

Abstract—A huge quantity of learning tasks have to deal
with sequential data, where either input or out-put data can
have sequential nature. This is the case,e.g., of time series
forecasting, speech recognition,video analysis, music
generation, etc., since they all require algorithms able to model
sequences. Duringrecent years, recurrent neural networks
(RNNs) architectures have been successfully used in one as
well as for multidimensional sequence learning tasks, quickly
constituting the state of the art option for extracting patterns
from temporal data. Concerning financial applications, one of
from the most important examples of sequential data analysis
problems is related to the forecasting the dynamic in time of
structured financial products. To this end, we compare
different RNNs architectures. In particular we consider the
basic multi-layer RNN, long-short term memory (LSTM) and
gated recurrent unit (GRU) performances on forecasting
Google stock price movements. The latter will be done on
different time horizons, mainly to explain associated hidden
dynamics. In particular, we show that our approach allows to
deal with long sequences, as in the case of LSTM. Moreover
the obtained performances turn out to be of high level even on
different time horizons. Indeed, we are able to obtain up to
72% of accuracy.

Keywords— Artificial neural networks, Deep Learning,
Financial forecasting, Gated recurrent unit, Long short-term
memory, Multi-layer neural network, Recurrent neural
network, Stock markets analysis, Time series analysis.

I. INTRODUCTION

Neural networks (NNs) have been widely recognized as
very powerful machine learning models, achieving state-of the
art results in a huge range of different machine learning tasks.
In perspective of artificial intelligence algorithms NNs are
known as connectionist models, since they consist of basic
connected units, the artificial neurons, which are jointly
combined in layers, that can learn hierarchical representations.
During last years, also thank to the exponential growth of
computational power, the area of artificial intelligence has
gone through a relevant development. The latter is witnessed
by the born of the so called deep learning applications.

L. Di Persio - Department of Computer Science - University of Verona -
(corresponding author - e-mail: luca.dipersio@univr.it)

O. Honchar - Department of Computer Science - University of Verona
(e-mail: oleksandr.honchar@univr.it).

Basically, deep learning models are neural networks with very
large size of representation hierarchy, an example being given
by multilayer perceptrons (MLPs).

However, such models still suffer of some serious
limitations. In fact, when working with sequential data, we can
not process related time series at every time step, and saving
some entire state of the sequence. This is why, in such
scenario, the RNNs option can help a lot. Indeed, RNNs are
still connectionist type models, but they pass input data inside
the network across time steps, hence processing one element at
a time. Different choices to representt emporal data can be
given using Hidden Markov Models (HMMs), which are often
implemented to model time series as the realization of
probabilistically dependent sequence of unknown states. In
this context, the usual algorithmic tool is the Viterbi dynamic
programming algorithm, that performs efficient inference
scales with quadratic time. Since the implementation of RNNs
depends only on one single input in a time, this allows to speed
up the task when compared with the HMMs approach. It is
worth to mention that other, more classical methods can be
used to model and forecast time series, as in the case of, e.g.,
ARMA, ARIMA, GARCH, etc., or using stochastic filter, such
the Kalman filter, and switching models approach, as in, e.g.,
[3, 4]. Nevertheless, black box methods, like the NNs ones, are
appealing because they require no prior assumptions on the
stochastic nature of the underlying dynamics, see, e.g., [5], and
references therein. . The same type of limitations also
characterize stochastic filter tools, as for the Kalman case,
especially when we aim at studying financial data. Indeed, the
Kalman filter does not have enough features to capture rapid
movements of stock prices, particularly in case of financial
turbu lence, high volatility regimes and complex,
interconnected financial networks, see, e.g., [2], and references
therein.

Machine learning models in general, and NNs in particular,
have been successfully applied in finance, both for forecasting
and hedging purposes. For example, portfolio optimization
problem [15], where neural networks, genetic algorithms,
reinforcement learning, were applied obtaining very promising
results. Such type of models can be also applied within the risk
management scenario, where risky assets, see [14], can be
classified in supervised way by mean of classical machine
learning algorithms as random forests, or by using complex
classifiers, as deep Nns. In the present paper we consider the
forecasting problem of stock price prediction. Concerning the

Recurrent neural networks approach to the
financial forecast of Google assets

Luca Di Persio and Oleksandr Honchar

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 7

mailto:luca.dipersio@univr.it

latter we would like to underline that different approaches
have been already proposed. Even taking into account only the
NNS ones, we can applications belonging to the MLPs
methods, see, e.g., [16], convolutional neural networks
(CNNs), see, e.g.,[6], Elman neural networks, see, e.g., [10],
etc. We decided to focus our attention on the analysis of last
state of the art RNNs architectures, paying particlar attention
to the GRU and the LSTM.

We also provide some preliminary results about hidden
dynamics inside these neural networks with visualization of
inner layers activations. In particular, we show on which
fluctuations of input time series RNNs are reacting. Our
analysis is based on Google stock prices data. Google (now
Alphabet Inc.) is one of the most fast growing company in the
world, being active on different technology markets, such as
web search, advertisements, artificial intelligence, self-driving
cars. It is a stable member of S&P Dow Jones Indices,
therefore, and there is a great financial interest concerning the
forecast of its stock performances. The fact that, due to stable
situation of high technologies market, the associated time
series dataset are not biased is a relevant feature of Alphabet’s
financial time series, particularly from the RRNs point of view.

II. RNN ARCHITECTURES - A: RNN

Typically a RNN approach is based on learning from
sequences, where the sequence is noting but a list of pairs
(x_t,y_t), where x_t, resp. y_t, indicates an input, resp. the
corresponding output, at a given time step t. For different types
of problems we can have a constant output value y_t=t, for for
the whole sequence, or we can choose between a list of desired
outputs for every single x_t. To model sequence, at every time
step we consider some hidden state. The latter allows the RNN
to understands the current state of a sequence, remembers the
context and processes it forward to future values. To every
new input x_t, a new hidden state, let us indicate it with h_t, is
added according to h_(t-1). In the context of so called regular
fully-connected neural networks, at every time step the RNN is
just a feed-forward neural network with one hidden layer with
an input x_t and an output y_t. Taking into account that we are
now considering a couple of inputs, x_t and h_(t-1) ,there are
three weight matrices, namely W_(hx),for weights from input
to hidden layer, W_(hh)from hidden to hidden, and W_(yh)
for the output’s weights. The resulting basic equations for
RNN are the following:

Figure 1: Recurrent neural network diagram

The training procedure for RNNs is usually represented by
the so called backpropagation through time (BPTT) algorithm.
The latter is derived analogously as the basic backpropagation
one. Since the weight update procedure is typically performed
by an iterative numerical optimization algorithm, which uses
n-th order partial derivative, e.g. first order in case of the
stochastic gradient descent, we need all the partial derivatives
of the error metric with respect to the weights. The loss
function can be represented by a negative log probability,
namely

To realize the BPTT algorithm, we first have to initialize all
the weight matrices with random values. Then the following
steps are repeated until convergence:

• U Unfold RNN for N time steps to get basic feed
forward neural network

• Set inputs to this network to zero vectors
• Perform forward and backward propagation as in a

feed-forward network for single training example
• Average gradients in every layer to update weight

matrices on every time step the same way
• Repeat steps above for every training example in

dataset

III. RNN ARCHITECTURES - B: LSTM

Basic RNNs perform particularly well in modeling short
sequences. Nevertheless, they show a rather ample set of
problems. This is, e.g., the case of vanishing gradients, where
the gradient signal gets so small that learning becomes very
slow for long-term dependencies in the data. On the other
hand, if the values in the weight matrix become large, this can
lead to a situation where the gradient signal is so large that the
learning scheme diverges. The latter is often called exploding
gradients. In order to overcome problems with long sequences
an interesting approach for long-short term memory has been
developed by Schmidhuber in [11], see the scheme of one
LSTM cell on figure 2.

Comparing to RNNs, LSTM’s single time step cell has a
more complex structure then just hidden state, input and
output. Inside these cells, often called memory blocks, there
are three adaptive and multiplicative gating units, i.e. the input
gate, the forget gate and the output gate. Both input and output
gates have the same role as in the RNNs input and outputs
cases, with corresponding weights. The new instance, namely
the forget gate, play the role of learning how to remember or to

st=t a nh(W hx x t+W hh s t−1+bt)

ot=s o f t m ax (W yh st) ,

−1
N

∑
i=1

N

ln p t a r get t
.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 8

forget its previous state. This latter feature allows to catch
more complex temporal patterns. The forward propagation
equations characterizing the LSTM gates, read as follows:

and for the forget state update, we have:

where x_t represents the input to the memory cell, while
W_i ,W_f ,W_c ,W_o ,U_i ,U_f ,U_c ,U_o are the weight
matrices, and b_i ,b_f ,b_c ,b_o are biases.

Figure 2: Long-short term memory cell diagram

IV. RNN ARCHITECTURES - C: GRU

In what follows we consider the Gated Recurrent Units
(GRUs), see[1]. Basically GRUs are supposed to solve the
problem affecting the RNNs architectures. In particular, they
use the same gates approach defining the LSTMs, but merging
the input gate with the and forget gate, and the same holds for
cell state as well as for the hidden state. The result is a lighter
model which is supposed to be trained faster, also performing
slightly better for some tasks, see [1]. The typical GRU cell
diagram can be represented as in figure 3.

Figure 3: Gated recurrent unit network diagram

The forward propagation equations of typical GRU gates, read
as follows:

where x_t ,h_t ,z_t ,r_t are, respectively, the input, the output,
the update gate, and the reset gate vectors, while W,U
represent the parameter matrices, and b_z,b_r,b_h are biases.
We would likt to mention the comparison considered by in
[12] between RNNs, LSTMs, GRUs and other variants of
RNNs architectures. The final result clearly show that they all
three basically produce the same performances.

V. DATA PREPROCESSING

In what follows we focus our attention on the GOOGL stock
prices, exploiting daily data for the last five years, i.e. 2012-
2016, see figure 4. Our goal is to forecast the movement’s
direction of the stock we are interested in, on the basis of
historical data. In particular we consider a typical time window
of 30 days of open price, high price, low price, close price and
volume (OHLCV) data. The first step consists in rescaling our
windows, e.g., by normalizing them as follows

or by a Min-Max type-scaling

To perform our analysis we have consider the [−1;1]. This is
because, as we better see later, NNs with hyperbolic tangent

it=σ (W i x t+U iht−1+bi)

c in t=t anh(W c x t+U c ht−1+bc i n
)

f t=σ (W f x t+U f ht−1+b f)

ot=σ (W o xt+U o ht−1+bo) ;

c t=f t⋅ct−1+it⋅c in t

ht=o t⋅t anh(c t),
zt=σ (W z x t+U z ht−1+bz)

r t=σ (W r xt+U r h t−1+br

ht=(1−zt)⋅H t−1+¿

+zt⋅tanh(W h xt+Uh(rt⋅ht−1)+bh

¿¿¿¿

z=
x−μ

σ
; μ=

1
N
∑
i=1

N

(x i) ;σ=√1
N
∑
i=1

N

(xi−μ)
2 ,

Xnor m=
X−X mi n

Xma x−Xmi n

.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 9

activation function will be used, the latter being characterized
by an inner activations range equals to [−1;1]. We underline
that our prediction object consists in the difference of close
prices of last day with respect to a time window and objective
range, namely considering the next day, the next 5 days, the 10
days, etc. The resulting differences are then binarized to better
show if the close price will go up, or down, which leads to the
use of binary vectors [1;0] and [0;1]. Our data set is a set of
normalized time windows of 30 minutes with corresponding
labels if price goes up or down. We split our dataset into a
train set and a test set, with a division of 90% to 10%,
respectively). Splits are done in historical order to simulate
real world situation, when

Figure 4: Close prices of GOOGL asset

we train on past data and try to predict future. To avoid
overfitting, we shuffle our test and train sets after splitting.
After splitting we see, that we have 45% of up labels and 55%
down labels in our test dataset. It will be a good test to check,
if our algorithm did not overfit - if it shows 55% of accuracy,
it shouldn’t mean that it predicts better then random guess, it
means that it just learnt the distribution in test dataset, with
other words, overfitted the dataset.

VI.EXPERIMENTAL RESULTS

In this section we provide the computational results re lated to
the training process. All NNs were trained using Keras, which
a NNs library written in Python for deep learning. Every
network was trained for 100 epochs. This high value has been
chosen because experimental results show that training on less
epochs causes the deep network to overfit test set and just
learn the distribution. Moreover, training for longer time is
necessary to better understand convergence trend. If after
some time cross-entropy error will start to grow, we can
choose model that has the best performance. As optimization
algorithm we have used the Adam approach, see [9], with
related gradients calculated with BPTT algorithm, while we
have used a GPU hardware, namely Nvidia GTX 860M, to
reduce computational costs.

A - Performance Analysis

For all RNNs we use the same pattern, namely a two stacked
recurrent layers. In this model the output of the first layer
constitutes the input of the second and so on, with one affine
layer on the top with softmax function on the output to re-
sample it as a probability distribution. The activation function
of cells is the tanh function, while the function for the inner
activation inside the cells is a sigmoid function. Moreover we
have use hard approximation of the sigmoid function to speed
up the whole procedure. Start weights for inputs are initialized
exploiting the Glorot uniform, see [17], hence we have

while the inner weights in cells are initialized with orthogonal
initialization described by Saxe, McClelland, and Ganguli in
[8]. The latter implies that They the weight matrix should be
chosen as a random orthogonal matrix, namely a square matrix
W such that If you modify this document for use with other

Results for prediction trend for the next day are shown on
figures from 5 to 10. The results are then summarized in table
on figure 12.

Figure 5: RNN loss within 100 epochs

Looking at the error plots we can easily see that regular RNNs
tends to overfit. In fact, cross-entropy value has its minimum
around the 70th epoch, starting to grow again after this. It
follows, that it is better to use early stopping technique, see
[13], to know when optimally stop the training scheme. In case
of LSTM and GRU, loss tends to decrease, so these networks
can be run more time and on more data, in case of GRU we
can see that convergence is smoother then with LSTMs. Time
consumption for training 100 epochs is in table 13 We also
tried to increase efficiency with dropout technique for U and
W weights, see [7], to LSTM and GRU. Nevertheless such

a=√ 12
f an in+f anou t

¿W∼U [−a ,a] ,

W T W =I .

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 10

approach did not show improvements for GRU and showed
small improvement, at around +2% for LSTM.

Figure 6: RNN accuracy within 100 epochs

Figure 7: LSTM loss within 100 epochs

Figure 8: LSTM accuracy within 100 epochs

Figure 9: GRU loss within 100 epochs

Figure 10: GRU accuracy within 100 epochs

Figure 11: Prediction accuracy for different ranges:
from 1 to 15 days

Architecture Log loss Accuracy
RNN 0.725 0.625

LSTM 0.629 0.665
GRU 0.629 0.67

LSTM + Dropout 0.645 0.681
GRU + Dropout 0.645 0.664

Figure 12: Losses and accuracy after training different
architectures

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 11

Architecture Time (sec)
RNN 49

LSTM 189
GRU 216

Figure 13: Time for training 100 epochs

are supposed to be totally random, while, in reality, next days
trend could be influenced by some earlier fluctuations. In
figure 11, results for 1-15 days of prediction have been
reported. The accuracy for next day is still not bad, about 66%,
but it is much better for 5 days horizon, about 72%, with a
small jump to 71% of accuracy on 10-days horizon prediction.
Nevertheless it is worth to mention that the latter is a test
which is dataset dependent result, and it should vary for
different assets. Generally, this plot is showing, that the better
horizon of prediction is 1 to 5 days, which totally makes sense.

B- Hidden Dynamics Analysis

To discover hidden behavior of RRNs we have provided a
visualization of activations after first recurrent layer. This idea
is inspired by the LSTMVis tool, see [18], that can be used to
understand hidden state dynamics in LSTM. We have the
hypothesis that RNNs can early detect trend of time series
movement because

Figure 14: Activation examples on random time windows

of given task to solve. On the figure 14, the black line
corresponds to some input time window, and the blue dashed
line shows the activations. As we can see, RNNs can discover
some useful patterns. In particular, if activation in some
moment goes to −0.5, this could be a signal that price will go
up in next couple of days, and vice-versa. Namely, if
activation goes to 0.5 it could mean that price is going to fall
in the closest future. The same holds for activations of second
recurrent layer. Such an approach can be used as a powerful
indicator also in more complex financial applications or, for
example, as an algorithmical trading signals. We intend to
deeply go through this latter topic , particularly from the
machine learning point of view.

VII. CONCLUSIONS

In the present paper we have applied some of the most
promising RRNs architectures, namely basic RNNs, LSTMs
and GRUs, to stock market price movement forecasting. We
have compared results trained on a daily basis for GOOGL
stock prices with respect to the last five years, showing that the
LSTMs approach is able to provide a high enough accuracy,
up to 72% for 5 days prediction horizon. This means that it can
be successfully applied in practice. We also show that to avoid
overfitting to the dataset, RNNs have to be trained for large
number of epochs, choosing final weights carefully with early
stopping.

Furthermore we have also performed the analysis of RNNs
hidden dynamics. The latter allows us to prove that NNs aren’t
not black box learning models with non interpretable inner
structure. In fact, visualizations of activations clearly show,
that NNs can learn useful patterns. In particular, they can
detect short term ups and downs in time series. These
activations can be used as indicators for further time series
analysis.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 12

In future research we plan to apply more bleeding-edge deep
learning approaches to financial time series. We will mainly
focus on the explanation of how neural attention mechanism,
bidirectional RNNs and more complex structures that were
successfully applied in NLP problems, can help in learning
important parts of time series of interest. We also plan to
perform more in-depth research of hidden behaviour of RNNs
to use inner activations as technical indicators or feature
selectors.

REFERENCES

[1] Y. Bengio, D. Bahdanau, H. Schwenk et al, Learning
Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation, 2014

[2] C. Benazzoli and L. Di Persio Default contagion in
financial networks, International Journal of Mathematics
and Computers in Simulation Volume 10, 2016, Pages
112-1175

[3] L. Di Persio and M. Frigo, Maximum likelihood approach
to markov switching models, WSEAS Transactions on
Business and Economics Volume 12, Pages 239-242,
2015

[4] L. Di Persio and M. Frigo, Gibbs sampling approach to
regime switching analysis of financial time series, Journal
of Computational and Applied Mathematics Volume 300,
Pages 43-55, 2016

[5] L. Di Persio and O. Honchar, Artificial neural networks
architectures for stock price prediction: Comparisons and
applications, International Journal of Circuits, Systems
and Signal Processing, Volume 10, Pages 403-413, 2016

[6] X. Ding, Y. Zhang et al, Deep Learning for Event-Driven
Stock Prediction, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence
(IJCAI), 2015

[7] N.Srivastava, G. Hinton et al, Dropout: A Simple Way to
Prevent Neural Networks from Overfitting Journal of
Machine Learning Research 15, 2014

[8] A. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to
the nonlinear dynamics of learning in deep linear neural
networks, 2014

[9] Diederik Kingma, Jimmy Ba Adam: A Method for
Stochastic Optimization, arXiv:1412.6980, 2015

[10] Jie Wang, Jun Wang Forecasting energy market indices
with recurrent neural networks: Case study of crude oil
price fluctuations, 2016

[11] S.Hochreiter, J.Schmidhuber Long-short term memory,
Neural Computation, 1997

[12] K. Greff, R. K. Srivastava et al, LSTM: A Search Space
Odyssey, 2015

[13] Girosi, Federico, M. Jones, Regularization Theory and
Neural Networks Architectures, Neural Computation
p.219–269 , 1995

[14] F. Butaru, Q. Chen et al, Risk and Risk Management in
the credit Card Industry , 2015

[15] E. Hurwitz, T. Marwala, State of the Art Review for
Applying Computational Intelligence and Machine
Learning Techniques to Portfolio Optimisation preprint,
2009

[16] M. Naeini, H. Taremian, Stock Market Value Prediction
Using Neural Networks, International Conference on
Computer Information Systems and Industrial
Management Applications (CISIM), 2010

[17] Xavier Glorot and Yoshua Bengio, Understanding the
difficulty of training deep feedforward neural networks.
International conference on artificial intelligence and
statistics, 2010

[18] H. Strobelt, S. Gehrmann, B. Huber et al, Visual Analysis
of Hidden State Dynamics in Recurrent Neural Networks,
2016

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 13

	I. INTRODUCTION
	II. RNN architectures - A: RNN
	III. RNN architectures - B: LSTM
	IV. RNN architectures - C: GRU
	V. Data Preprocessing
	VI. Experimental Results
	VII. Conclusions

