
 

 

  
Abstract— Different approaches for determining the degree of 

uncertainty in models for the analysis of the serviceability limit state 
of building structures are described.  An example of fuzzy and 
stochastic analysis of the uncertainty of deformation of a load bearing 
steel truss structure is presented. The relationships between the force 
acting on the structure and the elastic deformation of the structure 
caused by this force are studied using numerical simulations on the 
computer. The static response and elastic deformation are evaluated 
using linear and geometrically nonlinear models. It is proven in the 
article that small uncertainties in the initial geometric imperfections 
can lead to relatively large uncertainty in the response of the model, 
on the basis of which the safety and reliability of the structure are 
assessed. 
 

Keywords—Stochastic, fuzzy, mathematical modelling, 
simulation, imperfection, reliability, serviceability, static, elastic. 

I. INTRODUCTION 
heoretical research of limit states of load bearing 

elements is the basis for reliable design of structural 
systems of buildings [1, 2]. Safety and reliability are studied 
using static and dynamic models and numerical simulation of 
the response of building structures on computers [3]. 
Researchers create new mathematical models [4,5] and with 
the help of computer simulations investigate the structural and 
mechanical properties of new building materials [6-9]. 

Steel structures are fully competitive with concrete or wood, 
especially with regards to their usability as bearing elements of 
steel bridges or towers [10]. Steel does not crack due to 
settlement or creep like concrete. Steel is a fully recyclable 
material. Steel elements are highly variable and structures 
constructed from them are lightweight and allow for great 
flexibility in creating the layout and overall appearance of the 
building. Transportation, assembly and putting into operation 
of steel structures tend to to be very short. 

Truss structures are of numerous types, an almost infinite 
number of shapes, and are preferred for bridging large spans 
[11]. Steel truss beams are suitable whenever it is necessary to 
realize openings in structures. Steel towers are used as 
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supporting structures of high tension wires, wind turbines, 
billboards, etc. Transportation of the tower is not a problem 
because assembly can take place at the construction site. 
Another advantage of truss towers is that they are transparent. 
On the other hand, bars of steel truss structures are slender, 
which requires that increased attention has to be paid to loss of 
stability and initial imperfections [10]. 

Stability phenomena affect the limit states of slender 
members that are partly or entirely in compression. Research 
aimed at the sensitivity analysis of initial imperfections on the 
load carrying capacity helps to identify the effects of initial 
imperfections on the reliability of load bearing systems [12-
15]. Initial imperfections from production are measured [16] 
and compared with tolerance standards so that the construction 
of structures can be realized from high quality elements. The 
probability of failure, admissible according to standard 
EN1990, is maximally 7.2E-5 [17]. 

The limit states of the Eurocode standards are usually 
verified using probability based reliability studies [18-20]. The 
reliability of steel structures is very sensitive to initial 
imperfections. Small initial curvature of the member axis [21] 
or deviation from the verticality of the load bearing system 
[22] can greatly affect the stress and reduce the load carrying 
capacity. 

The ability of the bent beam to develop a plastic hinge is the 
most important precondition for the formation of the load 
carrying capacity reserve during permanent deformation, 
which is a phenomenon studied by the shakedown theory [23]. 
New practical applications of the shakedown theory, which 
replaces the exhausting conventional iterative analysis, were 
presented in [24].  

Researches on the limit states of steel columns exposed to 
extreme loading were published, e.g. in [25]. Generally, 
permanent deformation due to exceptional loading states is 
undesirable and collapse occurs more frequently due to fatigue 
from repeated loading. Fatigue is a typical failure of walled 
load bearing elements. Initial unplaneness of slender walls is a 
frequent cause of the initiation and propagation of fatigue 
cracks in walled load bearing elements [14]. 

The theory of mathematical statistics and probability or the 
theory of fuzzy logic are the general basis for the analysis of 
the reliability and limit states of load bearing structures. 
Numerous optimization problems can be solved using soft 
computing techniques, see, e.g. [26-29]. Generally, the 
reliability analysis of structures constitutes a significant part of 
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operational research, whose sub-disciplines include the 
analysis of decision-making problems based on multiple 
criteria [30-32]. The appropriate division of complex problems 
taking into account multiple criteria explicitly results in more 
informed and better decision-making. 

The serviceability limit state is generally studied using 
stochastic methods on one element [18]. This approach 
however can not be considered sufficient, because the limit 
deformation in design standards are determined subjectively. 
The theory of fuzzy sets [33] and stochastic analysis based on 
virtual simulations [34, 35] are used in this article to study the 
serviceability limit state of a truss structure. The fuzzy and 
stochastic approach do not compete, but rather are in a 
partnership, in which each of the partner contributes a different 
methodology for solving the reliability problems of an 
interactive system [36]. 

II. THE BAR SYSTEM 
The presented example illustrates a typical problem in 

which the input variables of the computational model are 
burdened with uncertainty that can not be eliminated by 
measuring, but is always partially reflected in the decision-
making process of engineers. 

A. Geometry of the truss structure 
Fig. 1 shows a system comprised of six members. Changes 

in the stiffness of the structure caused by deviations of the 
cross-sectional area are simulated in the analysis of the 
resistance of the system to force F, see Fig. 2. The real cross-
sectional area may differ from the nominal value as a result of 
the technology of rolling in the smelting plant, weakening due 
to corrosion during operation of the structure or as a result of 
numerous other factors. 

 

 
 

Fig. 1 geometry of the truss structure 

B. Cross-section geometry 
Fig. 2 illustrates a hot-rolled hollow steel cross-section. This 

cross-section is either only under compression or tension in the 
truss structure depending on which member is analysed. It is a 
European cross-section, which is classified in the Eurocode 3 
standard as a Class 1 cross-section. Class 1 cross-sections are 
those that can form a plastic hinge with the rotation capacity 
required for plastic hinges. 

 

 
 

Fig. 2 rolled hollow cross-section  
 
The cross-section illustrated in Fig. 2 je is a Class 1 cross-

section, which is defined in the Eurocode 3 standard for 
member subject to compression by the relation 

 
ε33/ ≤tc  (1) 

 
where c≈b-2t=100-2⋅10=80, ε=1.0 for steel grade S235 with 

yield strength fy=235 MPa. Local stability phenomena such as 
buckling of slender compressed walls can be neglected for 
Class 1 cross-sections. Since there is no need to model local 
stability, there is also no need to analyse and model the shapes 
of initial imperfections of slender walls and solve loss of 
stability of the members in interaction with their buckling [37]. 

 

 
 

Fig. 3 horizontal deformation of the truss structure  
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III. BEAM FINITE ELEMENT ANALYSIS 
The serviceability limit state of the truss structure was 

studied using the beam finite element (FE) method. 
Deformation at the point of load action was the monitored 
output variable whose uncertainty was analysed. 

 

A. Linear FE Analysis 
Linear static analysis of the dependence of the deformation 

on the load was evaluated first, see Fig. 3. The force of 410 kN 
produces an axial stress of 234.96 MPa in the left column. 
Stress in the other bars are lower. The limit value of stress in 
the steel was considered acc. to [38] as 235 MPa. The truss 
structure is designed economically with maximum utilization 
and does not exceed the ultimate limit state of the standard 
[38]. 

 

B. Nonlinear FE Analysis 
High sensitivity to changes in the geometry can lead to 

different dependencies of load vs. deformation, which must be 
studied using the geometrically nonlinear FE solution [39]. 
The basic difference is that the equilibrium conditions are 
written for the structure with deformations from the load and 
not for the unloaded structure. The application of the 
geometrically nonlinear solution to study a truss structure was 
published in [40]. This solution has been applied in numerous 
reliability studies, see, e.g. [21, 41]. The basis of the 
geometrically nonlinear solution is increasing the load step by 
step and eliminating errors of the solution using Newton-
Raphson incremental method. The load was divided into sixty 
incremental steps. 

 

C. Stability analysis 
Stability analysis is part of the linear FE analysis in which it 

is necessary to check the reliability of the compressed bars and 
their resistance to buckling. Stability analysis is used to 
determine the size of the load at which loss of stability occurs. 
A particularity of the truss structure shown in Fig. 1 is that 
buckling of the diagonal members occurs simultaneously. The 
bar buckles at the moment the determinant of the matrix of the 
tangential stiffness of the nonlinear solution changes sign. If 
two bars buckle simultaneously, change in sign does not occur. 
It is therefore necessary to introduce slightly different stiffness 
parameters of the diagonal bars to ensure that a change in sign 
occurs. To ensure the stability analysis, it suffices to specify 
the stiffness parameters of the diagonal bars with such little 
difference that the values of the buckling loads Fcr1 and Fcr2 
differ only by 4 N. For the real buckling load of an ideal 
structure without imperfection, it must hold that 
Fcr1=Fcr2≈3385.44 kN, see Fig. 4. 

 

 
 

Fig. 4 first and second buckling modes 
 
The right column buckles at the moment the force reaches 

magnitude Fcr3, see Fig. 5. It may be noted that the forces Fcr1, 
Fcr2, Fcr3 are related to the buckling of the bars without relation 
to the stress, which would be very high from the critical forces. 
From the comparison of the values of Fcr1 and Fcr2 with 
F=410 kN it is apparent that buckling of the diagonal members 
occur when the load is more than eight times greater than load 
F. The fact that forces Fcr1, Fcr2, Fcr3 are much higher than 
force F is an important finding that strength and not the 
stability of steel is decisive for safety and reliability. 

 

 
 

Fig. 5 the third buckling mode 
 
Buckling of the diagonal members is of greater significance 

than buckling of the right vertical column in the stability 
analysis. The buckling length of each diagonal member is 
1.414 m. The slenderness of each diagonal member is 38.869, 
which is relatively small. Therefore, it can be concluded that 
the effect of stability phenomena on the behaviour of the truss 
structure is relatively small.  
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IV. SERVICEABILITY LIMIT STATE 
The serviceability limit state is defined by the maximum 

allowable deformation. If the deformation from the load is 
greater than the allowable deformation, the structure is 
classified as only for limited use or as unusable. The 
permissible deformations are specified in standards, the 
authors of which are groups of people in social organizations, 
such as the standards developing organization. The structure is 
satisfactory if the maximum deflection, which is obtained from 
static analysis, is smaller than the deflection specified by the 
standards.  

The maximum allowable deformations in standards are 
specified subjectively and correspond to the purpose for which 
the structure was constructed. The serviceability limit state 
thus differs significantly from the ultimate limit state, which is 
determined by the physical properties of structures, such as 
yield strength, Young’s modulus. The physical properties of 
materials are influenced by man, especially the chemical 
composition and production technology. Nevertheless, the 
realization of these properties are random variables. 

While stochastic analysis is sufficient to study the ultimate 
limit state, the serviceability limit state can be studied using 
both stochastic and fuzzy analysis. Given the subjectivity of 
the maximum allowable deformations, fuzzy approaches are 
fully relevant for evaluating the usability of structures. In 
advanced problems both types of uncertainties can be assigned 
according to their relevance to the studied problem [42]. 

V. FUZZY ANALYSIS 
The notion of fuzzy logic was first presented in 1965 by 

professor Lotfi A. Zadeh in the article [33], where the basic 
concept of fuzzy logic, i.e. fuzzy sets, was defined. The term 
fuzzy can be defined as unclear, blurred, hazy, uncertain, or 
vague. This is fully reflected in what the theory of fuzzy set 
deals with, i.e. describing reality with its imprecisions and 
uncertainties. 

Fuzzy description is well suited for the description of the 
vagueness with which we determine structural deformation 
using FEM computational models. The deformation can be 
evaluated as a fuzzy number, which is assigned a truth value in 
the range of 0 to 1, inclusive of both limits. Fuzzy logic allows 
in connection with the word "deformation" the mathematical 
expression of terms like "little", "enough" or "a lot", etc. 
Specifically, it allows us to express partial membership to a 
set. Fuzzy logic uses a degree of membership as a 
mathematical model of vagueness, while probability is a 
mathematical model of unfamiliarity. 

A. Fuzzy numbers as input quantities 
Fuzzy uncertainties of the cross-sectional areas of the 

members of the truss structure were considered during the 
analysis. The cross-sectional area Ai of the i-th bar was 
introduced as a fuzzy number, see Fig. 6. 

 

 
 

Fig. 6 fuzzy number of cross-section area Ai 
 
Fig. 6 illustrates the fuzzification of the cross-sectional area, 

which was performed with consideration to deviations of the 
hot-rolled cross-section from experimental research [16]. The 
kernel of the fuzzy number in Fig. 6 is the nominal value of the 
cross-sectional area 3490 mm2 as is specified by the 
manufacturer. The degree of membership of the fuzzy number 
shown in Fig. 6 defines the degree of truth with which the 
cross section is the hot-rolled hollow cross-section depicted in 
Fig. 2. If the cross-sectional area is less than 3136 mm2 or on 
the other hand greater than 3841 mm2 then the degree of truth 
that the cross-section is the cross-section depicted in Fig. 2 is 
zero. On the other hand, if the cross-sectional area is in the 
interval of 3136 mm2 to 3841 mm2, then it is with a greater or 
lesser degree of truth the cross-section depicted in Fig. 2. 

B. Fuzzy Analysis numbers as input quantities 
Fuzzy analysis was performed using the general extension 

principle [42]. The general extension principle is one of the 
most basic concepts of the fuzzy set theory, put forward by 
prof. L. Zadeh to enrich the theory [33]. It is used to extend 
operations and functions originally defined as functions of real 
variables in fuzzy sets. Let µi be the membership function of 
fuzzy number Ai. Then the membership function µu of fuzzy 
number u is defined as  

 

 
 
The symbol  in equation (2) is defined as the supremum. 

The supremum in (2) was introduced as an alternative to the 
concept of the greatest element, however, unlike the greatest 
element it can be found in more sets, for e.g., open intervals of 
real numbers do not contain a greatest element but have a 
supremum. If a set of real numbers has a maximum, then it 
also has a supremum, for which it holds that the maximum is 
equal to the supremum. The supremum can be understood as 
the generalisation of the concept of the greatest element not 
only on the set of real numbers, but generally in all sets. 
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The input fuzzy numbers of cross-sectional areas are 
depicted in Fig. 6. It was assumed that the fuzzy uncertainty of 
each cross-section is the same for all bars. Displacement u of 
the top hinge of the truss structure was the considered output 
variable, see Fig. 7. Since the cross-sectional areas are fuzzy 
numbers the displacement is also a fuzzy number.  

 

 
 

Fig. 7 fuzzy number of maximum horizontal displacement u 
 
The so-called α–cuts were used to evaluate equation (2). On 

each α–cuts conditions of maximum and minimum of the 
realizations of the output displacement resulting from all 
possible combinations of input values were performed. All 
material and geometric characteristics, apart from the cross-
sectional areas, were considered in the computational model 
by their nominal and characteristic values listed in the 
Eurocode 3 and other related standards. 

Displacement u was calculated using the linear solution and 
the geometrically nonlinear solution. Initial imperfections of 
the members were taken into consideration in the 
geometrically non-linear solution. Initial curvatures of the 
compressed members were introduced in the shape of a half-
wave of the sine function acc. to Fig. 4 and Fig. 5. The 
amplitudes of the initial curvatures of member axes were 
considered as one-thousandth of the member length, which is a 
common approach applied, for e.g., in [19-22]. 

It is apparent from Fig. 7. that the membership functions 
obtained from the linear and non-linear solution differ very 
little. Whilst the membership function in Fig. 6 is symmetrical, 
the output membership functions of u in Fig. 7 are not 
symmetrical. The fuzzy number is more blurred to the right of 
the kernel and the fuzzy set includes relatively higher values of 
deformation, which may be relevant when assessing the 
serviceability limit state.  

This description of uncertainty, which normally would not 
be obtained from the deterministic study provides valuable 
insight into the behaviour of the structure in terms of the 
uncertainty in evaluating its usability.  

VI. STOCHASTIC ANALYSIS 
The second approach in analysing the uncertainty of 

deformation is based on the stochastic analysis of the influence 
of input random variables on the output. Each cross-sectional 
area was considered as a random variable with Gauss 
probability density function with mean value 3490 mm2 and 
standard deviation 180 mm2. These statistical characteristics 
mean that 95 realizations are found in the interval from 
3136 mm2 to 3841 mm2, which is in agreement with the results 
of experimental research [16]. 

Analysis was performed using the Latin Hypercube 
Sampling method [34, 35]. Statistical analysis of the 
deformation was performed using ten thousand simulation 
runs. Nine input variables with random variability of cross-
sectional area described in the preceding paragraph were used. 
Ten thousand observations of the deformation obtained from 
the linear FEM solution are depicted in Fig. 8 and Fig. 9. 

 

 
 

Fig. 8 runs of deformation from linear solution 
 

 
 

Fig. 9 histogram of deformation from linear solution 
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In the next study the deformation was calculated using the 
geometrically nonlinear solution. The aim of this analysis was 
to validate the assumption that the equilibrium conditions of 
these structures can be written for the unloaded structure. Ten 
thousand observations of the deformation obtained from the 
nonlinear FEM solution are depicted in Fig. 10 and Fig. 11. 

 

 
 

Fig. 10 deformation obtained from nonlinear solution 
 

 
 

Fig. 11 histogram of deformation from nonlinear solution 
 

Fig. 12 shows a comparison of the results of the linear and 
nonlinear solution approximated using two types of probability 
density functions. Hermite density function is a four-parameter 
distribution capable of taking into account the effect of 
skewness and kurtosis in the set of random realizations. 
Hermite probability density function was used for 
approximations in Fig. 9 and Fig. 11. The Gaussian 
approximation of results of the linear and nonlinear solutions 
are practically identical. The same is true for the Hermite 
approximations, see Fig. 12. 

 

 
 

Fig. 12 approximation of Hermite and Gauss density functions 

VII. COMPARISON OF FUZZY AND STOCHASTIC ANALYSIS 
The comparison of results of the fuzzy and stochastic 

analyses of the horizontal deformation of the top hinge is 
depicted in Fig. 13. Two scales, one for the relative frequency 
(stochastic analysis) and the other for the degree of 
membership (fuzzy analysis), were plotted to enable us plot 
two varying types of results. The advantage of fuzzy analysis 
is that the kernel corresponds to the result, which would be 
obtained for the minimum values of input fuzzy number Ai. 
The mean value obtained from the stochastic analysis is 
generally not equal to the kernel. The kernel is an approximate 
equivalent of the arithmetic mean of the statistical analysis 
with the specificity that it provides information on the result of 
the deterministic analysis with the degree of truth of one. 
Stochastic analysis does not have an equivalent of the fuzzy 
kernel. The advantage of stochastic analysis is particularly the 
possibility to evaluate quantiles from approximation functions 
of the probability density function. On the other hand, the 
fuzzy analysis leads directly to the output membership function 
of the horizontal deformation u and does not require seeking a 
suitable approximation function, as is the case for the 
statistical analysis based on simulation methods.  

 

 
 

Fig. 13 Fuzzy and stochastic analysis of the deformation of the top 
hinge 
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VIII. CONCLUSION 
The article deals with the fuzzy and stochastic methods of 

analysis of the serviceability limit state of building structures. 
The maximum deformation of the top hinge of the truss 
structure was evaluated as the output variable. Linear and 
nonlinear computer models based on the finite element method 
were used for the analysis. It was demonstrated that the 
influence of the applied linear and nonlinear solution was not 
as large as the influence of the uncertainty of cross-sectional 
areas. The presented study contributes to the discussions on 
the appropriateness of using fuzzy or stochastic approaches 
depending on the type of task. Fuzzy analysis is suitable in 
cases where the numerical values are determined subjectively. 
Stochastic analysis provides better results in cases where the 
uncertainty is purely random in character. Differentiation of 
fuzzy and random character of uncertainty of measurements is 
very difficult, as well as for all activities involving humans. 
Computational models are also very sensitive to parameters 
that are not random in nature, but without which the model 
cannot be adapted and used to find better solutions to practical 
problems, which arise in the sectors of optimization of the 
reliability of building structures. 
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