
 

 

  
Abstract—Controller design for a laboratory circuit heating plant 

with model feedback delays by means of a branched control system 
in a robust sense is the aim of this contribution. The reader is 
concisely acquainted with a mathematical model of then plant that 
includes all significant delays and latencies first; hence, the model is 
infinite-dimensional. Relevant algebraic tools, namely, a special ring 
quasipolynomial functions, Bézout identity and particular controller 
parameterizations for a feedback control system with additional inner 
loop follow. Although the controller structure is fixed, its parameters 
are eventually tuned by introduced robustness principles in order to 
meet robust stability and performance. For the practical 
implementation, rather complex controllers’ laws, which are of a 
delayed nature, are simplified by a rationalization and their discrete-
time formulation is suggested as well. The results are verified by 
simulations in MATLAB® and Simulink®. All the obtained results 
are promising for a future real-life implementation of the presented 
approach. 
 
Keywords—Algebraic control design, Discretization, Heat 

exchanger, MATLAB®, Rationalization, Robustness, Time-delay 
system.  

I. INTRODUCTION 
Y a simple anisochronic modelling principle [1]-[3] and 
also many others ([4], [5]) it has been proved that circuit 

heating and thermal plants and processes are typical 
representatives of nonlinear systems with feedback internal 
delays mainly due to transmission latencies in pipelines. A heat 
exchanger is a device that exchanges heat between two streams, 
heating one and cooling the other. A subset of recuperating 
(through-flow) heater exchangers consists in the hot and cold 
fluids that are separated by a wall and heat is transferred by 
conduction through the wall. An exchanger of this type was 
recently developed and assembled at the Faculty of Applied 
Informatics of Tomas Bata University and this appliance has 
become a rewarding object for many scientific experiments 
giving some interesting and promising results [3], [6]-[8] where, 
however, only input-output delays have been considered. 
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The family of delayed (or time-delay) systems is not trivial 
to be controlled by the use of many traditional or conventional 
control design approaches – or, these methods are even 
impossible to be utilized directly [9]-[12], for instance, 
without a rationalization. Some proposed ad-hoc approaches, 
e.g. Lyapunov-Krasovskii methods [13] or H∞ optimal 
controllers [14], [15], are too complex and troublesome to be 
practically implemented by engineers. However, algebraic 
control design means proved to be very effective and in many 
cases engineeringly acceptable as well [16]-[18]. For instance, 
the ring of proper and stable quasipolynomial meromorphic 
functions (RMS) [19], [20], as a point of authors’ interest, 
provides one with a simple model-based design yielding a 
delayed controller structure which, however, can be 
implemented e.g. via programmable logic controllers [21]. 
The RMS ring can also be used to design controllers meeting 
some robustness conditions in some sense [22], [23]. Note that 
robust stabilization, control, controller parameterization, delay 
values determination etc. has widely been studied in the 
literature, and many algorithms, approaches and results has 
been derived and published [10], [11], [15], [24]-[26]. 

As up to the amount of 95 percent of control loops in 
industry are equipped by proportional-integral-derivative 
(PID) controllers [27], the implementation of which is well 
solved and managed, it is desirable for the practice to 
approximate the final delayed (anisochronic) controller law by 
the PID one (or its linear generalization). Methods based on a 
rational approximation of exponential (delay) terms ([28], 
[29]) do not effectively enable to control the order of the 
obtained approximation model. Moreover, they are mostly 
used to plant model rationalization prior to controller design, 
rather than to controller simplification. A way how to cope 
with this problem is to find the closest finite-dimensional 
model with a prescribed fixed structure to the infinite-
dimensional original e.g. by the matching of spectral 
properties [30] or via some advanced 
interpolation/extrapolation methods [31], [32]. 

Another practically-oriented problem is connected to 
discrete-time control law implementation. Most of control 
design approaches utilize a controlled plant discretized model 
prior to a controller structure determination either in the input-
output [8], [33], [34] or state-space formulation [35]. There is, 
however, a lack of well-applicable digital implementation 
procedures for continuous-time controllers – so called delta 
models [36] represent a family of possible approaches solving 
this task. 
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This contribution provides a reader with a complex robust 
control design for the above introduced circuit laboratory heat 
exchanger evincing internal feedback delays. It follows up 
with and extends our previous works [22], [23], [37] – details 
appear in the state-of-the-art section – in the sense that the 
branched Two-Feedkack-Controllers (TFC) control structure 
is used and, in particular, the eventual controller 
rationalization and discretization are proposed. The obtained 
theoretical results are verified by means of MATLAB® / 
Simulink® environment tools. 

A novel combination of anisochronic modelling, algebraic 
control design for unconventional control system and 
controller parameterization in a robust sense for a complex 
family of delayed systems stand for the most contributive idea 
and result of this paper.  

The paper is organized as follows. Section 2 provides the 
reader with a concise state of the art on robust control of the 
considered circuit heat exchanger and our motivation.  The 
appearance of the appliance and its mathematical model is 
summarized in Section 3. In Section 4, principles of algebraic 
controller design in the RMS ring and basic results on robust 
stability and performance for the TFC control system are 
given. The complete controller structure design and 
parameterization in the robust sense for the particular model 
are derived in Section 5. Section 6, preceding the conclusions, 
brings about controller rationalization and discretization 
proposal that are proved by simulations. 

II. HEAT EXCHANGER ROBUST CONTROL – STATE OF THE ART 
As mentioned above, circuit heating plants and exchangers 

of the type considered in this paper, evincing internal 
feedback delays, were modeled and served for control design 
verification many times. Regarding frequency-domain-based 
(robust) control of our plant considering internal delays (not 
only input-output ones), works of Zítek and his colleagues 
have to be referenced [2], [19], [21], [38], [39] first, where so-
called anisochronic (i.e. delayed) controllers were tuned 
mostly by direct pole placement methodology. Model 
predictive control (MPC) and discrete-time approaches, in 
which a kind of robustness is also included, were referred 
above; see e.g. [7], [8], [40], [41]. 

The work presented herein the paper, in fact, follows up 
with and extends our some previous works. Namely, the One-
Degree-of-Freedom (1DoF) control system and robust control 
design were implemented to the heating exchanger in [22], 
[37] by simulations as well as real laboratory measurements. 
The latter paper, moreover, suggests a way how to rationalize 
and discretize the final infinite-dimensional controller. A more 
advanced branched TFC structure [42], see Fig. 1, with a 
delayed controller satisfying robust stability and performance 
is designed in [23]. In this paper, the whole procedure is 
summarized and, moreover, a rationalization of the controller 
together with its sampled-data algorithm is suggested. 

III. HEAT EXCHANGER APPEARANCE AND MODEL 

A. Laboratory Model Appearance 
A rough scheme of the laboratory heat exchanger to be 

controlled is provided to the reader in Fig. 2 [3]. The model 
works as follows: Distilled water inside the piping is driven by 
a pump {6} - continuously controllable via the voltage ( )tuP  - 
through a flow heater {1} with maximum power ( )tPH  of 750 
W. The heater output temperature, ( )tHOϑ , is measured by a 
platinum thermometer. Warmed liquid then goes through a 15 
meters long insulated coiled pipeline {2} which causes the 
significant delay in the system. A heat-consuming appliance is 
represented by the air-water heat exchanger (cooler) {3} 
equipped with a continuously adjustable (by means of the 
voltage ( )tuC ) and an on/off cooling fans {4, 5}. Input and 
output temperatures of the cooler, ( )tCIϑ  and ( )tCOϑ , 
respectively, are measured by platinum thermometers as well. 
The expansion tank {7} compensates for the expansion effect 
of the heat fluid. Let the ambient temperature be ( )tAϑ . 

 
Fig. 2 Circuit heating exchanger 

 
The laboratory appliance can be considered as a small-

scaled model of a real-word system, e.g. as the cooling system 
in cars or a house central heating system. 

B. Mathematical Model 
The anisochronic modeling approach utilized here, [1], [2], 

is based on the comprehension of all significant delays and 
latencies in the model. Two step are performed when 
modeling. Models of separate functional parts of the plant are 
found first and, as second, the obtained sub-models are 
combined by means of their common physical quantities 
taking delays between them into consideration. 

 
Fig. 1 TFC control system 
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The sub-models based on heat balance equations are the 
following: 

The heater 
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The long pipeline 
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The cooler (water-air exchanger) 
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where 

 
c [J·kg-1·K-1] is the specific water heat capacity,  

( )tm&  [kg·s-1] is the water mass flow rate, 
MH [kg] is the overall water mass in the heater, 
MC [kg] is the overall water mass in the cooler, 
MP [kg] is the overall water mass in the pipeline, 

( )tHIϑ  [°C] means heater input temperature, 

Aϑ  [°C] stands for ambient temperature, 

Hτ  [s] expresses the delay of a water flow through the heater, 

HCτ  [s] is the delay of a water flow between the heater and 
the cooler, 

Cτ  [s] means the delay of a water flow through the cooler, 
[s] is the delay between a control signal to the cooling fan and 
the output temperature of the cooler, 

KCτ  [s] stands for the delay of a water flow between the 
cooler and the heater, 

( )tuP  [V] is pump input voltage  
( )tuC  [V] is cooling fan input voltage 
( )tK H  [W·K-1] expresses the overall heater wastage energy 

heat transmission coefficient 
( )tKC  [W·K-1] is the overall cooler heat transmission 

coefficient, and 
PK  [W·K-1] is the overall long pipeline heat transmission 

coefficient. 
   
 
 

The complete linearized model describing the dependence 
of three measured outputs, ( )tHOϑ , ( )tCIϑ , ( )tCOϑ , (or, their 
deviations from an operating point, more precisely) on three 
manipulated inputs, ( )tPH , ( )tuP , ( )tuC  can be obtained by 
introducing additional static relations and linearization [3]. 
For the sake of this paper it is, however, sufficient to consider 
the relationship between ( )tuPΔ  and ( )tCOϑΔ  governed by 
the transfer function  
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where the prefix Δ  means the difference from an operating 
point, the particular setting of which is given by 
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Then, eventual model parameters values read 
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IV. ALGEBRAIC CONTROL DESIGN AND ROBUSTNESS ISSUES 

A. RMS Ring and Control Design for TFC 
In this subsection, basic algebraic notions and conditions 

for controller structure derivation by means of the TFC system 
are summarized. For further details, the reader is kindly 
referred to [23]. 

1) RMS ring 
 The design starts with the formulation of the plant model 

and all external signals in the Laplace transform (the reference 
- ( )sW , load disturbance - ( )sD , control error - ( )sE , 
controller output - ( )sU 0 , manipulated input affected by ( )sD  
- ( )sU , and output - ( )sY , see Fig. 1) in RMS. This ring was 
defined in [20] as follows: ( ) ( ) ( ) MSRsdsnsT ∈= /  if ( )sn , 

( )sd  are quasipolynomials with ( ) ( ) ( )ssnsn τ−= exp~ , 0≥τ , 
( ) ∞∈ HsT (+), and the term is formally stable and proper, i.e. 
 

( ) ∞<>∃
≥>

sTR
Rss ,0Re

sup:0  

 
2) Feedback system stability 

Prior to the introduction of the stability condition 
formulation, dynamics’ relations of the TFC system in terms 
of transfer functions ought to be given to the reader. Transfer 
functions that can be derived from the TFC structure are given 
in (4) where the corresponding characteristic meromorphic 
function is provided to the reader in (5). 
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( ) ( ))()()()()( sRsQsBsPsAsM ++=  (5) 

 
From (4), (5), the following theorem can be proofed [16], 

[17], [23]: Given a Bézout coprime pair ( ) ( )sBsA , ∈RMS the 
closed-loop TFC system is stable (in RMS sense) if and only if 
there exist coprime pairs ( ) ( )∈sQsP , RMS and ( ) ( )∈sRsP , RMS 
satisfying the Bézout identity (5). 

Moreover, if we set )()(:)( sRsQsO += , all stabilizing 
solutions of (5) can be parameterized as 
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for an arbitrary ( )∈sZ RMS where the subscript 0⋅  means a 
particular solution. 

3) Load disturbance rejection 
The load disturbance ( ) ( ){ }sDLtd 1−=  (where 1−L  means 

the inverse Laplace transform) is asymptotically rejected if it 
holds that ( ) ( ) ( ) 0limlim 0 == →∞→ sDssGty DYsDt . This can be 
algebraically fulfilled if and only if ( )sFD  divides ( ) ( )sPsB , 
where ( ) ( )sFsD D/⋅= , i.e. 

 
( ) ( ) ( )∈sFsPsB D/ RMS (7) 
 

in RMS, which can be deduced from (4). Condition (7) can be 
satisfied by a suitable choice of ( )sZ  in (6). 

4) Reference tracking 
The reference signal ( ) ( ){ }sWLtw 1−=  is tracked if 

( ) ( ) ( ) 0limlim 0 == →∞→ sWssGte WEsWt . It holds in RMS if and 
only if 

 
( ) ( ) ( ) ( )( ) ( )∈+ sFsQsBsPsA W/ RMS (8) 
 

where ( ) ( ) ( )sFsHsW WW /= , i.e. ( )sFW  divides the product 
( ) ( )sPsA  in RMS and, simultaneously, ( )sFW  divides ( ) ( )sQsB . 

The natural question is how to meet both the conditions, (7) and 
(8). This task can be solved by so called decomposition of ( )sO  
that is described in the following subsection. 

5) Decomposition of ( )sO  
Let 
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If the number On  of free parameters is not enough to solve 

(8), ( )sO  has to be expanded as 
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where 1...0, −= ββ nii  stand for additional selectable 
parameters. 

B. Robust Stability and Performance 
A triple motivation for robust analysis of the heat 

exchanger can be found. First, some physical quantities of the 
laboratory model and the room environment can vary in time. 
Second, measurement and identification uncertainties can 
naturally appear when modeling and measurements. Third, we 
intend to determine a possible range for the free controller 
parameters such that the control system is robust against these 
perturbations.  

It is well known that robust stability and performance 
analysis is based on the Nyquist criterion [43]; hence, the first 
step is devoted to its validity for time-delay systems and the 
selected TFC control system. Then, the main results on robust 
stability and performance published by the authors earlier are 
reviewed. 

1) Nyquist criterion for TFC with delayed plant 
Let ( )sG0  express the nominal plant transfer function and 
( ) ( ) ( )( ) ( )sGsWssG M 01 Δ+=  be a family of perturbed transfer 

functions where ( )sWM  is a fixed stable weight function 
expressing the uncertainty frequency distribution and for a 
perturbation stable transfer function holds ( ) 1≤Δ

∞
s . 

Moreover, ( )sG  and ( )sG0  have the same number of unstable 
poles. Hence, it holds that 
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Function ( )sWM  ought to be selected so that it covers all 
systems from the family over some suitable frequency range. 

Regarding the TFC control structure, there are more 
possibilities how to define the criterion since it depends on 
how the feedback transfer function is constructed. Let, for 
instance, the function be of the form 
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If retarded delayed systems are considered [9] (since system 

(1) is of this type), the following theorem can be proved [23], 
[44]: 

Theorem 1 (Nyquist criterion for retarded time-delay 
systems with TFC). Let the plant and the controller in the TFC 
structure have transfer functions with distributed or lumped  
delays  and ( ) ( ) ( ) ( )spsosGsG QR /=+ , ( ) ( ) ( )sasbsG /= ,  

where ( )sa , ( )sb , ( )so , ( )sp  are retarded quasipolynomials, 
( )sG  is strictly proper and ( ) ( )sGsG QR +  is proper. 

Moreover, let ( )sa  and ( )sp  have no root on the imaginary 
axis, i.e. ( ) ( ) 0,0 ≠≠ spsa  for any ωj=s , ∈ω +, and define 

( )smap  as the denominator of ( )sL0 . 
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asymptotically stable if  
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where n is the highest s-power in ( )smap , uN  means the 
number of common zeros of the numerator and denominator 
of ( )sL0  in  + and apuN ,  stands for the number of unstable 

zeros of ( )smap  which are not included in the ( )sL0  
numerator.                    ■ 

2) Robust stability 
Due to Theorem 1, another theorem for the whole family of 

perturbed plants can be derived [23]: 
Theorem 2 (Robust stability of time-delay systems with 

TFC). If ( )sL0  is stable, the TFC control system is robustly 
stable (i.e. remains stable for all perturbed plants) if and only if 
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where ( ) ( )sGsT WY 0,0 =  is the so called nominal 
complementary sensitivity function.          ■ 

3) Robust performance 
Prior to the presentation of robust performance condition, 

the notion of nominal performance must be introduced [43]. 
The feedback system meets nominal performance if 
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where ( )ωjPW  stands for the sensitivity weighting function 

and ( ) ( ) ( )sGsTsS WE 0,00 1 =−=  means the sensitivity function 
for the nominal plant. Then we can state [23]: 

Theorem 3 (Robust performance of time-delay systems 
with TFC). If ( )sL0  is stable, the TFC control system satisfies 
robust performance (i.e. it is robustly stable according to 
Theorem 2 and meets performance (13) for the whole family 
of perturbed plants) if and only if 
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V. CONTROLLERS STRUCTURES DESIGN AND ROBUST 
PARAMETERIZATION FOR THE HEATING EXCHANGER 

Let us recall basic results already introduced in [23]. 
Considering a linearwise reference function and a stepwise 
disturbance one, the eventual controllers via the procedure 
(5)-(9) can be derived 
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where 
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Real valued parameters 0, 10 >mm  and 10 ≤≤ γ  (defined 

in (9)) are selectable controller parameters. 
By taking year-long variations in ( ) [ ]30,16∈tAϑ  inside the 

laboratory room and identification uncertainties of transmission 
coefficients of the heater (boiler), [ ]5.0,1.0∈PK , and heating 
exchanger (cooler), [ ]22,15∈CK , into consideration, the 
following estimation of ( )sWM  can be written as 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 349



 

 

( ) ( )( )
( )( )

13555100
36.06.75720

1151340
110120036.0

2

2

++
++=

++
++=

ss
ss

ss
sssWM

 (16) 

 
see Fig. 3 – there is still a gap in finding a suitable, not so 
conservative, envelop curve. Note that parameters of (16) 
have been obtained by the application of the standard 
knowledge of frequency (filtering) properties of particular 
factors in ( )sWM , see e.g. [45]. 
 

 
Fig. 3 ( )ωjMW  estimation 

 

 
Fig. 4 Robust stability test 

 
Whereas, surprisingly, neither 1m  nor γ  affects (12), let us 

select { }1.0,05.0,01.00 =m  from a sufficient range test the 
robust stability condition. Results are presented in Fig. 4. 
Thus, as a robustly stable range, we can asses [ ]09.0,00 ∈m . 

The weighting function ( )sWP  is selected in order to keep 
the condition (13) for all selected combinations of controller 
parameters values, namely, { },7.0,5.0,3.0=γ  

{ }1.0,05.0,01.01 =m , { }05.0,01.00 =m , see Fig. 5. 

 
Fig. 5 ( )ωjPW  determination 

Its possible eventual Laplace form might be  
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110901008.9108
5.1109

11018011000
15.1109/1

2435

23
5

2
5

++⋅+⋅
+⋅=

+++
+⋅=

sss
ss

sss
sssWP

 (17) 

 
where the level of conservativeness is a rather low on low 
frequencies. Once functions ( )sWM  and ( )sWP  are fixed, 
possible values of the free controller parameter can be 
benchmarked by simulations of robust performance condition 
(14), see a bunch of Bode plots in Fig. 6. The result of the test 
can be summarized as follows: Possible ranges of controller 
parameter values can be: 

 
• 01.00 =m , [ ]01.0,001.01 ∈m , [ ]8.0,5.0=γ , or 
• 05.00 =m , [ ]005.0,001.01 ∈m , [ ]5.0,3.0=γ , or 
• 05.00 =m , 01.01 =m , 3.0=γ  

 
It can be shown that the endeavor to reduce the maximum 

overshoot yields the maximization of 0m  and the 
minimization of γ  [23]. Thus, the triplet 

4.0,005.0,02.0 10 === γmm  was chosen as eventual 
controller parameters.  

VI. CONTROLLERS STRUCTURES RATIONALIZATION AND 
DISCRETIZATION 

Linear delayed controllers (15) are characterized by an 
infinite spectrum, which is not suitable for practical reasons 
since the most of industrial feedback loops are equipped with 
conventional PID controllers. Hence, it is highly desirable to 
approximate them by a finite-dimensional linear control law. 
Moreover, the control law to be implemented via a machine 
working with digital signals and values should be formulated 
also in a discrete-time form. Therefore, propositions of 
controllers’ rationalization and discretization follow. 
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A. Controller Rationalization 
The Padé approximation, which is usually performed in 

such a way that the approximation is applied to separate 
exponential terms [28], has been eventually used to the finite-
dimensional approximation of controllers (15). We, in the 
contrary, decided to apply it to the whole transfer function. 

 

 

 
 

Fig. 6 Robust performance tests 
 

The well known Maclaurin series expansion, ( )sMc  (if it 
converges), of function ( )sf  is equivalent to the rule 
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We intend to approximate controllers (15) by proportional (P) 
and proportional-derivative (PI) laws, respectively, as  
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2
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s
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which respects the asymptotic behaviour of (15) because 

( )sGR  has a double integral action, while ( )sGQ  does not 

exhibit any. Since ( ) ∞→0RG , the inversion of  ( )sGR  is 

used in (18); moreover, ( )[ ] ( )[ ] 0
0

1
0

1 ==
=

−
=

−
s

sGsG RsR , hence the 

zero derivative can be omitted. To sum up, the final particular 
matching rules read 
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which yields 
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The simulation comparison of original control responses 

(where the step load disturbance ( ) 50−=td W enters at 
6000=t  s) by means of controllers (15) with those using 

simplified rational P and PI controllers (21) are displayed in 
Figs. 7 and 8. 

 

 
Fig. 7 Simulated control responses of ( )tu0  for the TFC system with 

controllers (15) vs. (21) 
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Fig. 8 Simulated control responses of ( )ty  for the TFC system with 

controllers (15) vs. (21) 
 

These results prove a very good agreement of the original 
and approximating responses except for the reaction on the 
step-down change in ( )tw . Note that it is possible to calculate 
identities (20) at a different point from 0=s , e.g. in the 
neighborhood of the leading (most dominant) pole. 

 

B. Controller Discretization 
In this subsection, the reader is briefly provided with the 

idea of possible delayed controllers (15) discrete-time 
formulations based on the transfer function (i.e. input-output) 
description – unlike some advanced but computationally 
heavy state-space algorithms [35], for instance. In particular, 
delta models [36] and linear delay interpolation [46] are 
implemented herein. 

Delay exponential terms are subjected to the transformation 
( ) ( ) ( )ηη −→− txsXsexp  and interpolated as ( ) ≈− itx η  

( ) ( )idi tx ,1 τα −−≈ ( )idi tx ,1+−+ τα  where ⎣ ⎦sii Td /η= , 

idiid ,1, +≤≤ τητ , siid Td=,τ , ( ) siid Td 1,1 +=+τ , 

( ) sidii T/,τηα −=  and sT  means the sampling period. The 

goal is that ⋅,dτ  are commensurate delays as integer multiplies 

of the sampling period. Then ( ) ( )zXzTdtx id
si

−→−  where z  
is the z-transform variable associated with the shifting 
operator q.  

The approximation of derivatives resides in the introduction 
of variable γ  associated with the delta operator δ  defined as 
 

( ) ss TzT
z

ββ
γ

−+
−=
1

1  (22) 

 
where [ ]1,0∈β  represents a weighting parameter. In this 
paper, the Tustin (trapezoidal) approximation governed by the 
setting 5.0=β  is used. 

The eventual particular discrete-time control laws with 
1=sT s are omitted since the complete ones are too long yet 

sufficiently simple to be implemented by a computer. The PC 
connected to the heat exchanger is equipped with the data 
acquisition card AD622 and Real-Time Toolbox for 
MATLAB®, which enables to use quasi-continuous 
algorithms with sTs 01.0≈  or a higher. Note that orders of 
corresponding linear difference equations equal 146 and 149, 
respectively. 

Similarly, a graphical comparison of continuous-time and 
discrete-time simulation control responses is useless since 
both the courses are almost identical and indistinguishable by 
a human sight. 

VII. CONCLUSION 
In this contribution, we have presented a complex control 

design for a laboratory circuit heating plant (exchanger) in a 
robust sense with a branched Two-Feedback-Controllers 
control system. The plant mathematical model evinces internal 
delays and thus the process ought to be considered as an 
infinite-dimensional one. The introduced utilization of the ring 
of stable and proper meromorphic functions has resulted in 
delayed (anisochronic) controllers with unknown, tunable, 
parameters which have been determined by using robust 
control tools and simulation experiments. Namely, robust 
stability and robust performance conditions have been met. 
For practitioners, a rationalization procedure and a possible 
digital implementation of the control law have been suggested, 
yielding conventional linear finite-dimensional continuous-
time and discrete-time control laws, respectively. Both the 
results have given a very good agreement with the original 
control responses. 

For the future research, practical real-life verification of all 
these promising results should be performed. A multi-input, 
multi-output control design might be a suitable task for the 
future research on the exchanger as well. 

Obtained results are beneficial for both scientists and 
engineers providing a possible procedure to design an 
advanced control law for an arduosly controllable family of 
delayed systems. 
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