



Abstract—This article summarizes current approaches for the

transmission of the data for the client-server applications which

communicate via the public internet. On their basis an entirely new

approach is proposed that ensures to minimize server load and

maximize user comfort when working with a client application. This

method encapsulates all operations into two class libraries, one of

which operates on the server side and the second is integrated into the

client application. Data are submitted to the client application in a clear

object-oriented form, including references between them, only

minimized and uncomplicated text strings are sent via the internet and

these data are automatically stored on the server in a classic relational

database. In addition to the data transfer this method also solves object-

relational mapping. Using the method presented in the article also

brings comfort for applications developers and they can thus

concentrate more on the development of application logic.

Keywords—Data interchange, client-server, serialization,

Silverlight, web services, object-relational mapping, DataSet, OOP,

object database, WCF.

I. INTRODUCTION

HE administration interface of Universal Testing

Environment1 provides the administrators with a user-

friendly way of the central database data editing on the remote

server. This communication takes place over the public Internet

network between a client application in Silverlight2 and a server

application in ASP.NET (see Fig. 1). Data are stored in a classic

relational Firebird3 database on the server. The client

application then works with the data as objects.

The requirement aroused for a simple way of passing data

between a web server and a client application. Ideal would be

to unify this procedure to cover all the needs not only of this

application, but also so that it would be applicable universally

in other projects.

This research has been supported by Specific research project of University

of Hradec Kralove, Faculty of Science in 2015.

P. Voborník is with the Department of Informatics, Faculty of Science,
University of Hradec Králové, Rokitanského 62, Hradec Králové, 500 03,

Czech Republic (e-mail: petr.vobornik@uhk.cz, orcid: 0000-0003-1841-3455).
1 Universal Testing Environment is an electronic online testing system

designed for the creation, operation and administration of the tests,

independently or in cooperation with LMS [20].
2 Silverlight is a software plugin for development lavishly furnished internet

applications that run within a web browser. It is developed by Microsoft,

executed using the plugin which is a smaller version of the .NET framework and

written in various languages supported by .NET (e.g. C# or Visual Basic). [21]

Fig. 1 – Scheme of data transfer between DataSet on the server and

DataSet on the client side

The ideal candidate for a such two-way exchange of

relational data would be the DataSet. The DataSet object in

.NET represents an in-memory cache of data and is the critical

object that gets passed between the middle-tier and the Web

Services layer. DataSet objects easily and efficiently serialize

themselves into and out of XML. This means that data, as well

as the related schema information, can be moved between tiers

in a loosely coupled manner. [1, p. 212]

However, the DataSet class is not supported in Silverlight,

because of the minimize the installation package of Silverlight

version of the .NET Framework, and its addition to Silverlight

is not planned4. For this reason, independent project was

created, which tried to create a DataSet for Silverlight. This

project should encompass all of its functionality and enabled

a data exchange with the Web server by using serialized data

compatible with the original .NET DataSet5. This approach was

based on a translation of serialized data to a dynamically

created objects directly by techniques MSIL6. Although these

objects fully cooperated with standard data components, it was

very difficult to supplement and work with them, because their

dynamically created classes did not exist at the time of

application design. This project the authors have not completed

3 Firebird is a relational database offering many ANSI SQL standard

features, offers excellent concurrency, high performance, and powerful

language support for stored procedures and triggers. [22, p. 97]
4 MSDN Blogs – ADO.NET team blog – DataSet and Silverlight:

http://blogs.msdn.com/b/adonet/archive/2009/05/26/dataset-and-

silverlight.aspx
5 ADO.Net DataSet for Silverlight Applications, see

www.silverlightdataset.net
6 MSIL – Microsoft Intermediate Language, simply IL – the low-level

assembly language with simple syntax based on numeric codes to which are

translated (compiled) .NET programs before conversion into machine code [23,

p. 3]

Relation
database

Object data

Internet

Client
application

Web
server

WebDataSet
(ASP.NET)

SilverDataSet
(Silverlight)

Efficient transfer and object-relational mapping

of data for client-server applications through

the Internet

P. Voborník

T

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 288

mailto:petr.vobornik@uhk.cz
http://orcid.org/0000-0003-1841-3455
http://blogs.msdn.com/b/adonet/archive/2009/05/26/dataset-and-silverlight.aspx
http://blogs.msdn.com/b/adonet/archive/2009/05/26/dataset-and-silverlight.aspx
http://www.silverlightdataset.net/

(e.g. dysfunctional relational relationships between tables) and

they prematurely terminated it.

WCF7 architecture enables transferring such objects whose

classes are defined on the server side. During development of

the client application, the integrated development environment

can determine the structure of these classes from the WSDL8

document and automatically create and later upgrade their

Silverlight version. But there is a fundamental disadvantage in

WCF, that during serialization9 it cannot keep references

between objects. Each sub-object, which is referred to the other

serialized object, is also serialized every time, repeatedly. For

example, when a list of results from the testing will be sent via

WCF and each result will also reference the tested user object,

then the complete data of 100 users will be sent for the 100

different results, even if all results were linked to the same user.

Then 100 independent objects of User class with the identical

values are created by deserialization10 on the client side. This

fact increases bulkiness of transmitted data and also greatly

complicates their object representation and processing.

The RESTful11 services transmit data in XML or JSON12.

All requests and queries for such data are part of the URL. This

URL includes, for example, filter conditions, the authentication

key etc. Part of the request sent via HTTP protocol can also be

parameters unspecified in the URL, but attached by the POST,

PUT and DELETE methods. These methods are used for

modifying the data (POST = inserting a new record or

collection, PUT = changing data of existing record or collection

and DELETE = deleting a record or collection). [2] RESTful

services are provided usually by servers for which it is desirable

to support the development of independent applications that

work with their data (e.g. Amazon13).

Exchanging data between applications of different

developers is most frequently performed via an XML (or JSON)

document currently. Its structure is usually defined by an author

of one of the communicating applications and other authors

adapt to this structure. OData14 is one of the protocols that

standardize this data structure and also the form of querying and

handling with this data. Applications that support OData data

exchange are then able to communicate without major

adjustments of inputs or outputs. Online applications

supporting OData are queried via the URL in a standard manner

(similar to the RESTful services) including the above-

mentioned problems with serialization of data.

A new solution was designed and subsequently created due

to the aforementioned complications in transferring of object

data – Silverlight DataSet [3], [4].

II. SILVERLIGHT DATASET

For the purpose of data exchange two libraries of classes

were created. The first is for the Silverlight platform on the

7 WCF – Windows Communication Foundation
8 WSDL – Web Services Description Language
9 Serialization saves the state of an object to the selected storage (e.g. as a

text string) and deserialization from it retroactively reconstructs the original

object [24]
10 Deserialization retroactively reconstructs the original object from its

serialized form (e.g. text string or XML)

client side and facilitates the compilation of data requirements,

deserialize incoming data, their administration and builds the

list of changes. The other library receives requests on the server,

serializes the required data and processes lists of changes (see

Fig. 1).

The Silverlight part defines a class DataObjectBase that

provides the basic features for individual data records. All the

classes representing the tables in a relational database on the

server must be derived from this class.

Linking of classes with records in tables and class properties

with columns of these tables is done directly in the code of the

class. Each such class must have an attribute15 in which basic

parameters for linking with the table can be defined, i.e.

especially its database name. Similarly, the properties of this

class. Properties may also have attributes that determine which

columns of the table are bound with them. Attributes can also

contain other flags, e.g. whether the value is read only, whether

it is compulsory (not null) or delayed, and maximum length

of text strings (see Code 1). Properties that do not have this

attribute are ignored by DataSet and a used optionally by the

developer.

 [DataObjectAttribute("A_USERS")]

 public class User : DataObjectBase

 {

 private string surname;

 [DataObjectProperty("SURNAME", true, 30)]

 public string Surname

 {

 get { return surname; }

 set { surname = value;

 ValueChanged("Surname"); }

 }

 private int height;

 [DataObjectProperty("HEIGHT")]

 public int Height

 {

 get { return height; }

 set { height = value;

 ValueChanged("Height"); }

 }

 ...

 }

Code 1 – Sample code of class definition linked to the database table

using attributes

Code 1 shows the mapping method using attributes [5, p.

449]. The User class is linked to the table A_USERS, the

property Surname is bound with the SURNAME column and the

property Height is bound with the HEIGHT column. The

attribute constructor also specifies that the name is

11 REST – REpresentational State Transfer
12 JSON – JavaScript Object Notation, www.json.org
13 Amazon web services – aws.amazon.com
14 OData – Open Data Protocol, www.oauth.net
15 Custom attributes allow you to declaratively annotate the code constructs,

thereby enabling special features, e.g. it can be queried at runtime by reflection

and dynamically interpreted by a different code [25, p. 435]

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 289

http://www.json.org/
http://aws.amazon.com/
http://www.oauth.net/

a compulsory item (2nd parameter) and its maximum length is

30 characters (3rd parameter).16 Calling the ValueChanged

method in the set-part of property code allows for data

continuity of the property with a visual component for editing,

which can react accordingly to a possible change of property

value (see [6]). This method also records all changes to the data,

for their subsequent submit back to the server and their storing

to the central database.

The DataSet performs compiling of the list of all these

classes through reflection (see [7, p. 489]) and it is not

necessary to draw them up somewhere else again. A transmit of

Assembly17 (in which the data classes are defined) to the main

mediating class is sufficient during creating it. These classes are

found on the basis of these attributes automatically, and they

are mapped and stored in structured lists, so that the DataSet

could work with them without further delay.

All data are downloaded in their original relational format

and classes, that process these data on the client side, must

adjust them appropriately. References to other tables (classes)

are basically realized only through linking values (foreign keys)

and do not by object references, but this functionality is not

difficult to be programmed through the LINQ18 to Object (see

[8, p. 49]).

III. LOADING OF THE DATA

When an application needs some data (e.g. if the user wants

to view some overview), a request for them is passed to the

DataSet. This may be either object oriented or in the form of

a text string, or an as XML element of specific structure (see [9]

and [10]). Sequence diagram in Fig. 3 shows how a request for

data is processed asynchronously.

The request may contain links to multiple tables

simultaneously. A filter for the required data is compared

always with filters of already downloaded data for

each of these tables. If the DataSet evaluates that all

the data have already been downloaded earlier, it

directly notifies the application to continue.

Otherwise, the DataSet builds a requirement into

a text string which is passed back to the application.

The application sends the request to the server (e.g.

via web service), where it is passed to the web part of

the DataSet. The DataSet deserializes it into

a structured data object and returns it to the server

application. The application processes the request in

a way that it loads required data from the database to

the classic DataSet object, which is part of the .NET

Framework [11, p. 309]. At this point, the application

can check also the authentication of a user, that

requires the data; whether the user has the appropriate

permissions to read them or not. The DataSet with loaded data

is passed back to the WebDataSet class that serializes these

data into a text string. The WebDataSet returns this string to the

16 A similar way of the definition of links is also used e.g. XPO from

DevExpress (www.devexpress.com/products/NET/ORM)
17 Assembly is the logical unit that contains compiled code targeted at the

.NET Framework [23, p. 17]

web part of the application to send back to the client.

The client application receives the string with data and

transmits them into its part of the Silverlight DataSet. The

DataSet processes them (deserializes them to the appropriate

classes, adds records to the objects lists and restores relations

between objects) and then notifies the application that

everything is ready. The application can then start working with

the data.

All data sent over the internet is sent as a text string

throughout the entire process [12]. Yet the application works

only with object data. Complete process of serialization,

deserialization and management of the data is catered by the

appropriate library of the DataSet. Database connection and

sending and receiving of data is provided by the application.

DataSet is independent of the environment in which it is used

and it maximally simplifies all routine work with the data.

A. Filters

Filters are an important part of the DataSet. The main

assumption is the fact that only the data that is needed now are

always downloaded from the server. In order to not have to

always download the complete data of whole table, the filters

can determine, what part of the table (horizontal) is currently

being needed.

The filters are based on a text strings. Developer (author of

the application that using the DataSet) defines format of these

strings. Because he also implements a direct database

connection, evaluating of these filters is only in his jurisdiction.

DataSet on the client side recognizes itself only two cases:

when the same filter is used repeatedly, or if all data from whole

table has been downloaded completely. Both cases are a sign

that for the requirement for data is no longer need to download

anything new. The application author must ensure a comparison

of other types of filters.

Fig. 2 – Possible types of results of comparison of data filters of

already downloaded data and required data

18 LINQ – Language INtegrated Query

A B

A B B

A

A

B

A=B

B B

A

everything is new

only something is new

nothing new

everything is requested

A - downloaded, B - requested, to download is needed only

A B = Ø

A B Ø

A B

A B

1.

2.

3.

4.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 290

http://www.devexpress.com/products/NET/ORM

The DataSet exposes a delegate CompareFilters, which (if

set) is executed whenever the two filters be compared and the

DataSet is unable to evaluate them itself. The application then

returns to the DataSet the result of this comparison as an

enumeration FiltersCompareResult. Possible results are

shown in Fig. 2.

In the first case it is necessary to download everything. In the

second case, it is needed to download only a part of the data, so

the DataSet to the filter adds a compressed list of IDs of already

downloaded records and these records will not be downloaded

again. In the third case, when there is no need to download, the

request for data is directly evaluated as finished without the

need to contact the server. The last fourth case is treated the

same as the second case, but for next time is noted that all the

data of this table are completely downloaded, which is

advantageous for example for codebooks.

19 Firebird – open-source relational database system, www.firebirdsql.org

Filters are therefore in all cases (except the third) in its

unchanged version sent to the server, where they are after

deserialization of requirement forwarded to this part of the

application for retrieve of the data delimited by these filters. In

the second and fourth case a list of ID of records is also attached

(as IEnumerable<int>), which is no longer needed to

download.

B. Delayed data

Fields of certain tables may contain more extensive data with

variable length. For example, the Firebird19 database supports

BLOB20 data type for storing binary data or very long texts,

which cannot be easily stored in columns of any other standard

data type. [13, pp. 181-190]

Such data is not appropriate for bulk transfer of multiple

records at one time. The reason is bulkiness of these data and

20 BLOB – Binary Large OBject

Application ApplicationDataSet DataSet

Požadavek na data

Porovnání filtrů

Výsledek porovnání

Database

Požadavek (string)

Požadavek (string)

Požadavek (objekty)

SQL

Data

DataSet (.NET)

Data (string)

Data (string)

Data (string)

Data připravena

Práce s daty

Data (objekty)

Client (Silverlight) Server (ASP.NET)

Ukaž data

[all data is already downloaded]
Data ready

[something is missing]
Request (string)

Show data

Request for data

Comparing of filters

Result of comparison

Request (string)

Request (string)

Request (objects)

Data ready

Work with data

Data (objects)

Fig. 3 – Sequence diagram of the process to read data using the DataSet

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 291

http://www.firebirdsql.org/

also the fact that the data do not appear directly in a table

overviews (e.g. QML data of a test question). These data are

usually displayed when the detailed listing of the one individual

record is requested, so these data only for one particular record

is needed to download until at this moment.

These types of values can be distinguished in the attribute of

the property in the class definition (see Code 1) as another

optional parameter. The DataSet then does not download them

when a bulk data is requested, but only on special request. This

requirement must relate to one object specified by its ID and it

must include a list of items of this kind of values (table

columns) to be downloaded (see [9]). Simultaneously, for each

object is separately registered, which items of delayed data have

been downloaded for distinguished them from empty fields

(null) and don’t download them unnecessarily again.

IV. SAVING OF CHANGES

Any changes of the data are collected and recorded in

a special list. Repeated changes of the same data are recognized

and only the last change is registered with regard to its type.

There are most commonly three types of changes (sorted

according to the priority):

 Delete – If the data record is deleted, the previous changes

are not necessarily further registered, only the ID of this

record is needed. If the record was previously added and it

is not yet saved, then it is removed from the list changes

completely.

 Insert – The newly inserted record always sends all values

to the server, even if it is later changed (before submitting).

 Update – Any changes of values in existing records are

recorded and only their new values are sent to the server.

Fig. 4 shows the progress of the process of saving changes to

the server. At the moment a user requests saving changes to the

server, the application delegates the DataSet to assembly

a serialized list of changes. This list is sent to the server, where

it is passed to the web part of DataSet for deserialization. The

returned object contains "understandable" list of changes which

the application stores in the database. This operation should be

performed in a transaction [14], because in case of a failure, the

incomplete data changes will be avoided. The application, of

course, can support this procedure. Possible competitive

changes made by another user can also be checked at this stage,

e.g. by the means of a time stamp.

Application ApplicationDataSet DataSet Database

Client (Silverlight) Server (ASP.NET)

Uložit

Žádost o seznam změn

Seznam změn (string)

Seznam změn (string)

Reakce na změny

Reakce na změny

Uložení změn

ID nových záznamů

Reakce na změny (string)

Reakce na změny (string)

Výsledek (string)

(string)

Seznam změn

Seznam změn

(objects)

(string)

(objects)

Save

Request for a list of changes

List of changes (string)

List of changes (string)

List of changes

List of changes

Save of changes

ID of the new users

Response to changes

Response to changes

Response to changes (string)

Response to changes (string)

Result (string)

Fig. 4 – Sequence diagram of the process of storing of data changes using the DataSet

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 292

A newly allocated ID is added to the list of changes for newly

inserted objects by the database during data storage or after

confirmation of the transaction (depending on the system of

connection to the database). Furthermore, it is also necessary to

confirm that every change was stored successfully, or specify

the error message that arose when trying to save.

The object of list of changes supplemented by these reactions

to changes is passed back to the DataSet for serialization and

the output string is sent back to the client application. The client

application passes the reaction string to its version of the

DataSet, which returns either an empty string as the proof of

everything being OK, or it returns an uncluttered list of error

messages that arose during the process.

V. CONCLUSION

The DataSet for Silverlight is a useful tool for data transfer

between the Silverlight application and the server. It tries to

minimize the connection to the server and thereby reduce the

burden, but also accelerate work with the client application,

thereby the user comfort is improved while working with it. The

DataSet receives data in standard relational form on the server

side, and on the client side, it translates and manages data as

objects of classes defined by the author of application.

Definitions of relationships of these objects with database

elements is extremely simple, non-redundant and clear.

The DataSet, in combination with the authentication protocol

(see [15] and [16]) and encryption (see [17] and [18]), is a safe

and easy-to-use tool for the Silverlight that enables the creators

of cloud applications to concentrate more on the development

of application logic without the need of solving the problems

associated with the transmission and security of data via the

public Internet.

Basic classes SilverlightDataSet and WebDataSet can

easily be integrated into the project and set. These classes can

assist in the development of such applications that work with

the centrally stored data. Procedures that were used to

implement these classes can be used in other environments and

languages easily. It can be also an inspiration for further

development in the area of data transfer in the cloud computing

and RIA applications (e.g. [19]). For example, the client part of

the DataSet could be adjusted for use in modern UWP21

applications which can be also used for controlling of IoT with

Windows 10 IoT operating system.

ACKNOWLEDGMENT

This research work has been supported by specific research

project of University of Hradec Kralove, Faculty of Education

and Faculty of Science in 2015.

REFERENCES

[1] D. Esposito, Building Web Solutions with ASP.Net and ADO.NET.

Redmond: Microsoft Press, 2002, ISBN 978-0735615786.
[2] L. Richardson and S. Ruby, RESTful Web Services. Sebastopol: O’Reilly

Media, 2007, ISBN 978-0-596-52926-0.

21 UWP – Universal Windows Platform, https://msdn.microsoft.com/en-

us/library/dn894631.aspx

[3] P. Voborník, “Effective object-relational mapping data transfer in the

cloud computing,” in Information Technology for Practice 2011, Ostrava:
VŠB-TUO, 2011, pp. 189–197, ISBN 978-80-248-2487-1.

[4] P. Voborník, “Tool and mechanisms for efficient transfer of data in cloud

client-server applications,” in Recent Advances on Systems, Signals,
Control, Communications and Computers, Budapest, Hungary, WSEAS

Press, 2015, pp. 166–171, ISBN 978-1-61804-355-9, ISSN 1790-5117.

[5] J. Liberty and D. Xie, Programming C# 3.0. 5th ed., Sebastopol: O’Reilly
Media, 2008, ISBN 978-0-596-52743-3.

[6] J. Papa, Data-Driven Services with Silverlight 2. Sebastopol: O’Reilly

Media, 2009, ISBN 978-0596523091.
[7] J. Hilyard and S. Teilhet, C# 3.0 Cookbook. 3rd ed., Sebastopol: O’Reilly

Media, 2007, ISBN 978-0-596-51610-9.

[8] P. Pialorsi and M. Russo, Programming Microsoft LINQ. Redmond:
Microsoft Press, 2008, ISBN 978-0735624009.

[9] P. Voborník, “Concept for development of large-scale applications

through configuration frameworks”, in Recent Advances on Systems,
Signals, Control, Communications and Computers, Budapest, Hungary,

WSEAS Press, 2015, pp. 83–90, ISBN 978-1-61804-355-9.

[10] P. Voborník, “Configuration Frameworks,” International Journal of
Mathematics and Computers in Simulation, vol. 10, 2016, pp. 180–191,

ISSN 1998-0159.

[11] M. MacDonald and M. Szpuszta, Pro ASP.NET 3.5 in C# 2008: Includes
Silverlight 2. 3rd ed., New York: Apress, 2008, ISBN 978-1430215677.

[12] V. Strnadová, Interpersonal communication. Hradec Králové:

Gaudeamus, 2011, 543 p., ISBN 978-80-7435-157-0.
[13] H. Borrie, The Firebird Book: A Reference for Database Developers. New

York: Apress, 2004, ISBN 978-1-59059-279-3.
[14] J. Lowy, Introducing System.Transactions. Microsoft, 2005. Available:

http://msdn.microsoft.com/en-us/library/ms973865.aspx

[15] P. Voborník, “Secure authentication in client-server applications on the
Internet through a mandatory unique salts,” in Internet, Competitiveness

and the Organisational Security 2011, Zlín: Tomas Bata University,

2011, pp. 347–354, ISBN 978-80-7454-012-7.
[16] P. Voborník, “Fast multiplatform authentication on the Internet,” in IP

Networking 1 – Theory and practice (proceedings of scientific works),

Žilina, University of Žilina, EDIS, 2011, pp. 41–45, ISBN 978-80-554-
0494-3.

[17] P. Voborník, “Modification of the perfect cipher for practical use,” in

Advances in Mathematical Models and Production Systems in
Engineering, Proceedings of the 7th International Conference on

Manufacturing Engineering, Quality and Production Systems (MEQAPS

‘14), Brasov, WSEAS Press, 2014, pp. 64–68, ISSN 2227-4588, ISBN
978-960-474-387-2.

[18] P. Voborník, “Migration of the Perfect Cipher to the Current Computing

Environment,” WSEAS Transactions on Information Science and
Applications, vol. 11, art. #21, pp. 196–203, 2014, ISSN 1790-0832.

[19] Š. Hubálovský, “Remote desktop access us a method of learning of

programming in distance study,” in 14th International Conference on
Interactive Collaborative Learning (ICL2011) – 11th International

Conference Virtual University (VU'11), Bratislava, Slovak University of

Technology in Bratislava, 2011, pp. 450–455, ISBN 978-1-4577-1746-8.
[20] P. Voborník, Universal Testing Environment. Ph.D. thesis, Hradec

Králové: University of Hradec Králové, 2012. Available:

http://download.petrvobornik.cz/docs/disertace.pdf
[21] T. Lammarsch, W. Aigner, A. Bertone, S. Miksch, T. Turic and J. Gärtner,

“A Comparison of Programming Platforms for Interactive Visualization

in Web Browser Based Applications,” in International Conference
Information Visualisation, Washington DC, USA: IEEE Computer

Society, 2008, ISBN 978-0-7695-3268-4.

[22] T. Kanik, “Architecture development of web based application for
a construction cost prediction,” in Proceedings of the International

Conference OSSConf 2010, Žilina: Society for Open Information

Technologies, 2010, ISBN 978-80-970457-0-8.
[23] S. Robinson, C. Nagel, J. Glynn, M. Skinner, K. Watson and B. Evjen,

Professional C#. 3rd ed., Indianapolis: Wiley Publishing, 2004.

[24] S. Manoharan, “Application state, serialization and versioning,” in
Proceedings of IADIS International Conference Applied Computing

2004, Lisabon: IADIS, 2004, pp. 57–60, ISBN 972-98947-3-6.

[25] J. Richter, CLR via C#. 3rd ed., Redmond: Microsoft Press, 2010.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 293

https://msdn.microsoft.com/en-us/library/dn894631.aspx
https://msdn.microsoft.com/en-us/library/dn894631.aspx
http://msdn.microsoft.com/en-us/library/ms973865.aspx
http://download.petrvobornik.cz/docs/disertace.pdf

