
 

 

 
Abstract— A fuzzy PI controller and a conventional PI controller 

were adopted to develop control for a residential cogeneration system 
made by a biomass-fired and solar-powered fluidized bed prototype. 
Its mathematical model is characterized by nonlinearities and, more 
important, by uncertainty and variability in parameters. The paper 
describes in detail the PI fuzzy controller, the development of which 
was based on the knowledge of the continuity diagrams of the 
process model. Then, the paper reports a comparison in simulation 
between the PI fuzzy controller and the conventional PI one. The PI 
fuzzy controller exhibits a superior performance, as far as both 
robustness and rate of response. As a result, the adoption of a PI 
fuzzy controller turns out the best choice for this residential 
cogeneration system and a favorable option for nonlinear processes 
with uncertain or time-varying parameters. 
 

Keywords — Fuzzy control, PI (proportional integrative) 
controller, mathematical model, simulation, continuity diagram, 
FBC (fluidized bed combustor). 

I. INTRODUCTION 
Recently, in the framework of renewable energy exploitation, a 
new cogeneration concept system driven by two renewable 
energy sources, i.e., direct solar (thermodynamic solar) and 
biomass combustion (indirect solar energy) has been proposed 
by Angrisani et al. [1] and a small-scale fluidized bed 
prototype has been put into operation [2], [3]. 
Load regulation and automatic control of such systems is still a 
great challenge. The difficult task of modeling and controlling 
complex and nonlinear systems is well known. If a relatively 
accurate model of a dynamic system can be developed, it is 
often too complex to use it directly in controller development. 
Many conventional control design techniques in fact require 
restrictive assumptions (e.g., linearity), not only for the plant 
model, but also for control design. Traditional controllers are 
not able to perform very effectively when the systems to be 
controlled are characterized by high nonlinearity and 
parameter uncertainty. It is true that a PID (Proportional-
Integral-Derivative) controller may be tuned to be effective at 
certain conditions, but a change in the value of some system 
parameters may also destabilize the whole control system, 
making ineffective the PID controller action.  
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Many nonlinear systems are in fact characterized by dynamics 
that can be one strongly dependent on or more parameters and 
their operating  conditions turn out  stable or acceptable only if 
the values of these parameters remain in a limited range [4], 
[5]. In some cases, if the system parameters move out of this 
range, the equilibrium point becomes unstable. To handle 
these undesirable events it is necessary to switch to more 
robust controllers such as fuzzy logic controllers. Because of 
their underlying fuzzyness, these controllers are characterized 
by a high degree of clarity and robustness both in design and 
operation. 
Fuzzy logic controllers (FLCs) have been reported to be 
successfully used for a number of complex and nonlinear 
processes, which are difficult to model analytically [6], [7] and 
are usually built up using fuzzy sets and fuzzy logic [8] - [14]. 
The list of applications includes cases from process industry 
like cement kilns [15], multi-level of a large scale industrial 
process [16], penicillin fermentation process [17] and non-
process cases like subway trains [18]. More recently, an online 
adaptive fuzzy switching controller was designed, developed 
and implemented for real-time tracking control of an industrial 
SCARA robot by Marwan et al. [19]; Wang et al. [20] 
proposed a fuzzy control technique of auxiliary ventilation in 
heading laneway; an evolutionary optimization of interval 
mathematics-based design of a TSK fuzzy controller for anti-
sway crane control was instead proposed by Smoczek [21].  
It is well known that obtaining an optimal set of fuzzy sets and 
rules is not always an easy task because the tedious fuzzy 
tuning exercise requires time, experience and skills of the 
operator. Recently, some intelligent techniques were 
considered for the task of fuzzy set tuning [22], [23]. This 
paper presents the control of  the conceptual dual-source 
fluidized bed cogeneration system, for which the underlying 
dynamic model, although very simple, is characterized by 
nonlinearity and parameters variability with time. 

II. SYSTEM DESCRIPTION  

A. FBC 
The system considered is a bubbling fluidized bed prototype 
(FBC) that uses two renewable energy sources: biomass firing 
(indirect solar energy) and direct solar heating 
(thermodynamic solar) [24], [25]. The fluidized bed acts as a 
solar receiver, through  the direct irradiation of bed solids by 
means of a concentrated solar radiation. 
A Stirling engine, integrated into the fluidized bed, converts 
part of thermal energy into electricity. The large and 
unconditioned availability of the solar energy, especially in 
tropical and subtropical regions and the possibility to reduce 
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the consumption of biomass, supports the integration of the 
Concentrated Solar Power (CSP). 
This source of energy allows to obtain fuel flexibility, low 
emissions and optimal operating conditions for the Stirling 
engine (SE) unit as well. A representation of the whole system 
is schematized in Fig.1. It consists of  a solar collector (a 
mirror for the capture and concentration of the solar radiation); 
a FBC (used as: concentrated solar energy receiver, heat 
exchanger with the head of the SE and biomass combustor); a 
SE (to convert the heat collected in the FBC into mechanical 
and then electrical power); and a heat exchanger (to recover 
the unused low enthalpy heat).  
 

 
Fig.1 Schematic of the prototype.  
 
In Fig. 2 a flow diagram of the principal energy fluxes is 
shown. The fluidization is obtained, as usual, by air flow 
blowing from the bottom of a vessel where a certain amount of 
granular material, like sand, is loaded over an air distributor. 
This allows all particles and the gas phase to carry out efficient 
mass and heat transfer in the bed. 
 

 
Fig.2.  Flow diagram of the system with the indication of the control 
volume for the energy balance with the accounted energy fluxes. 

B. Model of FBC 
For simplicity, the model developed by Angrisani and 
coworkers [1], [3] is adopted here. It considers the direct 
coupling of a solar energy source and a SE hot heat exchanger 
in the bed of a FBC. Several models are proposed in the 
literature for a FBC. The approach by Galgano et al. [26] and 

Hatzantonis [27] is here adopted by the authors to determine 
the performance of the system. The various flux contributions 
to the energy balance are shown schematically in Fig. 2. The 
energy balance is written assuming the FBC working as a 
pseudo-homogeneous, perfectly stirred reactor including both 
solid-phase and gas-phase with bed and freeboard lumped 
together. Inside the FBC the temperature can be assumed 
uniform in space. With this assumption it is possible to assume 
only a single temperature for both solid- and gas-phase. The 
dynamic energy balance is: fluxes are: 
 

[ ]comboutDoutCSECSPinFin
ss

QQQQQQcQ
cmdt

dT
 +++++= + ,,,,.1      (1) 

                                    (1) The main energy fluxes, per unit time, in (eq.1) are the 
following: the inlet enthalpy carried by the fluidization air, 
assumed as an ideal gas: 
 

ininpinin TTccmcQ ⋅⋅= )(,, 

                                        (2)
  

                                
 

the sensible enthalpy carried by the (solid) fuel entering the 
fluidized bed: 
 

FinFinpFFin TTcmFQ ⋅⋅= )(, 

             (3) 

the solar radiation power coming from the collector: 
 

SSCSPCSP AIQ ⋅⋅= η

                                               (4) 
 

where CSPη  is the global efficiency achieved in the process of 
collection and transmission to the fluidized bed of the solar 
power at irradiance IS, adopting a mirror corresponding to a 
capture surface with area AS. 
The outlet power carried by the hot gases leaving the fluidized 
bed combustor, including both fluidization air and combustion 
gases: 
 

TTcmQ poutoutC ⋅⋅−= )(, 

              (5) 
 
where FinCout mmm  += , ;  
 
the power lost by dispersion to the outside environment 
through the FBC walls: 
 

comboutD QQ ⋅−= α,


                                                   
(6)

 
 
where α is a parameter expressing a proportionality factor; the 
thermal power released by biomass combustion: 

FFccomb HmQ ∆⋅⋅= 

 η               (7)  
where ηc is the in bed combustion efficiency, Fm the mass 
feeding rate of fuel and FH∆  the lower heating value of the 
fuel.  
The thermal power delivered to the Sterling engine: SEQ  is 
considered a disturbance from the viewpoint of the control 
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system, because it is highly dependent on weather conditions 
(it reaches its maximum value during a sunny day, but it may 
decrease during a cloudy day, down to a limiting value of 
zero). Variables and parameters are listed in Table 1 and 2, 
respectively.  
 
Table 1. Operating variables of the FBC 

 

 

 

 

 

 

 

 
Table 2. Parameter values of the FBC 

  
In the model (eq. 1), the heating of the bed due to heat released 
in the freeboard region is not considered. Further, the in-bed 
combustion efficiency is taken as ηc= 0.95, this value being 
reasonable on account of the amount of heat released in the 
bed as a function of the actual FBC conditions [28].  

III. FUZZY CONTROL SCHEME 

A. PID control  
It is well known that traditional controllers such as PI or PID 
lend themselves to the construction of feedback linearization 
control. PID control is presently more used than fuzzy control. 
It is quite intuitive, its actions depend on the current controller 
error (proportional term), the time history of the error (the 
integral term) and a time variation of the value of the error (the 
derivative term). The applicability of PID controllers is wide 
(they work well for a large class of processes) also in those 
cases where a process model is not always available and, in 
addition, there are many effective tuning rules. However, there 
are many cases where the process is highly nonlinear and is 
necessary to consider a control characterized by nonlinearity 
as well [4]. The controller nonlinearity in fact can be designed 

so as to compensate for process nonlinearities. The main 
advantage of fuzzy PID or fuzzy PI control is that of 
combining the advantages of ordinary linear PID or PI control 
with the possibility to introduce nonlinearities in the control 
law. 

 
Fig. 3. Fuzzy logic system. 

B. Fuzzy logic system  
Four main components characterize the fuzzy controller [7], as 
shown in Fig. 3; they are:  a) the fuzzification (fuzzifier block), 
necessary to modify the inputs to be interpreted in the rule 
base, by fuzzifying the crisp inputs (through membership 
functions that derive the membership grades of the crisp 
inputs); b) the inference mechanism (fuzzy inferencing block), 
to evaluate which controls at the current time are relevant and 
then to decide consecutively what input  (output of the fuzzy 
logic system) must be sent to the plant; c) the rule base 
(expressed in the form if-then) where all the knowledge of the 
control process is contained; d) the defuzzification (defuzzifier 
block), to convert the conclusions of the inference mechanism 
into the inputs (as crisp value) to the plant. The last block is a 
fundamental one because the resulting fuzzy set must be 
converted to a single number in order to form a control signal 
to the plant. 
The input measurements are evaluated according to the 
premise of the rules. Each premise produces a membership 
grade expressing just the degree of membership of that 
premise. Generally, the rule base is constructed so as to 
represent a human expert in the loop. Each rule has this form: 
if the behavior of the plant output is this and the reference 
input (set point) of the plant is this, then the plant input (the 
manipulation variable) should be this value. The rule base 
formalism is intuitive and easy to understand, in each rule 
there is a local process knowledge and it is described how the 
control signal should be selected for certain inputs. 
It is necessary to load a whole set of if-then rules in the rule-
base and, once the inference strategy has been chosen, the 
system is ready to be tested. Fuzzy systems allow a flexible 
categorization of a domain of interest. Membership functions 
and rules are therefore the heart of fuzzy logic and the right 
choice of them influences the whole system behavior. 

C. FBC control  
Control of FBC systems is a widespread issue. As an example, 
Vamvuka et al. [29] proposed control methods for mitigating 

Air excess [-] 0.3 
Tin Inlet gas temperature [K] 300 
TFin biomass inlet temperature [K] 300 
Biomass feed rate [kg/h] 1 - 4 
Lower heating value of biomass [J/kg] 18.24 E+06 
Air/Fuel stoichiometric ratio[kg/kg] 5.5814 
ms  Total mass of bed  particles [kg] 30 - 40 

T)T(cmQ poutout,C ⋅⋅−= 

  
The outlet power carried by the hot gases leaving 
the FB, including both fluidization air and 
combustion gas [W]

 

   5000 - 10000 

ηc biomass combustion efficiency  0.95 

 ηCSP global collector efficiency
 

0.75 – 0.85 

IS solar irradiance at the latitude of 
Naples  [W/m2] 

500 - 1000 

α  parameter of thermal dispersion to 
the environment 

0.05 – 0.15 

Cp  Specific heat of air / flue gas at 
constant pressure  [J/(kg K)]  

9.460168275862069e+02 
+ 0.213095448275862·T 
+3.099045517241379e-
05·T2 

Cps Specific heat of solids forming the 
fluidized bed

     
[J/(kg K)] 

800 

sρ  Density of bed solid particles 

[kg/m3] 

2600 

Cpf  specific heat of biomass [J/(kg K)]
 

1000 - 1500 
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biomass ash-related problems in fluidized beds; an innovative, 
bed temperature-oriented modeling and a robust control of a 
circulating fluidized bed combustor were proposed by 
Hadavand et al. [30]; a control system for an oxy-fuel 
combustion fluidized bed with flue gas recirculation was 
developed by Guedea et al. [31]; the control of NOx and N2O 
in pressurized fluidized-bed combustion was proposed by Lu 
et al [32]; the emission control devices to fit environmental 
regulations for a biomass fluidized bed combustor were 
proposed by Grass et al. [33].  
In this paper the proposed control scheme is that of a simple 
feedback (Fig.4).  
 

 
Fig. 4. Diagram block for the PI fuzzy control system.  

 
The controlled variable is the bed temperature and the 
manipulated variable is the fuel feed rate (Fuel_in). The inputs 
of the fuzzy logic controller are given by the error and the 
integral of the error. 
The scale factors at the entrance of fuzzy controller adjust the 
error and the integral of the error values to the range of the 
input fuzzy sets. Before designing the controller, the dynamics 
of the open loop system was explored and the system solution 
diagrams were obtained [5]. This step is very important to 
understand and master the dependence of the system behavior 
from input variables and parameter values.  
The software used was Matlab®, integrated with Simulink 
toolbox and Matcont, this latter for the numerical study of a 
continuation or bifurcation on the continuous and discrete 
parameterized dynamical systems [5]. 

. 

IV. RESULTS AND DISCUSSIONS  

A. Dynamics and solution diagrams at open loop  
The dependence of the system bed temperature from Fuel_in 
(i.e., the manipulation variable in the control system) has been 
analyzed first. In Fig. 5A the time trajectory from the steady 
state a) to the new one b) and in Fig. 5B the solution diagram 
of the system bed temperature are shown, respectively, for 
Fuel_in step change from a) 0.00028 to b) 0.000417 kg/s at 
fixed values of csp_irradiance = 750 W/m2 and QSE = -9000 
W.  
The contributions of the various terms in the energy balance in 
correspondence of the new steady state b) are shown in 
Table3. 
 
 
 
 

Table 3 - Contributions of the various terms in the energy balance (Fuel_in = 
0.000417 kg/s, csp_irradiance = 750 W/m2 e QSE = -9000 W). 

 
It is easy to note that in input the incoming solar heat and the 
chemical energy released from the fuel prevail, whereas in 
output the heat transferred to the Stirling engine prevails. It 
should be noted that under the conditions of Table 3, the 
values of solar irradiance and power transferred to the Stirling 
engine have been fixed in the calculation. Obviously, being a 
steady state, the energy balance, which contributes to the terms 
listed in Table 3, closes to zero. The above trend is confirmed 
by Fig. 6 that shows the temperature of the bed as a result of 
the step change in Fuel_in from 0.00028 to 0.000417 kg/s at 
10000 s, at fixed csp_irradiance = 750 W/m2, for three 
different values of the load to the Stirling engine QSE = -
10000, -9000 and -8000 W, respectively.  
To optimize the control system, it is necessary to delineate the 
different stability regions in the system and to study the effect 
of some relevant operating parameters on the dynamics. The 
Fig.7a shows the time trajectory of the system bed temperature 
(K), for csp_irradiance step change from c) 750 W/m2 to a) 0 
W/m2  (cloudy day); b) 300 W/m2; d) 1000 W/m2 (sunny day) 
at fixed   Qse = -8000 W and Fuel_in = 0.0006 kg/s.  
 

 
Fig. 5 – A) Time trajectory of the system bed temperature (K), for 
Fuel_in value step change from   a) 0.00028 to b) 0.000417 kg/s at 
fixed values of csp_irradiance = 750 W/m2 and QSE = -9000 W.   
 - B) Solution diagram Bed temperature (K) vs Fuel_in (kg/s). The 
diagram shows the equilibrium point in correspondence of a) Fuel_in 
= 0.00028 kg/s and Bed temperature T =1182 K and b) Fuel_in = 
0.000417 kg/s and Bed temperature T =1362 K (b), at fixed values of 
csp_irradiance = 750 W/m2 and QSE = -9000 W.  
 
Obviously, the characteristics of the dynamic response of the 
system do not change. The settling time is in fact always of the 
order of 20000 s. The Fig. 7B shows the corresponding 
solution diagram of the bed temperature. It shows the locus of 

Qcin [W]  
914.20 

Qcsp 
 [W] 
7312.5 

Qcomb [W] 
7225.8 

QSE  
[W] 
-9000 

Qcout [W] 
-5525 

Qrout [W] 
-1083.9 

QFin [W] 
156.38 
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equilibrium points as a function of biomass feed rate (Fuel_in) 
for a variation of csp_irradiance parameter. 
It is easy to note that a decrease in the value of csp irradiance 
has negative consequences on system bed temperature. This 
can lead to the shutdown of the FBC. Therefore, an effective 
control action is necessary to handle these contingencies. 

 
Fig. 6 Time trajectory of the system bed temperature (K), for Fuel_in 
step change from 0.00028 to 0.000417 kg/s at 10000 s, at fixed 
csp_irradiance = 750 W/m2, for different QSE values: a) QSE = -10000 
W; b) QSE = -9000 W; c) QSE= -8000 W. 
 

 
 
Fig. 7 – A) Time trajectory of the system bed temperature (K), for 
csp_irradiance step change from c) 750 W/m2 to a) 0 W/m2; b) 300 
W/m2; d) 1000 W/m2 at fixed Qse = -8000 W and Fuel_in = 0.0006 
kg/s.                         
- B) Solution diagram of Bed temperature (K) vs Fuel_in (kg/s). The 
diagram shows the equilibrium point in correspondence of Fuel_in = 
0.0006kg/s for different values of the csp_irradiance (disturbance): a) 
0 W/m2; b) 300 W/m2; c) 750 W/m2; d) 1000 W/m2, at the fixed 
value Qse= -8000 W.  
 

B. Conventional PI controller  
The transfer function of the PID controller is:  
 









++⋅=

s
sKG

I
DcPID τ

τ 11
 

where Kc is the controller gain, τD is the derivative time e τI is 
the integral time or reset time. In this case, only a PI controller 

is considered because the derivative action would give a 
negligible contribution due to the slow system response 
characteristics.  
Tuning of the controller, i.e., the final adjustment of its 
parameters, is a topic extensively discussed in the literature. 
Nevertheless, the controller tuning is done, in most cases, 
manually "on the field" (e.g., by trial and error). In the present 
case the authors used a method based on the minimization of 
an objective function, i.e., the closed loop IAE index as 
obtained by simulation of the controlled system response over 
a suitable time. This method led to the determination of the 
theoretically optimal values for the parameters of the PI 
controller, as follows: 

cK = 12 (control gain) 

Iτ  = 0.008 s (integral time)  
These values allowed reaching a good compromise on the 
response of the controlled system so as to eliminate the offset 
in a reasonable time and reduce the overshoot as much as 
possible. 

C.  Nonlinear PI fuzzy controller 
Regarding the non-linear fuzzy controller, the values of fuzzy 
set parameters, the rule base developed by the authors and its 
characteristics are reported in Tables 4, 5 and 6, respectively. 
The performance of the first fuzzy controller built following 
the method of Jantzen (2007) is very similar to that of the PI 
controller; for this reason, it has not been reported in the 
following simulations. Such a controller is actually linear, as 
seen from the surface of the rules shown in Fig. 8A.  
 
Table 4. Fuzzy sets for the error and the integral of the error. 
Error Gaussian membership functions  

Negative [42.46 -100] 

Zero [42.46 0] 

Positive [42.46 100] 

Integral of the error  Triangular membership function  

Negative’ [-200 -100 -20] 
Zero’ [-100 0 100] 
Positive [20 100 200] 

Output (crisp values) [-200 -100 0 100 200] 
 
Table 5. Rule base of nonlinear fuzzy controller  
                    Error                                                                          
Int Error 

Negative Zero Positive 

Negative’ -200 -100 0 
Zero’ -100 0 100 
Positive’ 0 100 200 
 
Table 6. Fuzzy Controller characteristics 
NumInputs 2 
NumOutputs 1 
NumRules 9 
AndMethod Prod 
OrMethod Probor 
ImpMethod Prod 
AggMethod Sum 
DefuzzMethod Wtaver 
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By suitably modifying the fuzzy sets of the first and second 
input, it was possible to obtain a non-linear PI fuzzy controller 
(Nonlinear FLC) characterized by high-performance (Fig. 8B).  
 

 
Fig. 8. Rule surface for linear fuzzy controller (A) and nonlinear 
fuzzy controller (B).  
 
The following Fig. 9 graphically shows the input, output and 
Sugeno fuzzy inference system that has been implemented into 
the adopted nonlinear fuzzy controller. 
 

 
Fig. 9. Input, output and Sugeno fuzzy inference system for nonlinear 
fuzzy controller.  

D. Simulation at closed loop  
The qualification of the control system and the performance of 
the controller, either the conventional PI or the nonlinear fuzzy 
controller, have been investigated in simulation.  
First, the “servo” problem has been analyzed in detail, then the 
“regulator” problem has been investigated and, finally, the two 
above cases have been taken into account simultaneously. 
Servo control 
The “servo” problem has been tackled by taking into account a 
reasonable change in set point, e.g., a step down in bed 
temperature from a steady-state value of 1177 K to 1160 K. 
The time trajectory of the system temperature (K) following 
the set point step at t = 1000 s, for fixed values of Qse 
= −8000 W and csp_irradiance = 750 W/m2, is shown in Fig. 
10A.  

 
Fig. 10. A) Time trajectory of the system bed temperature (K), for set 
point value step change from 1177 a 1160 K at t = 1000 s, at fixed 
values of Qse = -8000 W and csp_irradiance = 750 W/m2   - B) Zoom 
of Fig. 10A.  
 
It is easy to note that only with the nonlinear fuzzy controller it 
is possible to reach the new set point and remain on it, without 
falling below this value and approaching it only after a long 
time. In particular, with the zoom shown in Fig. 10B, it is 
possible to note on one side just a negligible overshooting for 
the fuzzy controlled system, on the other side an evident 
downward peak for the PI controlled system.  
The same analysis has been repeated in simulation by taking 
into account a reduced-size change in set point under the same 
conditions. Fig. 11 presents the time trajectory of the bed 
temperature following a set point step down of –7K, i.e., from 
1177 to 1170K. This simulation confirms the previous finding, 
with the fuzzy controller showing a better performance than 
the conventional PI. Moreover, a similar analysis has been 
repeated in simulation by taking into account a step up in set 
point under the same conditions. In Fig. 12 the time trajectory 
of the bed temperature (K) is shown for a positive set point 
change from 1177 K to 1220 K, at t = 1000 s, for fixed values 
of Qse = -8000 W and csp_irradiance = 750 W/m2. 
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Fig. 11. A) Time trajectory of the system bed temperature (K), for set 
point step down from 1177 to 1170 K at t= 1000 s, at fixed values of 
Qse = -8000 W and csp_irradiance = 750 W/m2   - B) Zoom of Fig. 
11A. 
 
The system response shows an overshoot of about the same 
size for both the conventional PI and the nonlinear fuzzy 
controller. However, past the overshoot, the system controlled 
by PI controller crosses the new set point line and drops below 
it, whereas the system controlled by fuzzy controller reaches 
the new set point value and remains on it just at its second 
crossing point, thus demonstrating to be more efficient and 
faster.  
On the basis of results in Figs.10 through 12, it is easy to 
conclude that the superiority of the fuzzy controller does not 
depend on either step amplitude or step change sign. 

 
Fig. 12. Time trajectory of the system bed temperature (K), for set 
point value step change from 1177 to 1220 K at t = 1000 s, at fixed 
values of Qse = -8000 W and csp_irradiance = 750 W/m2.  
 

In Fig 13 the time trajectory of the system bed temperature (K) 
is reported for a further simulation in which the set point 
undergoes a number of random step variations, at fixed values 
of Qse = -8000 W and csp_irradiance = 750 W/m2.  
Also in this case the results confirm the better performance of 
the fuzzy control, for both positive and negative step changes.  
 

 
Fig. 13 - A) Time trajectory of the system bed temperature (K), for 
set point value random variation at fixed value of   Qse = -8000 W 
and csp_irradiance = 750 W/m2.  
 
Only with fuzzy control the system can reach and settle to the 
new set point value before the set point changes again its value 
randomly.  
 
 Regulatory control 
In a further simulation (Fig. 14) the closed loop performances 
of nonlinear fuzzy control and traditional PI control are 
compared following a step down change in disturbance (i.e., 
csp_irradiance), from 750 down to 0 W/m2 at t = 100 s, for a 
fixed value of Qse = -8000 W. It is as if during the operation 
of the system, at some point, the solar energy collector became 
unable to capture energy anymore (e.g., clouds obscure the 
sun).  

 
Fig. 14. - A) Time trajectory of the system bed temperature (K), for 
csp_irradiance (disturbance) value step change from 750 to 0 W/m2 
at t= 1000 s, at fixed value of Qse = -8000 W  - B) Zoom of Fig. 14 
A.  
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Although the dynamics are much faster and the oscillations 
less pronounced than in the “servo” problem, it is possible to 
note in the zoomed region (Fig. 14B) that the nonlinear 
controller FLC is a bit faster than the PI in rejecting the 
disturbance and precisely keeping the set-point value of 
1220K.  
 
Servo and regulatory control 
In this analysis, the effects of set point change and disturbance 
variation are summed in simulation. This time a ramp change 
was considered for the disturbance (csp_irradiance) rather than 
a step starting at t=1000 s with a slope = -0.03. Following the 
previous discussion after Fig. 7, a linear change for 
csp_irradiance is more realistic than a step change; in a sunny 
day, in fact, the sun is likely to be obscured by clouds 
gradually and not abruptly. Vice versa, the bed temperature 
was changed by a down step from 1177 to 1150 K 
simultaneously at t = 1000 s. The overall system response in 
reported in Fig. 15. 
The simulation results in Fig. 15 evidently confirm the 
preference for the non-linear fuzzy controller also in this case. 
Hence, the fuzzy controller proves to be a good choice for 
both servo and regulatory control. 
 

 
Fig. 15. - A) Time trajectory of the system bed temperature 
(controlled variable) following a ramp in csp_irradiance 
(disturbance) at t = 1000 s with initial value 750 W/m2 and slope = -
0.03, for a fixed value of Qse = -8000W   
- B) Zoom of Fig. 15 A.  

V. CONCLUSIONS  
A feedback control system has been conceived, tuned and 
simulated for a cogeneration system driven by two renewable 
energy sources: direct solar and biomass combustion. In the 
simulations the system bed temperature was considered as the 
controlled variable, while the solar irradiance as a disturbance 

and the biomass feed rate as the control variable (manipulation 
variable).  
Two different approaches were chosen for the choice and the 
development of controllers, the first conducted to a traditional 
PI controller, the second to a more advanced nonlinear fuzzy 
controller.  
When compared to the conventional PI controller, the 
nonlinear FLC controller clearly and widely demonstrated to 
yield a better performance, in terms of response oscillation, set 
point following, velocity and rejection of disturbances. 
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