
 

 

  
Abstract—The proposed work develops a methodology to design 

a state feedback- two term (2T) controller via composite nonlinear 
feedback (CNF) controller for reference tracking of multivariable 
linear time delay system in presence of input saturation. Basic 
composite nonlinear feedback (CNF) controller only deals with 
present state whereas 2T controller deals with present and past both 
the states. Comparative study of controllers (CNF & 2T) proves the 
superiority of 2T in terms of damping characteristics and fast 
transient response. The efficiency of the proposed technique is 
validated through simulation results. Stability is proven by delay 
independent analysis via Lyapunov-Krasovskii functional. Unknown 
parameters are found with the help of Linear Matrix Inequalities 
(LMI) toolbox. 
 

Keywords— Composite Nonlinear Feedback Technique, 
Lyapunov-Krasovskii functional, Time Delay, State Delay. 

I. INTRODUCTION 
YNAMICAL systems, such as networked control 

systems, electrical networks, aircrafts, etc, have the 
feature of time varying or time constant delays in system states 
[1-4], control inputs [9] or measurements [6] which can be the 
major cause of instability and performance degradation. This 
reason captivates researchers in this area from many years and 
so the analysis of stability and controllers in this area are done 
to unfold the complications due to time delay. In past decades, 
many outcomes on delay-independent or delay-dependent 
stability analysis and controller design for time delay systems 
have been achieved by performance evaluation with the help 
of Lyapunov–Krasovskii functional method [3,14] and the 
Razumikhin lemma [16]. These methods provide solutions in 
the form of LMIs and Riccati equations which can be solved 
by LMI toolbox [18] or YALMIP toolbox in MATLAB [8]. 
But the choices of these functions are critical for deriving 
stability criteria. There are some special forms that reduce 
complexity in these functions for delay dependent and 
independent both cases. In neural systems, delay appears in the 
state and state derivative both and so complexity increases but 
proper choice of Lyapunov–Krasovskii function makes the 
stability analysis simpler [3]. 
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The output regulation for linear delayed systems subject to 

input saturation and state delays are major area in literature [1, 
12, 15] and the references therein. The topic of analysis and 
synthesis of controllers for these systems has attracted 
considerable attention. When the actuator is saturated, the 
performance of the control system is severely destroyed. To 
resolve this problem, suitable design procedures are required 
since control system is subjected to saturation part.  

 
During the past years, many methods have been reported to 

deal with saturation and time delay problems. Many 
controllers like H-infinity controller [3], backstepping 
controller [5], sliding mode controller [2], etc had proven the 
robustness in the performance of time delayed systems. But 
most of these controllers are unable to provide small overshoot 
and fast response simultaneously in tracking problems. They 
have to compromise between these two characteristics. A CNF 
controller resolves the issue of compromising either transient 
characteristics [7, 10]. CNF control consists of two feedback 
laws: linear and nonlinear which does not contain any 
switching element. The linear feedback law improves damping 
ratio to attain a fast response and the nonlinear feedback law 
tunes the damping ratio to minimize the overshoot which is 
due to linear part [10].  

 
Moreover, this controller can be applied to the systems 

having external disturbances or with no disturbances and time 
delayed systems [1].  

 
In this paper, a 2T controller is presented which claims that 

adding a simple delay in conventional CNF control, 
performance of closed loop system becomes robust. 
Previously, a memory-less state feedback control effort  
(u = kx(t) ) has been designed for solution to delay problems 
[1].  Two term control is created using present and delayed 
states which improve the performance of time delayed system 
because delayed part in control law deals with information of 
past states [3].     

State delayed linear system is chosen for performance 
analysis  which   is   shown   by  a  comparison     through 
numerical     example     which    proves       that       the       2T       
control   law    improves    damping    characteristics       and 
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the transient response becomes faster in comparison to one 

term controller. Later sections of the paper are categorized 

as follows: 

Section II gives problem formulation followed by 

controller design in Section III. Stability analysis is given in 

Section IV and comparison by simulation results is shown 

in Section V. Section VI gives the concluding remarks. 

II. PROBLEM FORMULATION 

A  linear system with time delay can be expressed as: 

               

1

( ) ( ) ( ) ( )

( ) ( )
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where, , , diA B A and C  are system parameters, ( ) nx t 

is state vector, control input is ( ) mu t  , i  is time delay 

and ( ) Py t  is output of the system. N is the number of 

delay introduced in state vector. ( )t is the initial condition 

that ensures the uniqueness and smoothness of (1).  

The saturation function is defined as: 

                    
( ) ( )min( , )i i i isat u sign u u u

     (2)
 

where 1, 2,....,i m and iu  is the maximum control effort of  

thi  channel.  

To track a reference model output ( )my t precisely and 

quickly, a feedback control law is designed in this paper. 

This reference model can be described as: 

                              

( ) ( )

( ) ( )

m m m

m m m

x t A x t

y t C x t




                             (3)

 

where, ( ) mn

mx t  is state vector and ( )my t  is output of the 

reference model which has same dimension as ( )y t . Also 

there is a requirement to bound ( )mx t
 
 [15]. Choice of 

bound is 
2 *( )mGx t M , where M 

 is a positive bounded 

value (this choice will be clear in later section). To force 

the output of the system to track reference proximately, two 

matrices G mn n
 and H mm n

   are introduced [1] as: 

                        
0

m

m

GAA B G

CC H

    
     

                                (4)

 

The solution of (4) is assumed to be controllable and 

number of inputs (m) should always be greater than or 

equal to number of output (p) such that: 

  
0

A B
rank n p

C

 
  

 
      (5) 

Rewriting (4) as: 

  
11 12

21 22

m

m

GAl lG

Cl lH

   
    

     
       (6) 

(Calculation of (6) is taken from [1]) 

In later sections following notations are used: 

( )x t x , ( )
iix t x  , ( )m mx t x , ( ) dx t d x  ,

( , )my y  and ( ) ( )mx x t Gx t 
 

III. 2T CONTROLLER DESIGN 

In this section, CNF control law for state feedback is 

shown which is further unified with delayed state to form 2T 

controller followed by calculation of unknown parameters 

by Lyapunov–Krasovskii stability analysis and LMIs. At the 

end of this section error dynamics is shown. 

A. CNF Control Law 

For linear time delay system (1), before designing a CNF 

control law [10] some important assumptions are required 

i.e. ( , )A B  is controllable, ( , )A C  is observable and 

( , , )A B C is invertible without having any zero at 0.s   If 

above assumptions are true, then CNF control law is 

designed as: 

                              B L Nu u u 
                                   (7)

 

where, Lu  is a linear feedback law which improves the 

damping ratio and Nu is a non-linear feedback law which 

reduces the overshoot as soon as output of the system 

reaches the reference value. These two laws are: 

                          

( )L m

T

N

u Kx H KG x

u B P x

  


                      (8)

 

where, gain matrix m nK   and real symmetric matrix 
n nP   are chosen in order to make closed loop system 

asymptotically stable and   is a non-positive function 

(defined in next section) which is locally Lipschitz in y  

which plays a major role in changing the location of closed 

loop poles.  

B. Choosing a nonlinear function (  ) 

The nonlinear function  , can be chosen in order to tune 

the control law for improving the performance of closed 

loop system. The settling time is quick due to this nonlinear 

function and so tracking error will be small by proper choice 

of  . To adapt the changes in tracking,  can be selected as: 

                  0exp( ) my y     
                        (9)

 

where, 0, 0   are chosen for tuning the parameters 

and scaling parameter 0 changes with different tracking 

values created by my  as: 
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C. 2T Control law 

Two term control law is basically an addition of a delay 

state into a present state feedback (CNF) controller 
Bu

which can be expressed as: 

                              B d du u K x 
                              (11)

 

where, m n

dK   is the controller gain of delayed term. 

Here 
Bu  is function of present state, 

d dK x is function of 

delayed state and d  is a finite amount of feedback delay 

introduced with a purpose to improve dynamic response of 

the time delayed system [3]. 

Here present state controller is CNF controller which is 

presented in (7). Substituting (7) in (11), the 2T controller 

will finally forms: 

                      m N d du K x Hx u K x   
                      (12)

 

The controller parameters K , dK  and P are calculated 

by solving LMIs which are developed in later section. 

Feedback delay d  is chosen as: 

                  1 2max( , , , )Nd   
                             (13)

 

D. Lyapunov–Krasovskii Functional 

In terms of transformed state x , the behavior of (1) driven 

by controller (12), can be described as: 

1 1

( )
i d i

N N

c d d di d m di m

i i

x t A x B x A x B B Gx A Gx
 

 

      

               (14)

 

where,
c

A A BK  ,
d d

B BK and                

 ( ) ( )m d dsat u Kx Hx K x    
                      (15)

 

  Choosing Lyapunov–Krasovskii function to investigate 

stability and obtaining controller parameters for closed loop 

time delayed system as:                      

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i

i
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i
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t t
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t t d
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


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 
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 

 

 
     (16)

 

where, 0iR   and 0Q   with dimensions similar to P and x  

is initially assumed at rest. 

Taking derivative of V: 

      

1

1

2 ( ) 2
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d d i ii i
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i m m d d

i
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Substituting values from (14), (17) becomes:
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One may rewrite (18) as: 

               
2 2( )T T T

m mV Z Z x PB Gx Gx   
               (19) 

where,

1 2 1 2N dd m m mZ x x x x x Gx Gx Gx
   




        
N

T

mGx





 and  is shown in (22). 

According to bounds on reference model: 

 
2 *( )T

m m mGx Gx Gx M                     
(20)

 

this makes (19) as: 

             *2T TV Z Z x PB M                                    (21) 

As we know, if the Lyapunov function V  is positive 

definite ( (0) 0V  , ( ) 0V x  ) and the time derivative of V

is locally negative definite ( 0V  ), then the equilibrium is 

proven to be  local asymptotical stable. Hence, (21) is  local 

asymptotical stable if below conditions are satisfied: 

C1.   should be negative definite :    . Here is a 

positive constant chosen according to C3. 

C2. Tx PB  should be negative definite: 0Tx PB  . 

C3. According to (20), M 
is a positive bounded value 

[15, 19]. To nullify its effect on stability, we 

choose M  . 

C1. Substituting values of cA , dB , pre and post 

multiplying 
1P
 in for solving it in the form of LMI by 

using Schur Compliment formula [4, 17], we will get (23).  

where, 

1 1

1

( )
N

T T T

i

i

T P PA PBK A P K B P Q R P 



       

Assuming 
1Y P , dV K Y , S KY , 

1 1Q P QP  

1 1

i iR P R P   ,
1 1L P IP  , 

iE L , (23) becomes (24).  

C2. In Tx PB ,  contains saturated input channels. 

The following investigations are done to make this term 

negative definite for the sake of stability: 

 If input channels are unsaturated, i.e. maxu u  then 

from (12) and (15): 
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( )m N d d m d d

N
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         hence,  

T T T T
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       As we know  is a non-positive function and 

T Tx PBB P x  is positive function, hence 
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 If input channels exceed their upper bound i.e. 

maxu u : 

     

max

max ( )

m N d d

N m d d

Kx Hx u K x u

u u Kx Hx K x

   

   
                   (26)

 

This condition exists only when: 

max

max ( ) 0

m d d

m d d

u Kx Hx K x

u Kx Hx K x

  

   
 

From (15), above inequality becomes : 

 0   and 0T

Nu B P x   
                   (27)

 

  is non-positive and to satisfy (27)  

0T TB P x x PB  , hence 

0Tx PB   

 If input channels exceed their lower bound i.e. 

maxu u  : 

     

max

max ( )

m N d d

N m d d

Kx Hx u K x u

u u Kx Hx K x

    

    
                 (28)

 

This condition exists only when: 

max

max

( )

( ) 0

m d d

m d d

u Kx Hx K x

u Kx Hx K x

   

    
 

From (15), above inequality becomes : 

        0   and 0T

Nu B P x   
             (29)

 

  is non-positive and to satisfy (29)  

0T TB P x x PB  , hence 

0Tx PB   

C3. Value of M 
is calculated by bounded condition 

of mx  which is already explained in (20). 

E. Tracking Error Dynamics 

The tracking error of output is defined as: 

                      me y y 
                                         (30)

 

From (1) and (3) we can obtain: 

                        
( )me C x x 

                                  (31)
 

In order to make error dynamics zero, following 

assumptions are made : 

                         me C x x 
                                 (32)

 

Where C is a finite value. From (32) we can say: 

if 0mx x  then it yields 0e  . 

IV. NUMERICAL EXAMPLE AND SIMULATION RESULTS 

In this section the designed two term CNF controller is 

implemented on a second order time delay linear system 

with saturation and time invariant delays. 

Consider an example which is taken from [1, 20] 

described as: 

1 1.5

0.3 2
A 



 
  

, 
1

1 0

0 1
dA 



 
  

, 
2

0 1

0 0
dA



 
  

, 

10

1
B 

 
  

,  1 1C  , 2N  , 5u  , 

1 2 0.1sec    

Tuning parameters chosen as 0.126   and 1.12 

. Parameters of reference model (2) are : 

20 0

0 20
mA






 
  

,  5.2 2.6mC     

Initial conditions are taken as  (0) 4 2
T

x   and

 (0) 2 1.5
T

mx   . Here 400M    and the unknown 

parameters ( , , dP K K ) of controller are found by using 

LMI (24) and G and H are calculated via (6). The 

simulation results are: 

 

Figure 1. Trajectory of the system state 1x  

 

Figure 2. Trajectory of system state 2x  
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Figure 3. Tracking error of the trajectory. 

 

Figure 4. Control effort given  to the system. 

 

Figure 5. Outputs of reference model and system with CNF 

controller and two term CNF controller. 

Comparing the above simulation results it can be seen 

that tracking error reduces more quickly in 2T control 

than CNF control. The damping reduces and transient 

response improves due to effect of delay. Also figure.5 

shows that output tracking is much better in 2T 

controller. (CNF control parameters are taken from [1] ). 

V. CONCLUSION 

2T control law deals with the previous and present 

state information which improves the damping 

characteristics when compared with single term CNF 

control law in presence of state delay. The calculated 

controller parameters by solving inequalities formed by 

Lyapunov–Krasovskii functional, with the help of LMI 

Toolbox, ensures the stability of the given closed loop 

time delay system. From simulation studies we can 

conclude that by adding information of past state in 

controller (2T), transient response became fast and 

tracking error reduces quickly in comparison to present 

state controller (CNF). 
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