
 

 

  
Abstract—A non-optimal algorithm based on atomic function is 
investigated for the Sampling – Reconstruction Procedure (SRP) of 
Gaussian random process realizations. The reconstruction error 
function of this non-optimal algorithm is compared with the 
reconstruction error functions obtained in the optimal algorithm, 
represented by the conditional mean rule, and in another non-optimal 
algorithm based on Balakrishnan’s theorem. Results show that the 
application of atomic functions has disadvantages reflected in a larger 
magnitude of the reconstruction error.  
 

Keywords—Atomic functions, Conditional mean rule, Non-
optimal algorithm, Reconstruction error function.  

I.  INTRODUCTION 
HERE have been several publications focused on the 
statistical description of the reconstruction of realizations 

that compose a random process through the set of their 
samples. This problem is called by the Sampling–
Reconstruction Procedure (SRP). The most known work 
regarding this problem was done by A. Balakrishnan in his 
theorem (BT) [1]. He stated that any realization of a stationary 
random process ( )tx  with a power spectrum ( )ωS  restricted 
by the boundary frequency bω  can be reconstructed by:  
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here, ( )jTx  is a sample in the time jT , T∆  is the sampling 

interval determined by bT ωπ=∆ , and 12 +N  is the number 
of samples taking into account in the reconstruction algorithm. 
In (1) it is possible to establish a base function ( )tjφ for any 

sample ( )jTx . This base function is equal to the csin  
function, and it has the form: 
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A. Balakrishnan [2] wrote that “regardless of statistics, 
whether Gaussian or not, the best mean-square estimate of 

( )tx  from ( )jTx  is linear” and it is determined by (1). This 
point of view is practically not refuted in the literature. 
Furthermore, the reconstruction error is equal to zero for all 
types of the processes with a restricted power spectrum. 

There may be observed some restrictions and disadvantages 
of Balakrishnan’s theorem [3]: 1) It does not take into 
consideration the most important characteristic of each random 
process, which is its probability density function (pdf); 2) Its 
conditions are not feasible because the sampled process is 
singular, and the number of samples is equal to infinity; 3) The 
sampled process must be stationary; 4) Among many statistical 
characteristics of a sampled process, it limits its focus on a 
single numerical value: the boundary frequency bω  of the 

power spectrum ( )ωS ; 5) Other important statistic 
characteristics, like pdf, the covariance function ( )21, ttK  or 
the type of the power spectrum ( )ωS  where ( )bωω < , do not 
influence the outcome, whether in the reconstruction function 
or in the reconstruction error function; 6) It proclaims that the 
realizations of all types of stationary random processes can be 
optimally reconstructed by the unique linear algorithm with the 
base function csin ; 7) Regardless which types of random 
process is considered, the reconstruction error function is 
equal to zero, and the reconstruction is based on the same 
function; 8) The formula (2) determines the impulse response 
of the linear non-realizable filter, and the summing procedure 
(1) demands infinite delay.  

Over recent years, in order to overcome these drawbacks, a 
particular methodology has been extensively studied. It is 
based on the conditional mean rule (CMR). The application of 
this method in the statistical SRP description of random 
process realizations, provides a possibility to establish certain 
significant conclusions: 1) Every random process must have its 
own reconstruction algorithm and its own reconstruction error 
function; 2) BT is valid for Gaussian processes only; 3) The 
linear reconstruction algorithm is valid for Gaussian processes 
only; 4) If the Gaussian process has a limited spectrum and the 
number of samples is finite, the csin  function is not the 
optimal base function; 5) Within SRP description of Gaussian 
realizations, the reconstruction error function does not depend 
on the values of samples, but it depends only in concerning the 
axis of time; 6) BT is a particular case of the CMR algorithm 
for Gaussian processes with a finite spectrum.  
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    Furthermore, an application of CMR provides the possibility 
of analyzing the SRP in the following cases: 1) The pdf of the 
sampled process is taken into account; 2) The number of 
samples can be arbitrary; 3) The sample location on the axis of 
time can be arbitrary; 4) The type of covariance function, or 
power spectrum can be arbitrary; 5) The sampled process can 
be non-stationary or stationary; 6) If the sampled process is 
continuous and non-Gaussian, its reconstruction function is a 
non-linear function regarding the set of samples, and its 
reconstruction error function depends on the values of the 
samples; 7) The sampled process can be an output process of 
any non-linear non-inertial converters; 8) The sampled process 
can be an output non-stationary process of some systems 
varying in time; 9) The sampled process can be a process with 
jumps; 10) The samples can be noised; 11) The samples can 
have some jitters; 12) The sampled Gaussian process can be 
multidimensional; 13) The algorithm can be applied in the 
SRP description of Gaussian fields and fields with jumps. 

All the advantages mentioned above provide the possibility 
to apply the CMR algorithm in several SRP of random 
processes and fields. (See for instance [3]-[13].)  The results 
from research are related with two main practical problems:  

1) for the given characteristics of the random process and 
for a given set of samples, it is necessary to obtain a 
reconstruction function and to evaluate the 
reconstruction error function; 

2) for the given characteristics of the random process and 
for the required reconstruction error function, it is 
necessary to obtain a reconstruction function and to 
find the sampling interval.  

    The conditional mean rule obtains its own optimal 
reconstruction algorithm and optimal reconstruction error 
algorithm for any random process [3]-[13].  

Besides the optimal algorithm, there is a great amount of 
non-optimal algorithms. For instance, algorithms with some 
arbitrary base functions ( )⋅φ  can be considered. There is 
another SRP non-optimal problem. This problem is related to 
choose a set of orthogonal functions which can be applied in 
the reconstruction algorithm of type (1).  

The Khurgin-Yakovlev’s theorem is an example of this [14]. 
The main idea of this methodology is related to the usage of a 
set of derivatives of a given function instead of the set of 
samples of the same function. Generally, one can use all 
derivatives of an arbitrary order P . The method is valid for 
functions with a restricted spectrum by the boundary frequency 

bω . The statistical expression of this theorem is:  
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where ( ) ( )k

ng P T∆  is the derivative of the order k  of the 
function ( )tg  with bω5.0≤∆ , and 
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It is quite possible to use this algorithm for the SRP of 

random processes as well. However, its effectiveness is not 
exceptional because it is necessary to send all derivative values 
in a separate channel. The method using a set of samples of a 
given function is more productive because the reconstruction 
error is smaller (see [3] and citations there).  

There are some generalizations of Sampling Theorem (1) on 
the basis of so called atomic functions [15]-[16], [18]-[20]. 
There are algorithms of Strang – Fix and Levitan. In the last 
variant one can introduce some trigonometric series in order to 
use it in the description of the SRP of various functions [13]. 
Below, the attention on the direct SRP algorithm based on 
atomic functions is focused. In the next paragraph, some initial 
information about such functions is given. 

II. ABOUT ATOMIC FUNCTIONS 
The theory of these functions was first described by V. L. 

Rvachyov [15]. The application of this theory in SRP 
problems was suggested for deterministic functions [16], [19]. 
However, it is possible to use it in problems considering 
random processes too.  

The atomic functions are characterized by one principal 
property: the analytical expression for the derivative of any 
order of a function has the form of the analytical expression of 
the original function. Although the amplitudes, durations, and 
signs of the produced functions by the derivatives could be 
different. The atomic functions ( ) ( )2>ββ xh  are the solutions 
of the differential equation [15]-[16], [18]-[20]: 
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The Fourier transformation for the function ( )xhβ  is: 
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This function tends to zero at points ( )0;2 ≠kkπ . In Fig. 1 

the functions ( )xhβ  are presented for different values of β . 
While Fig. 2 shows the normalized first order derivative for 
each type of function expressed in Fig. 1. Fig. 3 displays the 
non-normalized derivatives of the function ( )xh2  only. In 
these graphs, the curves’ forms of the different order 
derivatives are the same; however, the amplitudes, the 
durations and the signs vary. In [14], [15] more types of 
atomic functions are investigated in detail.   

Any random realization has many ways to be reconstructed. 
This means that an alternative methodology can be used for the 
optimal methodology, accordingly to the properties of each 
realization. This parallel technique can hold some other 
statistical parameters than the ones employed by the optimal 
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technique to make the reconstruction. Due to this, the 
reconstruction is not adequate, hence it is called non-optimal 
reconstruction algorithm. Balakrishnan’s theorem with the 
limited number of samples N , is an example of a non-optimal 

algorithm. Furthermore, the conditional mean rule algorithm 
can be considered as a non-optimal algorithm if it does not 
take into account the appropriate parameters. The main reason 
to apply such algorithms is to have a simpler methodology.  

 

 
Fig. 1 Function ( )xhβ  for: a) 2=β , b) 5.2=β , c) 3=β  and d) 5=β . 

 

 
Fig. 2 Normalized derivative of the function ( )xhβ  for: a) 2=β , b) 5.2=β , c) 3=β  and d) 5=β . 

 
This document is dedicated to the investigation of a new 

non-optimal algorithm based on atomic functions. Besides, it is 
necessary to make a comparison of the reconstruction quality 

of the three most interesting variants: the optimal algorithm 
based on the conditional mean rule, Balakrishnan’s non-
optimal algorithm, and the non-optimal algorithm based on 
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atomic functions. The number of samples is finite in all cases. 
The investigation is centered on the statistical SRP 

description of Gaussian random process realizations. 
 

 
Fig. 3 Non-normalized derivatives of the function ( )xh2 . 

III.   THE OPTIMAL RECONSTRUCTION ALGORITHM 
The optimal algorithm is based on the conditional mean 

rule. The reconstruction of all random process realizations can 
be obtained only by knowing their complete statistical 
description.  

The main idea of this methodology has been proposed in [4] 
(see also [3], [7], [12]). First, a random process ( )tx  
characterized by its multidimensional probability functions 

( ) ( ) ( )[ ]mm txtxtxw ,...,, 21  has to be considered. One realization 
of this process is sampled in time instants { }NTTTT ,...,, 21= . 
Therefore, there is a set of samples 

( ) ( ) ( )NTxTxTxTX ,...,,, 21= , in which the number of samples 
N , and their times of occurrence T  are arbitrary. It means 
that the probability density function, all initial and central 
moment functions are conditional forthwith. 

The conditional mean function ( ) ( ) TXtxtm ,~ =  is used as 
reconstruction function. The quality of the reconstruction is 
evaluated by the conditional variance function 

( ) ( ) ( )[ ] TXtmtxt ,~~ 22 −=σ  or reconstruction error function. 

Both characteristics ( )tm~  and ( )t2~σ  can be found on the basis 
of the conditional multidimensional pdf ( )( )TXtxwN ,1+  of the 
given process. It is clear that the sampled realization cannot be 
known exactly; nevertheless, but with this rule it is possible to 
reconstruct the realization. This rule also provides the 
minimum estimation reconstruction error for realizations with 
an arbitrary pdf.  

Considering that the realization sampled is Gaussian, their 
conditional characteristics are [17]: 
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where ( )tm  and ( )t2σ  are the mathematical expectation and 
the variance of the initial process ( )tx  respectively; ( )⋅K  is the 
covariance function, and ija  represents the elements of the 
inverse covariance function. If it is assumed that the process 

( )tx  is stationary with ( ) 0=tm , ( ) 12 =tσ , and ( )iTtK − , 
equations (8), and (9) would change to:  
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From (10) and (11) it can be seen that the reconstruction 

function is a linear function of the samples, and the 
reconstruction error function does not depend on the samples. 

IV. THE NON-OPTIMAL RECONSTRUCTION ALGORITHM 
Now the non-optimal algorithm based on atomic functions 

shall be discussed. To make the reconstruction of any 
realization of a given random process with its restricted power 
spectrum, it is possible to use the Fourier transformation (7) of 
the atomic functions [15]-[16], [18]-[20]. This is due to the 
zeros of (7) located periodically. In addition to this, the 
functions obtained by (7) tend to zero in the infinite faster than 
other functions [16]. Considering this methodology, the 
reconstruction function ( )tm̂  for any random processes with a 
limited power spectrum by a boundary frequency on the basis 
of the samples ( )kTx ∆  is: 
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where ( )ρβF  is given by (7), and [16]: 
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Then the equation (12) changes to: 
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Expression (14) can be interpreted as the disintegration of 

the function ( )tx  on the displacement - narrowing’s basis of 
the imaginary Fourier functions of the atomic function ( )⋅2h . 
The problem in the calculation of the last equation is the 
number of terms in the product. For its application, it can be 
restricted by a finite amount M  on the right side, being 
indicated as [16]: 
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when: 
 

( ) ( )
1

21;21
−

−+
=∆>−

−
−

β
ββ

ω
πββ

M

b

M T .       (16) 

 
The minimum values are determined by the solution of the 

equation ( ) 21 =+ −Mββ . When 1=M , the WKS series is 
obtained. If ∞=M , the series (15) is transformed into (14). 

To calculate the reconstruction error, let introduce the base 
function ( )tjϕ : 
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Then, assuming a finite number of samples N , the 

reconstruction error function is [5]: 
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In this algorithm, an equal situation equivalent to (10) and 

(11) occurs: the reconstruction function depends on the values 
of the samples, and the error reconstruction function does not 
relies on them.  

V. COMPARISON BETWEEN BOTH RECONSTRUCTION 
ALGORITHMS 

If a realization from a Gaussian Markovian process is 

chosen. It is formed on the output of an one-stage integrated 
RC circuit driven by Gaussian white noise ( )tn . The 
normalized covariance function ( )τR  and the power spectrum 
density ( )ωS  are: 
 

( ) ( )τατ −= expR ,                            (19) 
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As the covariance time cτ  is unitary, then 1=α . The 

Gaussian Markovian process is not differentiable because the 
variance of its derivative is equal to infinity. Restricting the 
spectrum (20) in the boundary frequency bω , the 
characteristics of the given process change radically. The 
resulting process is Gaussian non-Markovian and infinitely 
differentiable. So, the normalized covariance function now is 
expressed by:  
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The first term in (21) ensures the normalization for the 

power spectrum of the obtained realization with any value of 
the boundary frequency bω . Fig 4 shows the normalized 
covariance function ( )τR  for different values of bω . When 

bω  is equal to infinity, the curve is similar to the curve 
obtained with a one-stage RC filter. Also, if bω  has a smaller 
value the curve tends to zero slower. 
 

 
Fig. 4 Normalized covariance function of a Gaussian process with 

different values of bω . 

 
In order to have a complete comparison of the efficiency of 

the optimal algorithm and the non-optimal algorithm, another 
type of non-optimal algorithm has to be introduced. This 
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algorithm is based on Balakrishnan’s theorem [1] when the 
number of samples N  is finite. The reconstruction function is 
represented by (1). Balakrishnan’s theorem mentions that the 
reconstruction error is equal to zero if the number of samples 
is infinity. However, if the number of samples is finite the 
error exists and it is different to zero. In this way, the 
reconstruction error function has a similar formulation to the 
one used on (18). The difference is the base function that each 
one non-optimal algorithm uses. 

Although the main purpose is to know how good the quality 
of the reconstruction of the realization is, it is necessary to 
know the type of base functions for each mentioned algorithms 
first. They are: optimal algorithm (conditional mean rule), case 
A of the non-optimal algorithm (Balakrishnan’s theorem with a 
finite set of samples), and case B of the non-optimal algorithm 
(atomic functions). Fig. 5 shows all these base functions. All 
curves have a value of zero at the sampling points, except at 
the initial point because it corresponds to the multiplication of 
the sample with the base function. The curves’ forms are 
different. In the non-optimal algorithm, the curve of the case A 
tends to zero more slowly as consequence of its large peak 
values. The curve of the case B, which was calculated with 

1.2=β  because it is a near value to the limit value which is 
2=β , tends to zero fastest. It means that in this case, the 

influence between the samples is minimal. The base function 
for 4=β  is also given. When the value of β  increases, the 
amplitudes of the oscillations increase as well. However, all 
base functions of the case B of the non-optimal algorithm tend 
to zero faster than the optimal algorithm and the case A of the 
non-optimal algorithm. 
 

 
Fig. 5 Comparison of base functions. 

 
Fig. 6 illustrates the reconstruction error function for the 

case B of the non-optimal algorithm (atomic functions) for 
various values of N  and 1.2=β . As it can be seen in Fig. 6, 
the unit of measurement on the x-axis is the boundary 
frequency bω , not the time. Obviously, when the number of 
samples increases, the reconstruction error decreases. The 

maximum error is obtained at the half of the sampling intervals 
2Tt ∆= . It is worth mentioning that bT ωπ=∆ , in this way 

the reconstruction error also depends on the separation 
between the samples.  
 

 
Fig. 6 Reconstruction error functions using atomic 

functions with N  and 1.2=β . 
  

Now, the effectiveness of the non-optimal algorithm using 
atomic functions shall be compared with the reconstruction 
error of the optimal algorithm and the case A of the non-
optimal algorithm. In Fig. 7, the reconstruction error functions 
are presented for all methodologies mentioned above with 

2=N ; in Fig. 8 the curves are calculated with 4=N ; and in 
Fig. 9 the number used of samples is 8=N . 

In the case B of the non-optimal algorithm, when values of 
the boundary frequency are 2<bω , the magnitude of the error 
increases with respect to the error of the optimal algorithm if 
the number of samples N  grows. When the boundary 
frequency is 2>bω  the difference with the optimal error 
decreases gradually (aside from the situation when 2=N  and 

4=β ). The curves of the case A in the non-optimal algorithm 
take a similar behavior like the curves of the optimal algorithm 
while the number of samples grows.  

When 2=N  the error in case A is the biggest. When 
4=N  the error in case A is smaller than the error in case B 

with 1.2=β , but bigger than the error in case B with 4=β . 
When 8=N  the error in case A is the smallest in all non-
optimal cases. The physical interpretation of this effect is 
related to the special property of atomic functions. They tend 
to zero very quickly, thus, the influence between the 
neighboring samples for making the reconstruction operation 
is small. For that reason, with 2=N  the influence is minimal 
and the error grows considerably. Among more samples, the 
influence rises, and the error decreases.  

Clearly, the magnitude of the error in the optimal algorithm 
is smaller than the non-optimal algorithm. Notwithstanding, 
this is a natural effect due to the structure of its functions and 
the statistical properties that each one uses. 
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Fig. 7 Comparison of the reconstruction error function 

with 2=N . 
 

 
Fig. 8 Comparison of the reconstruction error function 

with 4=N . 
 

 
Fig. 9 Comparison of the reconstruction error function 

with 8=N . 

VI. CONCLUSION 
Three different reconstruction algorithms are analyzed to 

describe the Sampling - Reconstruction Procedure of 
realizations of a Gaussian process with a finite power 
spectrum. Both main principal (the reconstruction function and 
the reconstruction error function) are calculated. Overall, the 
smallest reconstruction error is obtained by the conditional 
mean rule, also called optimal algorithm. Then, it is followed 
by the non-optimal algorithm based on the Balakrishnan’s 
theorem. Finally, the biggest reconstruction error is obtained 
with the non-optimal algorithm based on atomic functions. The 
non-optimal functions do not depend on the covariance 
function for making the reconstruction operation. They rely on 
the boundary frequency only. The algorithm on the basis of the 
conditional mean rule takes into account the covariance 
function of the sampled process, and for this reason the 
optimal algorithm has the best characteristics of the 
reconstruction procedures.  
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