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Abstract—The renewal theory has been applied in various areas 

describing stochastic processes such as queueing systems and 

probabilistic inventory models. Numerous research studies 

incorporating quality into classical inventory models have made use 

of the renewal reward theorem to approximate the optimal solution. 

Application of the renewal reward theorem to an economic order 

quantity (EOQ) model with quality is examined by developing and 

comparing the exact and an approximate optimal solution. The EOQ 

model considered in this paper examines an inventory situation where 

items received are of two types of quality, perfect and imperfect. 

Moreover, the case when the supplier of these items offers a delay in 

payment is presented. The percentage of perfect quality items is 

assumed to be a random variable having a known probability 

distribution. Both types of items have continuous demand, and items 

of imperfect quality are sold at a discounted price. A mathematical 

model is developed and closed form formulas for the exact and the 

approximate optimal order quantity based on the renewal reward 

theorem are obtained. A numerical example is provided to illustrate 

the model and to compare the exact and approximate optimal 

solutions. 

 

Keywords—Probabilistic process, renewal reward theorem, 

economic order quantity, imperfect quality items. 

I. INTRODUCTION 

 renewal process describes a stochastic model in which 

random events occur successively over time intervals. 

The times between arrivals are assumed to be independent and 

have identical probability distributions. The mathematical 

structure for a renewal process can be used to describe many 

realistic models.   

The renewal theory has been applied in various areas 

describing stochastic processes such as queueing systems and 

probabilistic inventory models. Recently, numerous research 

studies incorporating quality into classical inventory models 

have made use of the renewal reward theorem to approximate 

the optimal solution, see for instance [1]-[3]. Applying the 

renewal reward theorem provides a simplified manner to 

calculate the expected value of the total cost (total profit) per 

unit time function. The purpose of this paper is to assess the 

approximation of the optimal solution for an economic order 

 
 

quantity model with quality by developing a mathematical 

model and comparing the approximate and exact solution.  

The remainder of this paper is organized as follows. In 

section two, a review of the related literature is provided. The 

mathematical model is developed in section three. The 

approximate solution is obtained in section four by applying 

the renewal reward theorem and a numerical example is 

presented in section five. The exact solution is developed in 

section six. Numerical examples comparing the exact and 

approximate solutions are found in section seven. The paper is 

concluded in section eight whereby a discussion of the results 

obtained along with suggestions for future research are 

presented.         

II. LITERATURE REVIEW 

The classical economic order quantity (EOQ) model 

describes an inventory situation where the demand rate for a 

certain item is D. At the beginning of each inventory cycle, an 

order of size Q is received from a supplier at a unit cost C to 

meet the demand and an ordering cost of K. Let h be the 

holding cost per unit per unit time. Then the total inventory 

cost per unit time function is given by  

 

,2//)( hQCDQKDQTCU    

 

and the optimal order quantity or the economic order quantity 

is  
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This model is established based on several basic 

assumptions that are seldom encountered in practice. Ever 

since the EOQ model and the closely related economic 

production quantity (EPQ) model were introduced in the early 

20th century, researchers have been studying these models 

extensively under real-life situations [4].  

A vast literature on inventory and production models 

extended the EOQ/EPQ models in numerous directions by 

modifying or relaxing the underlying assumptions of the 

models. One of the assumptions of the classical EOQ model is 

that all items received from a supplier are of the perfect quality 
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type. Due to deterioration, shifting production process, or 

other factors, some items may be of imperfect quality. Good 

examples of such situations are found in the electronics 

industry. Another basic assumption is that payment for the 

items is made at the beginning of the inventory cycle when the 

order is received. A survey of papers from literature tackling 

inventory models in which the above mentioned assumptions 

are considered is presented below.  

In [5], an EPQ model with imperfect production process and 

demand dependent unit production cost is presented. The 

effects of defective items on the basic EOQ model is 

investigated [6]. An EOQ model with fixed and variable costs 

for screening and removing defective items is proposed [7]. In 

[8], an EPQ model in which defective items can be reworked 

instantaneously at a cost was presented. It was concluded that 

the presence of defective products motivates smaller lot sizes.  

In [1], a new line of research in the field of inventory 

management that ensures quality was initiated. An EOQ model 

was proposed where items received from the supplier contain 

imperfect items that are not necessarily defective and can be 

salvaged at a discounted price. The production lot sizing with 

the reworking of imperfect quality items was studied in [9]. 

The optimal lot size for an EPQ model with random defective 

rate, rework, and backlogging was determined in [10]. In [11], 

an EPQ model in which defective items are reworked or 

scraped is developed and a numerical method for determining 

the optimal lot size is presented. An EPQ model with different 

qualities items having continuous demands is developed in 

[12]. An extensive survey of such articles is given in [3]. 

In a different direction, numerous papers incorporating 

financial factors, such as time value of money, inflation, and 

credit facilities, into the classical inventory models can be 

found in the literature. Salameh and El-Kassar [13] 

investigated the effects of time value of money and credit 

facility on the optimality of the single period inventory model. 

Salameh et al. [14] presented a continuous review inventory 

model with delay in payments. The effects of time discounting 

on the EOQ and EPQ models were examined in [15] and [16]. 

In [17], a uniform replenishment inventory model with 

payment credit facilities is developed.  

El-Kassar and Salameh [18] introduced an EPQ model that 

accounts for the cost of raw material. El-Kassar and Dah [19] 

extended that model to include time value of money. El-Kassar 

et al. [20] generalized the model to a multi-stage production 

process. Time discounting was incorporated into the multi-

stage model [21]. El-Kassar et al. [22] investigated the effects 

of imperfect quality items of raw material on the EPQ model. 

El-Kassar et al. [23] extended the model to account for time 

value of money. In [24], the effects of having a probabilistic 

percentage of imperfect quality items of raw material on the 

optimal production lot size is studied. In [25] the joint 

probability distribution and the minimum of a set of 

normalized random variables is examined. In [26], the results 

are generalized and applied to investigate an EPQ model that 

accounts for the quality of various types of raw 

materials/components used in the production process.  

This paper considers an inventory situation where items 

received from a supplier are of two types of quality, perfect 

and imperfect. The percentage of perfect quality items is a 

random variable having a known probability distribution. It is 

assumed that demands of both types of items occur 

continuously. A screening process conducted at the beginning 

of the inventory cycle is used to detect the imperfect quality 

items. Items of perfect quality are sold at a regular price while 

the imperfect ones are sold at a discount. Also, this paper 

considers the supplier is offering a delay of payment for the 

items received at the beginning of the cycle. In each case, an 

approximate solution using the renewal reward theorem is 

obtained along with the exact solution. The solution solutions 

are compared using numerical examples. 

III. THE MATHEMATICAL MODEL 

To develop the proposed model, the following notation will 

be used throughout this paper: 

Q Quantity ordered  

Dp Demand rate of items that are of perfect quality  

Di Demand rate of items that are of imperfect quality 

D Demand rate of both perfect and imperfect quality items, 

D = Dp + Di   

q    Percentage of perfect quality items received  

f(q)  Probability density function for q 

µ  Expected percentage of perfect quality items received 

  Standard deviation of the percentage of perfect quality 

items received  

K  Ordering cost per inventory cycle  

h   Holding cost per unit per unit time 

C   Unit purchasing cost  

Cs  Unit screening cost 

Sp  Regular selling price of one perfect quality item  

Si  Discounted selling price of one imperfect quality item 

T  Total inventory cycle length  

Tp  Perfect quality items inventory cycle length 

Ti  Imperfect quality items inventory cycle length 

i    Interest rate  

M  Delay in payment period offered by the supplier 

E[.] Expected value of an expression 

 

Consider the inventory situation where an order of size Q is 

received from a supplier at a unit purchasing price C and an 

ordering cost K. It is assumed that each order received, at the 

beginning of the inventory cycle, contains both perfect and 

imperfect quality items. The percentage of perfect quality 

items is a random variable q having a known probability 

density function f(q). Items of imperfect quality are detected 

through a screening process conducted at the beginning of the 

inventory cycle. The perfect quality items are sold at the 

regular unit price Sp and the imperfect quality items at a 

discounted unit price of Si, where Si < Sp. Most EOQ models 

with quality assume that the imperfect quality items are sold as 

a single batch at the end of the screening period. As in [27], 

we assume that both perfect and imperfect items have 

continuous demand, of rates Dp and Di, respectively. In order 

to meet the demands of both types of items, we assume that the 

screening rate is greater than both Dp and Di. Fig. 1 illustrates 

the behavior of the inventory level.  
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The order of size Q received from the supplier contains qQ 

perfect quality items and (1q)Q imperfect quality items, we 

have that the cycle lengths for the two types of items are given 

by 

pp DqQT / ,                       (2) 

 

and  

 

ii DQqT /)1(  .                    (3)  

 

The combined inventory cycle length for the is T = max{Tp, 

Ti}. During the time period from t = 0 until Tm = min{Tp, Ti}, 

the combined inventory level decreases at a combined demand 

rate of D = Dp + Di until either type of items is sold out. After 

that period, the inventory level decreases at a rate of Dp or Di. 

In order to avoid shortages of perfect quality items, we assume 

that Tp  Ti so that qQ/Dp  (1q)Q/Di. This is equivalent to 

qD  Dp. In this case,  

 

  pip TTTT  },max{ ,                   (4)  

 

and the imperfect quality items will be sold out at time Tm = 

min{Tp, Ti} = Ti when the combined inventory is at a level of    

 

ippipi DQDqDDTTDTQ /)()(  ,               (5)  

 

 
 

Fig. 1 combined inventory level of perfect and imperfect quality 

items 

 

To find the optimal order quantity, the total profit per unit 

time function TPU(Q) is maximized. This function is 

determined by accounting for the cost and revenue components 

incurred or received during the inventory cycle. During the 

inventory cycle, the revenue components received are:  

 

Perfect quality items sold at regular price    = SpqQ  

Imperfect quality items sold at discounted price = Si(1 q)Q 

Interest earned on sales during credit facility period  

 

=   
M

iip dtDSSpDtMi
0
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Hence, he total revenue function per inventory cycle is given 

by 

 

2/)()1()( 2iMDSDSQqSqQSQTR iippip  .    (6) 

 

The total cost function per inventory cycle, TC(Q), consists 

of four the following components:  

 

Purchasing cost = CQ 

Screening cost = CsQ 

Setup cost = K 

Holding cost = h(Area under the curve in Fig. 1)  

 

From (2)-(5), the area under the curve in Fig. 1 is  
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Hence, the total cost function per inventory cycle is given by  
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From (6) and (8), we have that the total profit function per 

inventory cycle is  
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  (9) 

IV. APPROXIMATE SOLUTION 

The total profit per unit time function is obtained by 

dividing the total profit function per inventory cycle by the 

cycle length; i.e., TPU(Q) = TP(Q)/T . By the renewal reward 

theorem, the expected profit per unit time is approximated by  

 

][/)]([)]([ TEQTPEQTPUE  .           (10) 

 

To evaluate E[TP(Q)], we need the following: 

 

E[q] = 

 dqqqf )( = µ,              (11) 

 

E[q2] = 

 dqqfq )(2    

     =  
 dqqfqqq )()22( 222

 

=    



 dqqfqdqqfq )()2()()( 22  

= 222 2  = 2 + µ2,          (12) 

 

and  

 

E[(1q)2] =  
 dqqfq )()1( 2  
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=  12µ+2 + µ2=  (1 µ)2+2         (13) 

 

From (2), (4) and (11), we have  

 

pppp  = µQ/DQ/Dq = EqQ/D = ET = ETE ][][][][ ,  (14) 

 

and from (9), (11) and (12), we get       
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The expected profit per unit time is obtained from (14) and 

(15) as 
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Differentiating the expression in (16), we have  
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The economic order quantity is obtained by setting the 

derivative in (17) equal to zero and solving for Q. The 

economic order quantity is 
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Note that the condition 2K(SpDp+ SiDi)iM2 > 0 is needed 

to calculate Q*. Also note that the second derivative of the 

E[TPU(Q)] function ((SpDp+SiDi)iM22K)Dp/(qQ3) is negative  

so that E[TPU(Q)] is a convex function and Q* is unique. In 

the case when the supplier does not offer a delay in payment, 

i.e., M = 0, (16) and (18) reduce to    
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and 
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Similar analysis can be conducted for the case when Ti > Tp. 

This case will not be considered since it implies that perfect 

quality items would be out of stock over a period of length Ti  

Tp. During this period only imperfect quality items are sold at a 

discounted price. This may result in considerably less profit. In 

such a case, the model can be modified to allow backorder or 

to consider selling the remaining quantity of imperfect quality 

items at even a lower price than the already discounted unit 

selling price Si. 

V. NUMERICAL EXAMPLE 

Consider the problem with parameters: Dp = 40 units/day, Di 

= 20 units/day, C = $250, Cs = $5, K = $1825, h = 

$0.2/unit/day, Sp = $350, Si = $300. Since the combined daily 

demand rate is D = 400 + 200 = 600 units, the ratio Dp/D = 2/3 

< q. This guaranties that Tp  Ti. For a uniformly distributed 

random variable q over the interval [a, b], the expected value 

is E[q] = µ = (a+b)/2 and the variance is 2 = (ba)2/12. Thus 

for a percentage of perfect quality items uniformly distributed 

over [70%, 90%], we have that µ = 80%, 2 = (0.90.7)2/12 

= 0.00333 and  = 0.057735. Using the equations (17) and 

(18), the optimal order quantity and the corresponding 

maximum daily profit were found to be Q* = 1000 units and 

E[TPU(Q*)] = $4067.5. Fig. 2 illustrates the behavior of the 

expected daily profit function E[TPU(Q)]. 

Analyzing the optimal solution, for an order size of Q* = 

1000 units, one expects µQ* = 800 units of perfect quality and 

(1 µ)Q* = 200 units of imperfect quality. The expected length 

of the perfect quality items inventory cycle is µQ*/Dp = 20 

days, and that of the imperfect quality items is (1 µ)Q*/Di = 

10 days. After 10 days, all imperfect quality items will be sold 

out and 400 units of perfect quality items will remain in stock 

to be sold over the rest of the inventory cycle.  

The expected revenues from selling perfect quality items at 

regular price is SpqQ* = $280,000. As for the imperfect quality 

items, sales at discounted price is Si(1 µ)Q* = $60,000. The 

purchasing cost per cycle is CQ* = $250,000 and the 

screening cost is CsQ* = $5,000. Hence, the expected total 

revenue per inventory cycle is $340,000.  

The holding cost per inventory cycle is calculated by 

multiplying the area in Fig. 1 by the holding cost per unit per 

unit time. 
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 The expected area is Q2((2+µ2)Di+(1µ2+2)Dp)/(2DpDi) 

= 9,125 and the expected holding cost is $0.2(9,125) = $1,825. 

Thus, the total cost per inventory cycle is $1,825 + $250,000 + 

$5,000 + $1,825 = $258,650 and the expected total profit per 

inventory cycle is $340,000. By dividing by the inventory 

cycle length, the expected daily profit is found to be $4067.5. 

Note that the order quantity (1) based on the classical EOQ 

model results in an order quantity of Q = 1046.42 units.  
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Fig. 2 The expected total annual profit function E[TPU(Q)] 

 

Now we consider the case where the supplier offers a new 

policy that allows a 15 days delay in payment. Based on a 

7.7% interest rate and using (16) and (17) to calculate the 

optimal order quantity and the daily profit, the optimal order 

quantity was calculated and found to be 860 units with a 

corresponding daily profit of $4,093. This results in an 

additional annual profit of $9,314.8 over the policy with no 

delay in payment.  

VI. EXACT SOLUTION 

The total profit per unit time function is obtained by 

dividing the total profit function per inventory cycle by the 

cycle length; i.e., TPU(Q) = TP(Q)/T . The exact expression 

for the expected profit per unit time is obtained by  

 

]/)([)]([ TQTPEQTPUE  .             (21) 

 

Define  by   
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When q is uniformly distributed over [a, b], (22) becomes  
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From (2) and (9), we have  
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From (11) and (22), the expected profit per unit time is  
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Differentiating the expression in (25), we have  
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The economic order quantity is obtained by setting the 

derivative in (26) equal to zero and solving for Q. The 

economic order quantity is 
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Note that the expression (2+µ) is the expected value of 

(1q)2/q, which is positive. Hence, 2K(SpDp+ SiDi)iM2 need 

to be positive in order to calculate Q*. Also note that the 

second derivative of the E[TPU(Q)] function 

((SpDp+SiDi)iM22K)Dp/(qQ3) is negative  so that E[TPU(Q)] 

is a convex function and Q* is unique.  

It is worth noting that when q is constant, we have that µ = 

q,  = 0 and  = 1/q and the two expressions (18) and (27) 

become identical.   

In the case when the supplier does not offer a delay in 

payment, i.e., M = 0, (25) and (27) reduce to    
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and 
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VII. COMPARING THE EXACT AND APPROXIMATE SOLUTIONS 

To compare the exact and approximate solutions, we begin 

by noting that the approximate optimal solution based on the 

renewal reward theorem uses 1/µ as an approximation for . 

This approximation is examined in Table 1, where µ is the 
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expected value of a uniformly distributed random variable q 

over the interval [a, b]. The results show that the error can 

become very large. Hence, approximating the optimal solution 

of (27) by (18) must be examined further.     

 

Table 1: Exact and approximate values of  

  a b Exact Approximate %Error 

1 0.9 1 1.05361 1.05263 0.09% 

2 0.8 1 1.11572 1.11111 0.41% 

3 0.7 1 1.18892 1.17647 1.05% 

4 0.6 1 1.27706 1.25 2.12% 

5 0.4 1 1.52715 1.42857 6.46% 

6 0.3 1 1.71996 1.53846 10.55% 

7 0.2 1 2.0118 1.66667 17.16% 

8 0.1 1 2.55843 1.81818 28.93% 

9 0.09 1 2.64609 1.83486 30.66% 

10 0.05 1 3.1534 1.90476 39.60% 

11 0.04 1 3.353 1.92308 42.65% 

12 0.03 1 3.61501 1.94175 46.29% 

13 0.02 1 3.99186 1.96078 50.88% 

14 0.007 1 4.99682 1.9861 60.25% 

15 0.006 1 5.14688 1.98807 61.37% 

16 0.003 1 5.82662 1.99402 65.78% 

17 0.002 1 6.22706 1.99601 67.95% 

18 0.001 1 6.91467 1.998 71.10% 

 

Now we consider the numerical example of section 4. The 

exact solution calculated using (26) results in an optimal order 

quantity of Q* = 1002 units when no delay is offered. The 

corresponding maximum daily profit were found to be and 

E[TPU(Q*)] = $4078.8. In the case when a delay of period of 

M = 15 days is offered, (26) and (27) showed an optimal order 

quantity of Q* = 862 units and a corresponding maximum daily 

profit of E[TPU(Q*)] = $4,104.38. Accordingly, the renewal 

reward theorem resulted in a very good approximation for the 

optimal order quantity and a relatively good approximation for 

the total daily profit. However, the difference in the profit can 

accumulate and become larger when the annual profit is 

calculated.  

In the following, we compare the exact and the approximate 

solution by considering the percentage of perfect quality items 

to be uniformly distributed over varying intervals [a,b]. Using 

the parameters of the numerical example of section 5 and 

considering varying intervals [a, b] all centered at 0.8, the 

results are shown in Table 2 below. 

The results suggest that the approximation is very accurate 

when the interval is small; that is, when the standard deviation 

is small. However, the error increases as the interval becomes 

larger though the approximation remains accurate. This is due 

to the fact that the mathematical model was developed base on 

the percentage of perfect quality items which is expected to be 

closer to 1 than 0. If the formulation of the model was based 

on the percentages of imperfect quality items, which is 

expected to be closer to 0 than 1, the approximation would 

become sensitive as this percentages becomes closer to 0.  

 

Table 2: Comparing the Exact and Approximate Optimal 

Solutions 

a b Q* 

(Exact) 

Q* 

(Approx.) 

Percent 

Error 

0.79 0.81 1006.87 1006.85 0.00% 

0.78 0.82 1006.73 1006.64 0.01% 

0.77 0.83 1006.5 1006.29 0.02% 

0.76 0.84 1006.17 1005.80 0.04% 

0.75 0.85 1005.76 1005.18 0.06% 

0.74 0.86 1005.24 1004.41 0.08% 

0.73 0.87 1004.64 1003.51 0.11% 

0.72 0.88 1003.94 1002.47 0.15% 

0.71 0.89 1003.15 1001.30 0.18% 

0.7 0.9 1002.27 1000.00 0.23% 

0.69 0.91 1001.3 998.57 0.27% 

0.68 0.92 1000.23 997.00 0.32% 

0.67 0.93 999.079 995.31 0.38% 

0.66 0.94 997.832 993.49 0.44% 

0.65 0.95 996.496 991.55 0.50% 

0.64 0.96 995.069 989.48 0.56% 

0.63 0.97 993.553 987.30 0.63% 

0.62 0.98 991.948 985.00 0.70% 

0.61 0.99 990.254 982.59 0.77% 

 

VIII. CONCLUSION 

Application of the renewal reward theorem to an economic 

order quantity (EOQ) model with quality was examined by 

developing and comparing the exact and an approximate 

optimal solution. The model assumes that items received from 

a supplier contain both perfect and imperfect quality items. 

The percentage of perfect quality is a random variable having 

a known probability distribution. The imperfect quality items 

are sold at a discounted price and the demands for both perfect 

and imperfect quality items occur continuously during the 

inventory cycle. The inventory model accounted for the case 

when the supplier offers a delay in payment for items received 

at the beginning of the cycle. A mathematical model is 

developed and a closed form formula for the optimal order 

quantity. The formula is based on maximizing the total profit 

per unit time.  

A numerical example was presented to illustrate the model. 

Comparison between the exact and approximate solutions 

showed that the approximation is generally accurate. However, 

in certain situations the approximation may become inaccurate.  

For future research, we suggest analyzing the effects of the 

various parameters on the approximate optimal solution.  
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