
 

 

 

Abstract—The two-dimensional system of nonlinear partial 

differential equations is considered. This system arises in 

process of vein formation of young leaves. Additive splitting 

and variable directions type finite difference schemes are used. 

Comparison of numerical calculations of the proposed 

methods are done. 
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I. INTRODUCTION 

HE main purpose of this article is to use the variable 

directions and additive splitting schemes for one system of 

nonlinear partial differential equations arising in various fields 

such as biology (e.g. vein formation of young leaves, see [20]). 

The two-dimensional system to be considered here has the 

following form: 
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where a , f , 21,=  are given functions of their 

arguments. 

Motivation for studying such system of equations can be 

provided as follows. Numerous phenomena, pertaining to 

physics, biology, medicine and so on are reasonably described 

in terms of the system of nonlinear partial differential 

equations of (1) - (3) type. If  
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where g  are given sufficiently smooth functions of their 

arguments, then system (1) - (3) describes the vein-formation 

in meristematic tissues of young leaves [20]. Here U  is the 

signal concentration and 1V , 2V  are diffusion coefficients for 

flux parallel to 1Ox  and 2Ox  axes, respectively. 

In [20] and [21] some qualitative and structural properties 

of solutions of the system (1) - (3) are established. In [2] 

investigations for one-dimensional analog of system (1) - (3) 

with two unknown functions U  and 1V  are carried out. The 

large theoretical and practical importance of the investigation 

and construction of approximate solutions of the initial-

boundary value problems for systems (1) - (3) are pointed out 

in [2] and [21]. In biological modeling there are many works 

where this and many models of similar processes are also 

presented and discussed (see, for example, [3], [10], [11], 

[21], [22], [25]-[29] and references therein). 

The complexity of the (1) - (3) model, besides of 

nonlinearity is due to its two-dimensionality. In general, 

numerical solution of multi-dimensional problems often is 

carried out by applying decomposition methods.  

The study of operator splitting techniques has a long history 

and has been pursued with various methods. Since alternating-

direction methods were introduced by Douglas, Peaceman and 

Rachford [4] - [7], [24] the methods of constructing of 

algorithms for the numerical solution of the multi-dimensional 
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problems of the mathematical physics and the sphere of 

problems solvable with the help of these algorithms were 

essentially extended. These procedures, which reduce the time-

stepping of multi-dimensional problems to locally one-

dimensional computations, have been applied in the numerical 

simulation of many physically important problems. At present, 

there are some effective algorithms for solving the multi-

dimensional problems (see, for example, [12], [19], [30], [31] 

and references therein). These algorithms mainly belong to the 

methods of splitting-up or sum approximation according to 

their approximative properties. Some schemes of the variable 

directions are constructed and studied in [1]. 

We should note that some questions of construction and 

investigation of the variable directions scheme and the average 

model of sum approximation as well as difference schemes for 

one-dimensional case for the (1) - (3) type systems are 

discussed in the papers [8], [9], [13] - [18], [23]. 

Our note is oriented on study of such questions. 

This article is organized as follows. In the Section 2 the 

differential problem is formulated and some its properties are 

given. In the Section 3 the variable directions difference 

scheme is constructed and its stability and convergence are 

given. The averaged model of sum approximation is also 

considered. Numerical examples are given in the Section 4 to 

compare the exact and numerical solutions and to show the 

efficiency of the constructed schemes. Comparison of 

numerical results for those schemes are done. We close with 

some concluding remarks in the last Section 5. 

II. DIFFERENTIAL PROBLEM AND SOME OF ITS PROPERTIES 

Nonlinear systems of partial differential equations 

describing various processes of diffusion are the subject of 

investigating for many scientists. 

The main features of such systems often are expressed in 

fact that they contain equations of different kinds, which are 

strongly connected to each other. Mentioned condition for 

each concrete system determines the usage of respective 

methods of research, because general theory is incompletely 

developed for such systems even in linear case. Naturally 

arises the questions of approximate solution of these problems 

which also are connected with serious complexities as well. 

The considered model, as we remarked in an introduction is 

connected with process of vein formation in meristematic 

tissues of young leaves. Mentioned model has the following 

form [20]:  
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 Here U  is the signal concentration and V , W  are 

diffusion coefficients for flux parallel to Ox  and Oy  axes, 

respectively, f  and g  are given sufficiently smooth 

functions of their arguments, which satisfy the following 

conditions:  

  Drfd <0 ,   Dsgd <0 , 

'( ) < , '( ) < ,f r D g s D  

where d  and D  are constants. 

In the parallelepiped  0,Q T  , where 

   0,1 0,1    and T  is a given positive constant, 

consider the system (4) with following boundary and initial 

conditions: 
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where   is the boundary of  . 

The essential difficulties arise in the processes of 

constructing, investigating and realization of the numerical 

algorithms for problem (4) - (6). Besides nonlinearity the 

complexity of studying such problems are conditioned also by 

its two-dimensionality. Therefore, naturally arises the question 

of reduction this problem to easier ones. In particular, it is very 

important to reduce the two-dimensional problem to the set of 

one-dimensional problems. 

Let us assume that 00 ,VU  and 0W  are given sufficiently 

smooth functions, such that  

cyxWcyxVcyxU  ),(,),(,),( 000 , 

where c  is positive constant. Suppose that all necessary 

consistence conditions are satisfied and there exists the 

sufficiently smooth solution of the problem (1) - (3). It should 

be noted that the uniqueness of the solution of the problem (1) 

- (3) is studied in [8]. 

Under the conditions on functions f , g  and 0V , 0W  it is 

not difficult to obtain the following estimates:  
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where c  and C  are positive constants. 
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III. TWO TYPE ECONOMICAL SCHEMES 

Later we shall follow notations from [30]. Introduce on the 

domain Q  the grids:  
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Let us correspond to the problem (4) - (6) following scheme 

of variable directions [13]:  
1
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Under the sufficiently smoothness of exact solution of the 

problem (4) - (6) the difference schemes (10), (11) 

approximate the problem (4) - (6) with the rate )( 2hO  . 

Let us introduce following notations for the errors: 

UuZ 11 = , UuZ 22 = , VvS =1 , WwS =2 . 

The following statement takes place.  

Theorem. If the problem (4) - (6) has the sufficiently 

smooth solution then finite difference scheme (10), (11) is 

stable and converges to the exact solution of the problem (4) - 

(6) when 0 , 0h  and the following estimate holds  
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Here C  is a positive constant independent of   and h , 

norms are discrete analogous of the norm of space 2L . 

Using continuous variant of the averaged model of sum 

approximation [9] let us correspond to problem (4) - (6) 

following decomposition finite difference scheme:  
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Here functions 1u , 2u  are defined on h ; v , w  - on 

 h1  and  h2  respectively. 

The statement analogical to Theorem above is true for the 

scheme (12), (13) too. The problem similar to (4) - (6) with 

Dirichlet boundary conditions on part of boundary and 

Neumman boundary conditions on other side is also studied. In 

this case instead of (2) the following boundary conditions are 

considered:  

(0, , ) = 0, ( ,0, ) = 0U y t U x t , 

1
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U x y t
V x y t y t
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y

U x y t
W x y t x t

y





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(14) 

where 1  and 2  are given functions. 

Let us note that boundary conditions here are dictated by 

biological viewpoint [20].  
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IV. RESULTS OF NUMERICAL EXPERIMENTS 

Numerous numerical computations are carried out by 

variable directions difference schemes (10), (11) and (12), 

(13). The numerical experiments agree with theoretical 

researches. We give here some of them. 

Let us consider the following problem:  

U U
V

t x x
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y y
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1= ( , , )
V U

V f V G x y t
t x
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   
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2= ( , , )
W U

W g W G x y t
t y
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with corresponding initial and boundary conditions: 

( ,0, ) = ( ,1, ) = 0U x t U x t , 

(0, , ) = (1, , ) = 0U y t U y t , 

0( , ,0) = ( , )U x y U x y , 

0( , ,0) = ( , )V x y V x y , 

0( , ,0) = ( , )W x y W x y . 

(16) 

 

For numerical experiments, with different kind functions 

,f g  and exact solutions, we use schemes (10), (11) and 

(12), (13) corresponding to problem (16), (17) with suitable 

right sides. 

In our numerical experiment we have chosen the right side 

so that the exact solution is given by  

),)(1(1)(1=),,( tyyxxtyxU   

2( , , ) = (1 ) (1 )(1 ),V x y t x x y y t t     

3( , , ) = (1 ) (1 )(1 )W x y t x x y y t t     

and  

    2

1
= =

1 (1 )
f g 

 
. 

The parameters used are =10M  and = 250K . 

Differences between exact and numerical solutions as well as 

CPU time at different time values are given in Tables 1 – 6. In 

Tables 1 – 3 results are obtained using scheme (10), (11) while 

in Tables 4 – 6 results are obtained using scheme (12), (13). 

 

Table 1: Absolute value of maximum errors and CPU time for u  

applying scheme (10), (11). 

t  CPU time Error for u  

0.2 0.074 0.00013912790131447 

0.4 0.148 0.00022425859907783 

0.6 0.224 0.00031286373416026 

0.8 0.301 0.00040788793632886 

1 0.378 0.00051151056363487 

 

Table 2: Absolute value of maximum errors and CPU time for v  

applying scheme (10), (11). 

t  CPU time Error for v  

0.2 0.074 0.00000712766408961 

0.4 0.148 0.00001730244454379 

0.6 0.224 0.00004804529821700 

0.8 0.301 0.00009668298990784 

1 0.378 0.00016425091499817 

 

Table 3: Absolute value of maximum errors and CPU time for w  

applying scheme (10), (11). 

t  CPU time Error for w  

0.2 0.074 0.00002916084998672 

0.4 0.148 0.00009005618525060 

0.6 0.224 0.00017715471240609 

0.8 0.301 0.00028758192640277 

1 0.378 0.00041715052893787 

 

Table 4: Absolute value of maximum errors and CPU time for u  

applying scheme (12), (13). 

t  CPU time Error for u  

0.2 0.072 0.00006973950435170 

0.4 0.146 0.00007422011594080 

0.6 0.221 0.00007890208614024 

0.8 0.295 0.00008480943243865 

1 0.369 0.00009205402490850 

 

Table 5: Absolute value of maximum errors and CPU time for v  

applying scheme (12), (13). 

t  CPU time Error for v  

0.2 0.072 0.00001634140038553 

0.4 0.146 0.00003786305693865 

0.6 0.221 0.00006202878270467 

0.8 0.295 0.00008875495749039 

1 0.369 0.00011818090303972 

 

Table 6: Absolute value of maximum errors and CPU time for w  

applying scheme (12), (13). 

t  CPU time Error for w  

0.2 0.072 0.00001662571352523 

0.4 0.146 0.00003781271060488 

0.6 0.221 0.00005790906416947 

0.8 0.295 0.00007978157763566 

1 0.369 0.00010625023389577 

 

As we see from Tables 1 – 6 the approximation error for 

variable direction difference scheme (10), (11) is smaller 

compared with scheme (12), (13). However, CPU time is 

better for the scheme (12), (13) than scheme (10), (11). We 

have carried out number of other experiments and observed 

the same situations. CPU time difference is more visible for 
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more complex test functions. 

We also computed errors for different values of time and 

space steps applying schemes (10), (11) and obtained rate of 

convergence confirming the theoretical result in Theorem from 

Section 3. Corresponding data are given in Tables 7 – 24. 

 

Table 7: Absolute value of maximum errors when 0.5t  for u . 

h    Error 

0.05 0.00125 0.00008575709159125 

0.04 0.0008 0.00005620840479086 

0.025 0.0003125 0.00002307500617572 

0.02 0.0002 0.00001502515952632 

0.01 0.00005 0.00000392916752282 

 

Table 8: The rate of convergence when 0.5t  for u . 

h    Rate for h  

0.05 0.00125 2.00121819226109000 

0.04 0.0008 1.99110315962800000 

0.025 0.0003125 1.99717930994037000 

0.02 0.0002 1.98529955671341000 

0.01 0.00005  

 

Table 9: The rate of convergence when 0.5t  for u . 

h    Rate for   

0.05 0.00125 1.00060909613054000 

0.04 0.0008 0.99555157981399900 

0.025 0.0003125 0.99858965497018500 

0.02 0.0002 0.99264977835670700 

0.01 0.00005  

 

Table 10: Absolute value of maximum errors when 0.5t  for v . 

h    Error 

0.05 0.00125 0.00008575709159125 

0.04 0.0008 0.00005620840479086 

0.025 0.0003125 0.00002307500617572 

0.02 0.0002 0.00001502515952632 

0.01 0.00005 0.00000392916752282 

 

Table 11: The rate of convergence when 0.5t  for v . 

h    Rate for h  

0.05 0.00125 1.99511955776888000 

0.04 0.0008 1.99752072425378000 

0.025 0.0003125 1.99878865036986000 

0.02 0.0002 1.99948010796618000 

0.01 0.00005  

 

Table 12: The rate of convergence when 0.5t  for v . 

h    Rate for   

0.05 0.00125 0.99755977888444200 

0.04 0.0008 0.99879576821464700 

0.025 0.0003125 0.99939432518493100 

0.02 0.0002 0.99974005398308900 

0.01 0.00005  

 

Table 13: Absolute value of maximum errors when 0.5t  for w . 

h    Error 

0.05 0.00125 0.00008575709159125 

0.04 0.0008 0.00005620840479086 

0.025 0.0003125 0.00002307500617572 

0.02 0.0002 0.00001502515952632 

0.01 0.00005 0.00000392916752282 

 

Table 14: The rate of convergence when 0.5t  for w . 

h    Rate for h  

0.05 0.00125 1.99455428960597000 

0.04 0.0008 1.99726462386849000 

0.025 0.0003125 1.99865609149270000 

0.02 0.0002 1.99942320548199000 

0.01 0.00005  

 

Table 15: The rate of convergence when 0.5t  for v . 

h    Rate for   

0.05 0.00125 0.99727714480298600 

0.04 0.0008 0.99863231193424400 

0.025 0.0003125 0.99932804574634800 

0.02 0.0002 0.99971160274099400 

0.01 0.00005  

 

Table 16: Absolute value of maximum errors when 1t  for u . 

h    Error 

0.05 0.00125 0.00024074087939129 

0.04 0.0008 0.00015728407178949 

0.025 0.0003125 0.00006418736860213 

0.02 0.0002 0.00004172715815061 

0.01 0.00005 0.00001084525005050 

 

Table 17: The rate of convergence when 1t  for u . 

h    Rate for h  

0.05 0.00125 1.98351010779040000 

0.04 0.0008 1.97259353943770000 

0.025 0.0003125 1.98408840973232000 

0.02 0.0002 1.98843583267871000 

0.01 0.00005  

 

Table 18: The rate of convergence when 1t  for u . 

h    Rate for   

0.05 0.00125 0.99175505389520200 

0.04 0.0008 0.98629676971885200 

0.025 0.0003125 0.99204420486615900 

0.02 0.0002 0.99421791633935300 

0.01 0.00005  

 

Table 19: Absolute value of maximum errors when 1t  for v . 
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h    Error 

0.05 0.00125 0.00015579938599405 

0.04 0.0008 0.00009981476150336 

0.025 0.0003125 0.00003903430252067 

0.02 0.0002 0.00002498844720772 

0.01 0.00005 0.00002498844720772 

 

Table 20: The rate of convergence when 1t  for v . 

h    Rate for h  

0.05 0.00125 1.99536624107410000 

0.04 0.0008 1.99759153642929000 

0.025 0.0003125 1.99883528950439000 

0.02 0.0002 1.99949990589306000 

0.01 0.00005  

 

Table 21: The rate of convergence when 1t  for v . 

h    Rate for   

0.05 0.00125 0.99768312053704900 

0.04 0.0008 0.99879576821464700 

0.025 0.0003125 0.99941764475219500 

0.02 0.0002 0.99974995294653000 

0.01 0.00005  

 

Table 22: Absolute value of maximum errors when 1t  for w . 

h    Error 

0.05 0.00125 0.00015579938599405 

0.04 0.0008 0.00009981476150336 

0.025 0.0003125 0.00003903430252067 

0.02 0.0002 0.00002498844720772 

0.01 0.00005 0.00002498844720772 

 

Table 23: The rate of convergence when 1t  for w . 

h    Rate for h  

0.05 0.00125 1.99465428371514000 

0.04 0.0008 1.99746978244626000 

0.025 0.0003125 1.99871907598386000 

0.02 0.0002 1.99945008701027000 

0.01 0.00005  

 

Table 24: The rate of convergence when 1t  for w . 

h    Rate for   

0.05 0.00125 0.99732714185756800 

0.04 0.0008 0.99873489122313100 

0.025 0.0003125 0.99935953799193100 

0.02 0.0002 0.99972504350513300 

0.01 0.00005  

 

V. CONCLUSION 

Numerous numerical experiments are done for the problem 

(4) - (6) using studied (10), (11) and (12), (13) schemes. 

Carried out numerical experiments show that in all cases 

numerical solutions fully agree with the theoretical results. The 

approximation error for variable direction difference scheme 

(10), (11) is smaller compared with scheme (12), (13). 

However, CPU time is better for the scheme (12), (13) than 

scheme (10), (11). We have experimented number of 

experiments and computed absolute value of maximum errors 

for different time and space steps and calculated rate of 

convergence of the (10), (11) scheme. In all cases results of 

numerical experiments are in accordance to the theoretical 

findings.  
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