simple of ideal 
observations, sometimes called a profile. Such a set of ideal 
observations could be the medians rM , 1, 2, ..., .r n= . 

III. PROBLEM SOLUTION 
The publication [16], Swiss Re Sigma No 2/2015 in 

Table 10, page 41, provides data about 40 the most costly 
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insurance catastrophic losses (1970- 2015) in million USD, 
2014 prices. These data are the basis for our modelling and 
simulation of a few the highest values of catastrophe losses. 
The data are ranging from 3410 to 78 638 million USD in 
2014 prices (Table 1). 

 
Table 1: 40 the most costly insurance losses (1970-2015) 

3410 4818 7681 15783 
3501 5125 8241 16157 
3839 5426 8458 16836 
3882 5740 8682 22258 
3899 5780 8730 22355 
4010 6134 9813 25104 
4123 6449 10087 26990 
4200 6456 11339 36079 
4492 6959 12240 36828 
4765 7418 15234 78638 

Source: Swiss Re Sigma No 2/2015 
 

A.  Simulation by Pareto Quantile Function 
First we want to verify whether the 2-parameters Pareto 

distribution defined by (1) fits the data in Table 1 adequately 
by selecting Goodness-of-Fit Tests in Distribution Fitting 
procedure of Statgraphics Centurion XV package [15]. The 
first step is parameters estimation by maximum likelihood 
method [3], [12]. The estimated parameters of the fitted Pareto 
distribution are shown in Table 2. According to our parameter 
markers by (1) - (3) can be written: est a = 3410 and 
est b = 1.04777.  
 

Table 2 Parameters of Pareto Fitted Distribution 
Pareto (2-Parameter) 
b - shape = 1.04777 
a - lower threshold = 3410.0 

        
Table 3 shows the results of test run to determine whether 

the most costly insured catastrophe losses can be adequately fit 
by a 2-parameter Pareto distribution (1).   

Since the smallest P-value = 0.858776 amongst the tests 
performed is greater than to 0.05 we do not reject the 
hypothesis that losses come from a 2-parameters Pareto 
distribution with 95% confidence. 
 

Table 3 Results of Kolmogorov-Smirnov Test 
 Pareto (2-Parameter) 
DPLUS 0.0576431 
DMINUS 0.0955203 
DN 0.0955203 
P-Value 0.858776 

 
We can also by Quantile plot and Quantile-Quantile or Q-Q 

plot assess visually how well the 2-parameter Pareto 
distribution with ML estimated parameters in Table 2 fits the 

data. 
The Quantile Plot (Fig. 3) shows the fraction of 

observations at or below x, together with the cumulative 
distribution function of the fitted distribution. To create the 
plot, the data are sorted from smallest to largest and plotted at 
the coordinates. Ideally, the points will lie close to the line for 
the fitted distribution, as is the case in the plot at Fig. 3.  
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Fig.3 Quantile plot 

 
The Quantile-Quantile plot (Fig. 4) shows the fraction of 

observations at or below x plotted versus the equivalent 
percentiles of the fitted distribution. The fitted Pareto 
distribution has been used to define the x-axis. The fact that 
the points lie close to the diagonal line confirms the fact that 
the Pareto distribution provides good fit for the data, but 
deviates away from the data at the highest values of x. 
Evidently,, the tail of the Pareto distribution is too fat. 
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Fig.4 Quantile-Quantile plot 
 
 Table 4 CDF of the Pareto (2-parameters) distribution 
x Lower Tail Area (<) Upper Tail Area (>) 
10000 0.676084 0.323916 
50000 0.940011 0.0599889 
100000 0.970983 0.0290175 
200000 0.985964 0.0140362 
300000 0.990822 0.00917793 

 

Table 4 shows the values of the cumulative distribution 
function at 5 selected values of x. Lower tail area is the 
probability that the catastrophe insured losses are less than or 
equal to x,  upper tail area is the probability that losses are 
greater than x. So for example the probability that the 
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catastrophe losses exceed the value of 200 000 million USD is 
0,014, or so about 1.4% world catastrophe losses exceed 
200 000 mil. USD. 

Table 5 contains the selected percentiles of the Pareto 
distribution, which is well fitted model for the most costly 
insured catastrophe losses.   

 
Table 5 Selected quantiles of the fitted Pareto distribution 

Lower Tail Area (<=) Pareto (2-Parameter) 
0.75 12804.5 
0.8 15843.6 
0.9 30701.5 
0.95 59492.8 
0.99 276417.0 

 
If will not change conditions of the occurrence of these 

events on the globe, will not change even their distribution. 
Then 20% of the most costly insurance losses will exceed 
15843.6 million USD, 10% will exceed 30701.5 million USD, 
1% will exceed 276 417 million USD.  

Knowing the probability model and its parameters, we can 
use quantile function (3) and by simulation procedure 
described in part II-D we can simulate a few, for example five 
the highest possible values among 40 the most costly insurance 
world catastrophe losses.  

Table 6 presents the steps of simulation by (11) and (12 ) 
the highest five possible values (in million USD) in the world 
natural catastrophes which we can find in the last column 
denoted as Q(u). So the highest simulated loss is 82 421.36 
million USD, the second highest is 70505.06 million USD etc. 

 
Table 6 Process of simulation Q(u) by Pareto quantile function 

v n v1/n u Q (u) 
0.23549 40 0.964494 0.964494 82481.36 
0.77309 39 0.993423 0.958150 70505.06 
0.55488 38 0.984619 0.943413 52865.58 
0.90776 37 0.997388 0.940949 50758.02 
0.33132 36 0.969781 0.912514 34880.10 

 
The first column in Table 7 contains the medians and  two 

last columns show the boundaries for each order statistic. For 
example the highest possible insured loss is with probability 
0.95 from value 24 991.87 million USD to value 
18 066 831.58 million USD and 0.5% of losses may even 
exceed the value of 18 066 831.58 million USD if losses are 
by Pareto distributed. 
 
Table 7 Quantiles of selected order statistics 
Q(BETAINV(0.5)) Q(BETAINV(0.995)) Q(BETAINV(0.005)) 

164 921.29 18 066 831.58 24 991.87 
70 901.33 993 661.54 18 346.01 
45 453.34 318 235.24 15 002.34 
33 581.25 163 674.11 12 884.65 
26 690.92 103 499.70 11 390.54 

Visualized results of the simulation process by 2 Parameters 
Pareto distribution with parameters in Table 2 we can see at 
Fig.5 and Fig.6.   

 

 
Fig.5  Graphical results of simulation of five the most costly 

              insurance losses using Pareto QF 
 

Because the largest value of Q(BETAINV(0.995))  on Fig.5 is 
too high compared to other values, Fig.6 does not have this 
value. 

 

Fig.6  Graphical results of simulation of five the most costly 
              insurance losses except the highest one using Pareto QF 

B. Simulation by Weibull Quantile Function 
Analogous procedure of probability modelling and extreme 

losses simulation as using Pareto quantile function in part III-
A we have repeated for the Weibull 3-parameters distribution 
(4). 

 
Table 8 Parameters of Fitted Weibull Distribution 

Weibull (3-Parameter) 
α - shape = 0.723827 
β - scale = 7185.26 
θ - lower threshold = 3410.0 

 
The estimated parameters of the fitted Weibull distribution 

are shown in Table 8. The results of Goodness-of-Fit test that 
the 3-parameters Weibull distribution fits the losses adequately 
has shown Table 9. Since the smallest P-value = 0,984947 is 
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greater than to 0.05, we do not reject the hypothesis that data 
in Table 1 come from a 3-parameters Weibull distribution with 
95% confidence.  

 
Table 9 Results of Kolmogorov-Smirnov Test 

 Weibull (3-Parameter) 
DPLUS 0.0723181 
DMINUS 0.0719318 
DN 0.0723181 
P-Value 0.984947 

 
We can also assess visually that the 3-parameters Weibull 

distribution with parameters in Table 8 fits very well to the 
most costly insured catastrophe losses (Fig. 7, Fig. 8). 
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Fig.7 Quantile plot 
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Fig.8 Quantile-Quantile plot 
 

Comparing the P-Values in Table 3 and Table 9 and Q-Q 
plots at Fig. 4 and Fig. 8 we can observe better fit of the 
Weibull distribution on empirical data in Table 1, even on the 
upper tail of distribution. The fact that the Weibull distribution 
not overestimates the largest insured catastrophe losses is 
positive for simulation of the highest possible insured 
catastrophe losses. 

 
Table 10  CDF of the Weibull (3-Parameters) distribution 
X Lower Tail Area (<) Upper Tail Area (>) 
10000.0 0.609108 0.390892 
20000.0 0.839985 0.160015 
50000.0 0.979128 0.0208718 
60000.0 0.98837 0.0116304 
100000.0 0.998583 0.00141745 

 

Table 10 presents tail areas for the fitted 3-parameters 
Weibull distribution. Comparing with Table 4 the output 
indicates that the upper tail of the Weibull probability model is 
not so fat as it is in case of Pareto distribution. 

Table 11 presents selected high quantiles for the fitted 3-
parameters Weibull distribution. For example, the output 
indicates that the value of the fitted Weibull distribution below 
which we would find an area equal to 0.99 is 62 668.1million 
USD, which is much lower value than is the same quantile of 
Pareto distribution in Table 5. 

 
Table 11 Selected quantiles of the fitted Weibull distribution 

Lower Tail Area (<=) Weibull (3-Parameter) 
0.75 14692.9 
0.8 17276.7 
0.9 26153.7 
0.95 36125.5 
0.99 62668.1 

 
By the same sequence of the steps as mentioned in section 

II-D and was applied for the Pareto distribution in section III-
A we have simulated five the highest possible insured 
catastrophe losses using quantile function of the fitted Weibull 
distribution. The Table 12 obtains the results of the simulation 
and Fig. 9 presents the results of simulation in graphical form. 

 
Table 12   Process of simulation Q(u) for Weibull distribution 

v n v1/n u Q(u) 
0.23549 40 0.964494 0.964494 41400.19 
0.77309 39 0.993423 0.958150 38840.09 
0.55488 38 0.984619 0.943413 34273.20 
0.90776 37 0.997388 0.940949 33642.14 
0.33132 36 0.969781 0.912514 27998.02 

 

 
Fig.5  Graphical results of simulation of five the most costly 

              insurance losses using Weibull QF 

IV. CONCLUSION 
The worldwide insurance industry has been rocked by the 

increasing catastrophes in recent years and increased demand 
for catastrophe cover (e.g., per occurrence excess of loss 
reinsurance), leading to a capacity shortage in catastrophe 
reinsurance. Catastrophe events in last years are associated 
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with increases in premiums for some lines of business. These 
market developments are particularly important for non-
proportional reinsurance because this coverage is designed to 
cover the tail of the loss distribution and is triggered only 
when losses are unexpectedly high. 

Modelling the loss distributions in non-life insurance is 
one of the problem areas, where obtaining a good fit to the 
upper tail is of major importance. That is of particular 
relevance in non-proportional reinsurance if we required 
choosing or pricing a high-excess layer. Long tailed 
distributions as Pareto or Weibull play a central role in this 
matter and an important role in quotation in non-proportional 
reinsurance. 

The results of the probability modelling and simulations 
based on 40 the most costly insurance losses in the world 
natural catastrophes in time period 1970-2014 using Pareto 
and Weibull quantile functions provide valuable information 
for insurance and non-proportional reinsurance of catastrophe 
losses. These results may be useful for setting priorities and 
premiums in non-proportional reinsurance or in case of 
Largest Claims Reinsurance LCR(5). 
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