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Abstract— Properties of light–harvesting (LH) pigment–
protein complexes are strongly influenced by their interactions
with environment. These interactions could be modeled by
static and dynamic disorder. Influence of static disorder on
B850 ring from LH2 complex of purple bacteria is investigated
in present paper. The nearest neighbour approximation model
of the ring is considered. Four types of uncorrelated Gaussian
static disorder (fluctuations of transfer integrals, fluctuations
of radial positions of molecules on the ring, fluctuations of
angular positions of molecules on the ring and fluctuations
of directions of molecular dipole moments) are taking into
account. The most important statistical properties of the
nearest neighbour transfer integral distributions for different
strengths of static disorder are calculated. Results obtained for
four above mentioned types of static disorder are discussed
and compared.

Keywords—LH2 complex, B850 ring, static disorder,
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I. INTRODUCTION

PHOTOSYNTHESIS is the process by which green
plants and certain other organisms (bacteria, blue–

green algae) transform light energy into chemical en-
ergy. During this process light energy is captured and
used to convert water, carbon dioxide, and miner-
als into oxygen and energy–rich organic compounds.
In chemical terms, photosynthesis is a light–energized
oxidation–reduction process. Oxidation refers to the re-
moval of electrons from a molecule; reduction refers
to the gain of electrons by a molecule. These reac-
tions occur in two stages: the light stage, consisting of
photochemical (i.e., light–capturing) reactions; and the
dark stage, comprising chemical reactions controlled by
enzymes. During the first stage, the energy of light is
absorbed and used to drive a series of electron transfers,
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resulting in the synthesis of ATP and the electron–
donor reduced nicotine adenine dinucleotide phosphate
(NADPH). During the dark stage, the ATP and NADPH
formed in the light–capturing reactions are used to reduce
carbon dioxide to organic carbon compounds [1].

Our interest is mainly focused on first (light) stage
of photosynthesis in purple bacteria. Solar photons are
absorbed by a complex system of membrane–associated
pigment–proteins (light–harvesting (LH) antenna) and
the electronic excited state is efficiently transferred to a
reaction center, where the light energy is converted into
a chemical energy [2]. The antenna systems of photo-
synthetic units from purple bacteria are formed by ring
units LH1, LH2, LH3, and LH4. The geometric structure
is known in great detail from X–ray crystallography. The
general organization of above mentioned light–harvesting
complexes is the same: identical subunits are repeated
cyclically in such a way that a ring–shaped structure
is formed. However the symmetries of these rings are
different.

Crystal structure of LH2 complex contained in purple
bacterium Rhodopseudomonas acidophila was first de-
scribed in high resolution by McDermott et al. [3], then
further e.g. by Papiz et al. [4]. The bacteriochlorophyll
(BChl) molecules are organized in two concentric rings.
One ring (B800 ring) features a group of nine well–
separated BChl molecules with absorption band at about
800 nm. The second ring (B850 ring) consists of eighteen
closely packed BChl molecules (B850) absorbing around
850 nm. Dipole moments in LH2 ring have tangential
arrangement. The whole LH2 complex is nonameric, it
consists of nine identical subunits. LH2 complexes from
other purple bacteria have analogous ring structure.

Some bacteria contain also other types of com-
plexes such as the B800–820 LH3 complex (Rhodopseu-
domonas acidophila strain 7050) or LH4 complex
(Rhodopseudomonas palustris). LH3 complex like LH2
one is usually nonameric but LH4 one is octameric (it
consists of eight identical subunits). They can also differ
in orientation of molecular dipole moments and strength
of mutual interactions between bacteriochorophylls. For
instance, interactions between the nearest neighbour bac-
teriochlorophylls in B–α/B–β ring from LH4 complex
are approximately two times smaller in comparison with
B850 ring from LH2 complex and they have opposite
sign.

The intermolecular distances under 1 nm determine
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strong exciton couplings between corresponding pig-
ments. That is why an extended Frenkel exciton states
model could be used in theoretical approach. In spite of
extensive investigation, the role of the protein moiety in
governing the dynamics of the excited states has not been
totally clear yet. At room temperature the solvent and
protein environment fluctuates with characteristic time
scales ranging from femtoseconds to nanoseconds. The
simplest approach is to substitute fast fluctuations by
dynamic disorder and slow fluctuations by static disorder.

Static disorder effect on the anisotropy of fluores-
cence for LH2 complexes was studied by Kumble and
Hochstrasser [6] and Nagarajan et al. [7], [8]. We ex-
tended these investigations by consideration of dynamic
disorder. We studied this effect for simple model systems
[9]–[11] and then for models of B850 ring (from LH2)
[12], [13]. Various types of uncorrelated static disorder
(in local excitation energies, in transfer integrals, etc.)
and correlated one (e.g., elliptical deformation) were
used in the past [14]–[16] and also different arrangements
of optical dipole moments were compared [17]–[20].
Recently we have focused on the modelling of absorption
and steady state fluorescence spectra of LH2 and LH4
complexes within the nearest neighbour approximation
model [21]–[25]. We have also extended our model to
full Hamiltonian model and published the results for
different types of static disorder [26]–[34].

Main goal of the present paper is the investigation
of four types of static disorder (Gaussian fluctuations
in transfer integrals, in radial positions of molecules
on the ring, in angular positions of molecules on the
ring and in directions of dipole moments of molecules)
and comparison of their influence on Hamiltonian of
B850 ring from LH2 complex. The rest of the paper
is structured as follows. Section II introduces the ring
model with different types of static disorder, used units
and parameters could be found in Section III, results
are presented and discussed in Section IV and some
conclusions are drawn in Section V.

II. MODEL

We consider only one exciton on molecular ring which
can model B850 ring from LH2 complex. The Hamilto-
nian of an exciton on this ring reads

H = H0
ex +Hph +Hex−ph +Hs. (1)

A. Ideal ring
First term in Eq. (1),

H0
ex =

N∑
m=1

E0
ma
†
mam +

N∑
m,n=1(m6=n)

J0
mna

†
man, (2)

corresponds to an exciton, e.g. the system without any
disorder. The operator a†m (am) creates (annihilates) an

exciton at site m, E0
m is the local excitation energy of

m–th molecule and J0
mn (for m 6= n) is the so–called

transfer integral between sites m and n. Local excitation
energies E0

m are the same for all bacteriochlorophylls on
unperturbed ring, i.e.

E0
m = E0, m = 1, . . . , N.

Inside one ring the pure exciton Hamiltonian H0
ex can

be diagonalized using the wave vector representation
with corresponding delocalized Bloch states α and ener-
gies Eα. Using Fourier transformed excitonic operators
aα, the Hamiltonian in α–representation reads

H0
ex =

N∑
α=1

Eαa
†
αaα. (3)

The interaction strengths between the nearest neighbour
bacteriochlorophylls inside one subunit and between
subunits are almost the same in B850 ring from LH2
complex (see Figure 1 (B) in [5]). That is why such ring
can be modeled as homogeneous case. If we consider the
nearest neighbour approximation model (only the nearest
neighbour transfer matrix elements are nonzero), we have

J0
mn = J0(δm,n+1 + δm,n−1). (4)

In that case the form of operators aα is

aα =
N∑
n=1

aneiαn, α =
2π

N
l, l = 0, . . . ,±N

2
, (5)

where N = 18 and the simplest exciton Hamiltonian
for B850 ring from LH2 complex in α–representation is
given by Eq. (3) with

Eα = E0 − 2J0 cosα. (6)

In dipole–dipole approximation, transfer integrals Jmn
can be written as

Jmn =
~dm · ~dm
|~rmn|3

− 3

(
~dm · ~rmn

) (
~dn · ~rmn

)
|~rmn|5

=

= |~dm||~dn|
cosϕmn − 3 cosϕm cosϕn

|~rmn|3
. (7)

Here ~dm and ~dn are local dipole moments of m–th and
n–th molecule respectively, ~rmn is the vector connecting
m–th and n–th molecule and ϕm (ϕn) is the angle
between ~dm (~dn) and ~rmn. The angle between m–th
and n–th vector of local dipole moment (~dm, ~dn) is
referred to as ϕmn. Geometric arrangement of the ring
has to correspond with the interaction strengths between
the nearest neighbour bacteriochlorophylls. That is why
distances rm,m+1 of neighbouring molecules in B850
ring from the LH2 complex have to be the same (without
any disorder) and angles βm,m+1 have to be the same too
(βm,m+1 = 2π/18, see Figure 1).
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Fig. 1. Geometric arrangement of ideal B850 ring from LH2 complex
(without any fluctuations)

B. Dynamic disorder
The second term in Eq. (1),

Hph =
∑
q

h̄ωqb
†
qbq, (8)

represents phonon bath in harmonic approximation.
Phonon creation and annihilation operators are denoted
by b†q and bq, respectively.

The third term,

Hex−ph =
1√
N

∑
m

∑
q

Gmq h̄ωqa
†
mam(b†q + bq), (9)

describes exciton–phonon interaction which is assumed
to be site–diagonal and linear in bath coordinates (the
term Gmq denotes the exciton–phonon coupling constant).

C. Static disorder
Last term in Eq. (1), Hs, corresponds to static dis-

order. Different types of static disorder can be taken
into account. Fluctuations in local excitation energies of
bacteriochlorophylls δεm,

Em = E0 + δεm, (10)

represent one of the most commonly used types of static
disorder.

Consideration of fluctuations in transfer integrals δJmn
(m 6= n),

Jmn = Jnm = J0
mn + δJmn, (11)

is another way how the static disorder can be modeled.
δJmn can be treated as uncorrelated Gaussian fluctua-
tions (with the standard deviation ∆J ) or they can be
connected with deviation in geometric arrangement of
the ring. In following, from various types of geometric
deviations we deal with three ones:

a) uncorrelated fluctuations of radial positions of
molecules δrm on the ring (Gaussian distribution
and standard deviation ∆r),

rm = r0 + δrm, (12)

where r0 is the radius of the ring without any
disorder (see Figure 2);

Fig. 2. B850 ring from LH2 complex – fluctuations in radial
positions of bacteriochlorophylls δrm

b) uncorrelated fluctuations of angular positions of
molecules δνm on the ring (Gaussian distribution
and standard deviation ∆ν),

νm = ν0m + δνm, (13)

where ν0m is the angular position of m–th batherio-
chorophyll on the ring, directions of bacteriochloro-
phyll dipole moments in new positions are again
tangential to the ring (see Figure 3);

Fig. 3. B850 ring from LH2 complex – fluctuations in angular
positions of bacteriochlorophylls δνm

c) uncorrelated fluctuations of bacteriochlorophyll
dipole moment directions δϑm (Gaussian distribu-
tion and standard deviation ∆ϑ)

ϑm = ϑ0m + δϑm, (14)

where ϑ0m determines dipole moment direction of
m–th bacteriochlorophyll molecule. Positions of
bacteriochlorophylls remain the same as in unper-
turbed ring (see Figure 4).

Only fluctuations in ring plane are considered for all
three above mentioned types of static disorder connected
with ring geometry.
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Fig. 4. B850 ring from LH2 complex – fluctuations in directions of
bacteriochlorophyll dipole moments δϑm

III. UNITS AND PARAMETERS

Dimensionless energies normalized to the transfer in-
tegral Jm,m+1 = J0 (see Eq. (4)) have been used in our
calculations. Estimation of J0 varies in literature between
250 cm−1 and 400 cm−1.

In our previous investigations [35] we found from
comparison with experimental results for B850 ring from
the LH2 complex [36] that the possible strength ∆J

of the uncorrelated Gaussian static disorder in transfer
integrals δJmn is approximately ∆J ≈ 0.15 J0. That is
why for this type of static disorder we have taken the
strengths

∆J ∈ 〈0.025 J0, 0.300 J0〉.

Other above mentioned types of static disorder also

manifest themselves through the fluctuations of transfer
integrals and therefore we have taken their strengths in
connection with strength ∆J :

a) uncorrelated fluctuations of radial positions of
molecules δrm

∆r ∈ 〈0.010 r0, 0.30 r0〉,

b) uncorrelated fluctuations of angular positions of
molecules δνm

∆ν ∈ 〈0.001 π, 0.022 π〉,

c) uncorrelated fluctuations of bacteriochlorophyll
dipole moment directions δϑm

∆ϑ ∈ 〈0.01 π, 0.20 π〉.

In all cases calculations were done for 10000 realizations
of static disorder.

IV. RESULTS AND DISCUSSION

Influence of various types of static disorder on Hamilto-
nian (namely on the nearest neighbour transfer integrals)
of B850 ring from LH2 complex is investigated in present
paper. Distributions of the nearest neighbour transfer
integral Jm,m+1 were calculated for above mentioned
four types of static disorder. These distributions are
graphically presented in two ways – mainly by contour
plots and also by line plots. Sample expected values
E(Jm,m+1) and values of E(Jm,m+1) ±

√
D(Jm,m+1)

Fig. 5. Distributions of the nearest neighbour transfer integrals Jm,m+1 for B850 ring from LH2 complex – uncorrelated Gaussian fluctuations
of transfer integrals δJm,m+1 (strengths of static disorder ∆J ∈ 〈0.02 J0, 0.30 J0〉).
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Fig. 6. Distributions of the nearest neighbour transfer integrals Jm,m+1 for B850 ring from LH2 complex – uncorrelated Gaussian fluctuations
in radial positions of molecules on the ring δrm (strengths of static disorder ∆r ∈ 〈0.02 r0, 0.30 r0〉).

∆r expected value standard deviation skewness kurtosis coefficient of variation
E(Jm,m+1)

√
D(Jm,m+1) α3 α4 c

0.02 r0 0.999 J0 0.012 J0 0.083 0.030 0.01204
0.06 r0 0.988 J0 0.040 J0 -0.034 0.506 0.04029
0.10 r0 0.967 J0 0.075 J0 -0.309 1.230 0.07806
0.14 r0 0.939 J0 0.118 J0 -0.447 1.446 0.12515
0.18 r0 0.907 J0 0.163 J0 -0.434 1.277 0.17933
0.22 r0 0.872 J0 0.208 J0 -0.327 1.031 0.23844
0.26 r0 0.836 J0 0.252 J0 -0.165 0.890 0.30097
0.30 r0 0.800 J0 0.293 J0 0.024 0.903 0.36590

TABLE I
EXPECTED VALUE, STANDARD DEVIATION, SKEWNESS, KURTOSIS AND COEFFICIENT OF VARIATION FOR THE NEAREST NEIGHBOUR

TRANSFER INTEGRAL Jm,m+1 DISTRIBUTIONS FOR UNCORRELATED GAUSSIAN FLUCTUATIONS δrm (EIGHT STRENGTHS ∆r )

are also drawn in contour plots. Here
√
D(Jm,m+1) is

sample standard deviation. Additionally, we calculated
sample skewness α3, sample kurtosis α4 and sample
coefficient of variation c. These statistical characteristics
were calculated as follows:

(i) sample expected value

E(Jm,m+1) =
1

n

n∑
i=1

Jm,m+1, (15)

(ii) sample standard deviation

√
D(Jm,m+1) =

√
1

(n− 1)
M2, (16)

(iii) sample skewness

α3 =
n

5

2

(n− 1)(n− 2)

M3

M
3

2

2

, (17)

(iv) sample kurtosis

α4 =
n2

(n− 2)(n− 3)

[
n(n+ 1)

n− 1

M4

M2
2

− 3

]
, (18)

(v) sample coefficient of variation

c =
√
D(Jm,m+1)/E(Jm,m+1). (19)

Here

Mk =
n∑
i=1

[Jm,m+1 − E(Jm,m+1)]
k (20)
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Fig. 7. Distributions of the nearest neighbour transfer integrals Jm,m+1 for B850 ring from LH2 complex – uncorrelated Gaussian fluctuations
in angular positions of molecules on the ring δνm (strengths of static disorder ∆ν ∈ 〈0.001 π, 0.022 π〉).

∆ν expected value standard deviation skewness kurtosis coefficient of variation
E(Jm,m+1)

√
D(Jm,m+1) α3 α4 c

0.001 π 1.000 J0 0.012 J0 0.042 0.004 0.01224
0.004 π 1.002 J0 0.049 J0 0.189 0.065 0.04872
0.007 π 1.005 J0 0.086 J0 0.339 0.211 0.08560
0.010 π 1.010 J0 0.124 J0 0.494 0.455 0.12310
0.013 π 1.017 J0 0.164 J0 0.657 0.815 0.16153
0.016 π 1.026 J0 0.206 J0 0.834 1.327 0.20122
0.019 π 1.037 J0 0.251 J0 1.018 1.959 0.24245
0.022π 1.050 J0 0.298 J0 1.164 2.348 0.28426

TABLE II
EXPECTED VALUE, STANDARD DEVIATION, SKEWNESS, KURTOSIS AND COEFFICIENT OF VARIATION FOR THE NEAREST NEIGHBOUR

TRANSFER INTEGRAL Jm,m+1 DISTRIBUTIONS FOR UNCORRELATED GAUSSIAN FLUCTUATIONS δνm (EIGHT STRENGTHS ∆ν )

and n is the number of cases in our samples
(n = 180000). It corresponds with dimension of Hamil-
tonian (N = 18) and number of static disorder realiza-
tions (10000).

Uncorrelated Gaussian distributions of Jm,m+1 are
presented in Figure 5 for comparison to other types of
static disorder that are connected with deviations of ring
geometry. For this type of fluctuations (δJm,m+1), of
course, the expected value of the distribution of the near-
est neighbour transfer integrals Jm,m+1 is independent of
the strength of static disorder, i.e. E(Jm,m+1) = J0, and
the strength of static disorder ∆J equals the standard
deviation

√
D(Jm,m+1).

Figure 6 shows the distributions of Jm,m+1 for Gaus-
sian uncorrelated static disorder δrm in radial positions

of molecules on the ring. The distributions of Jm,m+1 for
other two above mentioned types of static disorder can
be seen in Figure 7 (Gaussian uncorrelated fluctuations
of angular positions of molecules on the ring δνm)
and in Figure 8 (Gaussian uncorrelated fluctuations of
molecular dipole moment directions δϑm). For these
three types of static disorder (connected with deviations
in ring geometry) expected value E(Jm,m+1) depends on
static disorder strength. Dependencies of E(Jm,m+1) and√
D(Jm,m+1) on corresponding static disorder strength

are presented in Figure 6 – left column (δrm), Figure 7
– left column (δνm) and Figure 8 – left column (δϑm).
Values of E(Jm,m+1),

√
D(Jm,m+1), α3, α4 and c (see

Eq. (15) – Eq. (19)) for chosen static disorder strengths
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Fig. 8. Distributions of the nearest neighbour transfer integrals Jm,m+1 for B850 ring from LH2 complex – uncorrelated Gaussian fluctuations
in directions of molecular dipole moments δϑm (strengths of static disorder ∆ϑ ∈ 〈0.02 π, 0.20 π〉).

∆ϑ expected value standard deviation skewness kurtosis coefficient of variation
E(Jm,m+1)

√
D(Jm,m+1) α3 α4 c

0.02 π 0.996 J0 0.009 J0 -0.760 0.951 0.00902
0.05 π 0.976 J0 0.033 J0 -1.676 4.585 0.03390
0.08 π 0.939 J0 0.073 J0 -1.952 5.819 0.07766
0.11 π 0.888 J0 0.126 J0 -1.941 5.350 0.14144
0.14 π 0.824 J0 0.186 J0 -1.811 4.260 0.22591
0.17 π 0.752 J0 0.250 J0 -1.629 3.056 0.33232
0.20 π 0.674 J0 0.312 J0 -1.428 1.964 0.46295

TABLE III
EXPECTED VALUE, STANDARD DEVIATION, SKEWNESS, KURTOSIS AND COEFFICIENT OF VARIATION FOR THE NEAREST NEIGHBOUR

TRANSFER INTEGRAL Jm,m+1 DISTRIBUTIONS FOR UNCORRELATED GAUSSIAN FLUCTUATIONS δϑm (SEVEN STRENGTHS ∆ϑ)

are presented in Table I (δrm), Table II (δνm) and Table
III (δϑm).

In case of Gaussian distribution of transfer integrals
Jm,m+1 expected value E(Jm,m+1) is independent of
static disorder strength (E(Jm,m+1) = J0) and standard
deviation

√
D(Jm,m+1) equals the strength of static

disorder
√
D(Jm,m+1) = ∆J . That is why, coefficient of

variation c corresponds to strength of static disorder ∆J ,
i.e. c = ∆J/J0 (see Eq. (19)). In this case skewness α3

and kurtosis α4 equal zero, i.e. they are also independent
of static disorder strength ∆J .

If we consider other types of static disorder (con-
nected with deviations in ring geometry – δrm, δνm,
δϑm), Gaussian distribution of molecular positions or
dipole moment directions results in non–Gaussian dis-

tribution of transfer integrals Jm,m+1. That is why,
expected value E(Jm,m+1), skewness α3 and kurtosis
α4 are nonconstant and standard deviation

√
D(Jm,m+1)

does not equal the strength of static disorder (see Figures
6 – 8 and Tables I – III). As concerns expected value
E(Jm,m+1), we can see decrease of it for increasing
static disorder strength in case of fluctuations in radial
positions of molecules on the ring δrm (see Figure 6 and
Table I) and fluctuations in molecular dipole moment
directions δϑm (see Figure 8 and Table III). On the
other hand, E(Jm,m+1) increases with growing strength
of static disorder in angular positions of molecules on the
ring δνm (see Figure 7 and Table II). In all these three
cases dependence of standard deviation

√
D(Jm,m+1) on

static disorder strength is nonlinear. The most important
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change of expected value occurs in case of fluctua-
tions of molecular dipole moment directions δϑm. In
contrast with this type of static disorder the changes
of E(Jm,m+1) are very low for fluctuations in angular
positions of molecules δνm. Non–Gaussian distributions
of Jm,m+1 manifest themselves by nonzero skewness and
kurtosis in all three cases of static disorder connected
with deviations in ring geometry. Skewness is negative
for static disorder in radial positions of molecules δrm
and static disorder in directions of molecular dipole mo-
ments δϑm. Contrary, in case of static disorder in angular
positions of molecules δνm the distribution of Jm,m+1

is skewed to right hand side. Most significant skewness
can be seen in case of static disorder in directions of
molecular dipole moments δϑm (Figure 8). All these
three distributions have higher kurtosis in comparison
with Gaussian distribution of Jm,m+1.

Due to nonconstant expected value, influences of
different types of fluctuations to distribution of Jm,m+1

can be compared using coefficient of variation. Our
previous investigations [35] led to suitable strength of
static disorder in transfer integrals ∆J ≈ 0.15 J0 and
consequently c ≈ 0.15. As concerns other types od static
disorder, approximately same value of coefficient of
variation corresponds to the following disorder strengths:
∆r ≈ 0.16 r0, ∆ν ≈ 0.012π and ∆ϑ ≈ 0.11π.

V. CONCLUSIONS

Comparison of the results obtained within different
types of static disorder can be summarized as follows.
Expected value of the nearest neighbour transfer in-
tegral distribution depends on static disorder strength
for all presented types of fluctuations connected with
ring geometry. The most essential change appears in
case of static disorder in dipole moment directions. In
this case also the dependence of standard deviation of
the distribution on the static disorder strength has the
highest nonlinearity. This is connected with the highest
skewness of this distribution. Through the comparison of
coefficient of variation we are able to estimate suitable
strength of static disorder types connected with ring
geometry fluctuations.
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[18] P. Heřman, D. Zapletal and I. Barvı́k, The anisotropy of fluorescence
in ring units III: Tangential versus radial dipole arrangement, J. Lu-
min. 128, 2008, pp. 768–770.
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[35] P. Heřman, I. Barvı́k and D. Zapletal, Energetic disorder and exciton
states of individual molecular rings, J. Lumin. 119–120, 2006, pp. 496–
503.

[36] C. Hofmann, T. J. Aartsma and J. Kőhler, Energetic disorder and the
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