
 

 

  
Abstract—The article deals with the use of higher-order 

approximation polynomials and Latin Hypercube Sampling 
numerical simulation for the assessment of global sensitivity analysis 
of nonlinear model output. Highly effective computer evaluation of 
first and higher order sensitivity indices in non-additive systems is 
shown. The presented example of a non-additive system of a load-
carrying structure was modelled using the nonlinear finite element 
method and assessed via variance-based sensitivity analysis. The 
presented sensitivity assessment allows exploration of all regions of 
the input space, accounting for interactions as well as nonlinear 
responses. 
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I. INTRODUCTION 
rom the scientific point of view, sensitivity analysis is a 

set of methods that allow us understand the key findings of 
mathematical models [1]. Given the complexity of computer 
codes, it is not possible for the analyst to understand the output 
response of a model to changes in model inputs based on 
intuition. It appears that the prudent use of sensitivity analysis 
techniques is an integral part in the need to use well developed 
and often very sophisticated simulation models with maximum 
efficiency, see, e.g. [2, 3]. 

 The diversity of problems that are solved through 
mathematical modelling has, recently, led to the development 
of a series of highly successful methods of sensitivity analysis, 
see, for e.g. [4-6]. Reviews of sensitivity methods in 
interdisciplinary contexts are offered in [7]. Bibliometric 
analysis of the trends of different sensitivity analysis practices 
from the last decade is published in [8]. 

A giant leap in studying models using computer simulations 
was the assigning of random variables to the model inputs [1]. 
Stochastic analysis is appealing, but it has a number of 
theoretical and practical limitations, which can lead to 
inaccurate or incorrect conclusions. It is worth noting in this 
context that scientist argue, both in favour of probabilistic 
methods for sensitivity analysis, as well as against their 
application [7, 9]. The main argument against the use of 
stochastic methods is that random variables are assigned also 
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to the model inputs for which the random description is 
unjustified. In these situations, the analysts have two options: 
(i) use a method that does not require knowledge of the 
probability density function of the inputs variables, or (ii) 
create preconditions for the random variability of the input 
variables. 

Advanced stochastic global sensitivity analysis methods are 
usually highly numerically intensive. Stochastic sensitivity 
analysis is usually evaluated using numerical simulation 
methods. The more complicated the computational model, the 
more computer time is needed to calculate a realization (one 
run) of the output random variable. The more complex the 
sensitivity analysis, the more realizations (numerical 
simulations) are needed to obtain statistically correct output. In 
all cases, the sensitivity analysis should lead to practical 
information on the true significance of input factors on the 
model output Y. 

II. GLOBAL SENSITIVITY ANALYSIS 
Majority of sensitivity analyses that have been published are 

either local or one factor-at-a-time analyses that rely on 
unjustified assumptions of model linearity and additivity [8]. 
Global approaches to sensitivity analyses, which would avert 
these drawbacks, are scarcely applied by a minority of 
researchers [8]. Variance-based global sensitivity analysis 
techniques are generally applicable to simulation models, but 
are significantly less for models used to rank alternative 
options, such as multi-criteria decision analysis (MCDA) 
methods [10-13]. In engineering fields, we try to keep up with 
current trends of modern research, which is focused on global 
sensitivity analysis of model outputs [1]. 

A. Sobol's sensitivity analysis 
One of the most effective methods of stochastic global 

sensitivity analysis is Sobol’s sensitivity analysis, which is 
based on the total decomposition of the variance of the output 
variable into parts with increasing dimension of input variables 
[14, 15].  

Let Y=f(X1,X2,…,Xk) be a deterministic model where Y is a 
scalar output and Xi are k independent input factors, 
considered uncertain. The sensitivity of the output variable to 
the input variables is described by 2n-1 sensitivity coefficients, 
where n is the number of input random variables. The first n 
main indices are first order sensitivity indices Si. i-th index Si 
(or main effect) corresponds to the fraction of variance of the 

Higher-order approximations methods for global 
sensitivity analysis of nonlinear model outputs 

Zdeněk Kala 

F 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 260



 

 

output V(Y) that can be attributed to Xi alone. The index Si is 
defined as: 
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where Xi is the i-th factor and X~i denotes the matrix of all 

factors but Xi. The meaning of the inner expectation operator is 
that the mean of Y, the scalar output of interest, is taken over 
all possible values of X~i while keeping Xi fixed. The outer 
variance is taken over all possible values of Xi [16]. The 
variance V(Y) in the denominator is the total (unconditioned) 
variance. The main index Si corresponds to the fraction of 
variance of the output V(Y) that can be attributed to Xi alone. 

The remaining 2n-n-1 sensitivity coefficients describe higher 
order interactions. The sensitivity index of the second order 
can be written as: 
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Sensitivity indices of other higher orders can be calculated 

analogously [16]. For a computational model with M factors, 
there may be interaction terms up to the order k, i.e., [16]: 
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Equation (3) decomposes the output variance into parts 
attributable to individual input variables, as well as their 
combinations. Despite being computationally demanding, 
Sobol’s sensitivity analysis allows the exploration of all parts 
of the input space taking into account interactions as well as 
nonlinear responses. 

B. Stochastic Systems based on Nonlinear FEM 
Majority of models of load bearing building structures are 

based on the finite element method [17]. The calculation of all 
sensitivity indices in (3) using the Monte Carlo (MC) method 
would be the universal solution, but the calculation is highly 
numerically demanding in most models based on the nonlinear 
finite element method (FEM). Using the Latin Hypercube 
Sampling (LHS) method [18, 19] partly reduces the demand 
on the high number of MC simulations, however, it does not 
provide such advantages that would allow us to study the 
nonlinear response of FEM models of real load bearing 
members in real time. 

The objective of this article is to propose an approximation 
polynomial for the evaluation of Sobol’s sensitivity analysis 
will all members in (3) in real time. Approximation is 
performed using numerical simulations on computers. The 
outputs of the nonlinear FEM model are approximated on a 
chosen domain. 

Approximation models are an important part of optimization 
strategies [20, 21]. It can be noted that approximation methods 
are not new and have been described, for e.g., during the 

substitution of the function of the limit state using techniques 
of the Response Surface, which were developed to reduce the 
computational costs of structural reliability analysis [22]. 
However, the substitution of the real response function in 
Sobol’s global sensitivity analysis is considerably more 
complicated than in the approximation of the limit states, 
where polynomials of the first or second order are usually 
sufficient. 

III. COMPUTATIONAL MODEL 
The influence of initial imperfections on the load carrying 

capacity of a compressed strut of length L=6m is studied in the 
article. The strut is supported in the middle by a spring with 
tensile stiffness K, which simulates the connection of the 
compressed strut to an adjacent structure, see Fig. 1. The bond 
partly resists buckling, however, it does not completely 
prevent buckling. The strut profile is HEA 200. 

 

 
 
Fig. 1 Model of strut with spring 
 
Support with stiffness K is influenced by the buckling length 

Lcr, which may lie in the interval from 0.5⋅L to L. If K=0 the 
perfectly straight strut buckles in the shape of a half sine wave, 
which is considered as the shape of initial imperfection of the 
strut axis. For K=0, Lcr=L=6m and slenderness λ=60. If 
K=∞ the perfectly straight strut buckles in the shape of a sine 
wave and it holds that Lcr=3 m and λ=30. Practically, this 
already occurs for K=2.051 MNm-1, see Fig. 2. 

 

 
 
Fig. 2 Stiffness K vs. slenderness λ 
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IV. INITIAL IMPERFECTIONS 
The initial curvature of the strut was chosen in the shape of 

a half-sine wave with amplitude of zero mean value and 
standard deviation L/1307=6m/1307=0.00459m. The standard 
deviation satisfies the presumption that 95 % of realizations of 
the random imperfections lie within the interval ± L⋅ 0.15 % 
=± 6⋅ 0.15 = ± 9 mm. This is a frequently presumed criterion 
in reliability analyses. 

 
TABLE I 

INITIAL RANDOM IMPERFECTIONS 
Characteristic Mean value St. deviation 

Cross-sectional width b 
Flange thickness t2 
Yield strength fy 
Young’s modulus E 
Amplitude e0 

200 mm 
10.0 mm 

297.3 MPa 
210 GPa 

0 

1.9736 mm 
0.45859 mm 

16.8 mm 
9.99 GPa 
4.59 mm 

 
Gauss probability density functions were considered for all 

inputs listed in Table 1. Deviations of the dimensions of hot-
rolled steel cross sections from its nominal values were 
published in [23]. In the presented study, the profile HEA 200, 
which is a common structural element of compressed columns, 
was considered. Cross-sectional height h=190mm and web 
thickness t1=6.5mm were considered as deterministic 
variables, because their influence on the variability of the load 
carrying capacity is negligible. Statistical characteristics of 
yield strength and Young’s modulus were considered 
analogously as in studies [24, 25]. 

V. COMPUTATIONAL MODEL 
The strut was modelled using the method of beam finite 

elements (FEM). The resistance was calculated using the 
geometrically nonlinear solution, its algorithm of solution and 
tangential stiffness matrices were published in [26]. The 
resistance was calculated with an accuracy of 0.1 %, similarly 
as has been applied in numerous reliability studies of slender 
steel structures with imperfections, e.g. [27-29]. 

VI. APPROXIMATION FUNCTION FOR SENSITIVITY ANALYSIS 
The evaluation of sensitivity analysis using the 

geometrically nonlinear FEM would require using a high 
number of LHS simulation runs. The numerical demand of 
numerical simulations on computers is the biggest limitation 
for calculating all members in (3). The more numerically 
challenging one run of the computational model is and the 
higher the number of input random variables in the 
computational model, the less the members of (3) that can be 
effectively calculated with reasonable costs with regard to 
computer time. Many analysts are thus satisfied with the 
calculation of first order sensitivity indices (1), the number of 
which equals the number of input random variables. 

It is, however, desirable to calculate the other members in 
(3), because they could contain valuable information on the 
interactions among the inputs. For a high number of input 

factors, the number of higher order indices can be high, 
therefore, the evaluation of one simulation run must be 
sufficiently fast. This can be achieved by approximating the 
load carrying capacity with a polynomial, which takes into 
account all linear and nonlinear interactions of the input 
variables. The approximation polynomial satisfying the 
interpolation conditions was constructed for the five input 
random variables in Table 1 in the following non-linear form:  

 

 
 
where cα is 242 polynomial coefficients plus the constant 

member c0, which are calculated using the method of the least 
squares. 400 simulation runs of Latin Hypercube Sampling 
method (LHS) were used to calculate the polynomial [18, 19]. 
The first hundred simulation runs were considered acc. to 
Table I. Another three hundred simulation runs were 
considered acc. to Table II. 

 
TABLE II 

RANDOM VARIABLES FOR APPROXIMATION 
Characteristic Min. value Max. value 

Cross-sectional width b 
Flange thickness t2 
Yield strength fy 
Young’s modulus E 
Amplitude e0 

190.344mm 
7.75665 mm 

215.1126 MPa 
161.079 GPa 

-22.4634 

209.655 mm 
12.2434 mm 
379.487 MPa 
258.921 GPa 
22.4634 mm 

 
All variables in Table II have rectangular probability density 

functions. Standard deviations in Table II are enlarged so that 
the domain of equation (4) is set up for the evaluation of 
sensitivity analysis using the LHS method. Constants cα  were 
calculated from random simulations in which random 
realizations e0 were considered with the absolute values. 

VII. SENSITIVITY ANALYSIS RESULTS 
The software to generate random realizations of LHS and to 

calculate Sobol’s sensitivity indices in (3) was created by the 
author of the presented paper. The paper builds on previously 
published sensitivity studies [30-33]. Ten thousand LHS runs 
were used for the evaluation of ),(

~ ji XXYE
iX  in (1), and 

another ten thousand LHS runs were used for the evaluation of 
)),((

~ jiX XXYEV
ii X . The variance V(Z) was evaluated with 

one hundred thousand LHS runs. All other twenty-six higher 
order sensitivity indices were evaluated analogously. 
Sensitivity indices were evaluated in dependence to the 
slenderness λ with the step 2, see Fig. 7 and Fig. 8. The pie 
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charts in Fig. 3 to Fig. 6 show the overall pattern of 
decomposition (3) for selected slenderness. The nonlinear 
FEM solution was approximated using the least square 
method. The least square method yielded constants cα in (3). 
All members in decomposition (3) were then evaluated using a 
quadratic polynomial. 

 

 
 
Fig. 3 Global sensitivity analysis for λ=60 
 

 
 
Fig. 4 Global sensitivity analysis for λ=80 
 

 
 
Fig. 5 Global sensitivity analysis for λ=100 
 

 
 
Fig. 6 Global sensitivity analysis for λ=120 
 

 
 
Fig. 7 Sensitivity indices Si vs. λ 
 

 
 
Fig. 8 Crucial higher order sensitivity indices vs λ 

VIII. CONCLUSION 
Approximation of the nonlinear FEM solution with the 

quadratic polynomial reduced the computational costs in 
global sensitivity analysis of the ultimate limit state of the steel 
strut. First order sensitivity indices showed that the ultimate 
limit state is most influenced by the variability of amplitude e0 
of the initial axial curvature of the strut for slenderness λ=90, 
see Fig. 7. The amplitude e0 is also found in most stochastic 
interactions with other imperfections, see Fig. 8. The presented 
global sensitivity analysis identified all stochastic interactions 
present in the computational model that would have been very 
difficult to identify using a different approach. The most 
significant interaction was found between the amplitude e0 and 
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flange thickness t2 in the entirety of considered slenderness, 
see Fig. 8. Finding these interactions, as well as the 
determination of their absence in the model is valuable. The 
results may be applicable in fuzzy probabilistic verification of 
procedures for safe and reliable design of structures [34, 35].  

Numerous problems of computational modelling in 
nonlinear mechanics is either too complex for analytical 
solution or can not be tackled using the available analytical 
tools. Approximation methods and simulation techniques 
provide sufficiently accurate solutions while significantly 
reducing the complexity of the problem. The approach to the 
evaluation of sensitivity analysis presented here is highly 
effective, especially when the number of input random 
variables is small. 
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