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Abstract—The paper establishes the design procedure for the
state feedback control of linear discrete-time systems, considerable
as an interposed design criterium in the form of linear matrix
inequalities. The goal is to design the feedback control which
guarantees bounded H2 performance index for the system transfer
function matrix and H∞ norm attenuation for the disturbance
transfer function matrix, both combined with D-stable circle region
parameters. Analyzing the criteria observance, the task is formu-
lated as a feasible problem subject to integral quadratic constraints
included in the Lyapunov discrete-time stability condition.
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I. INTRODUCTION

Tasks relating H2 and H∞ control design have been

studied by many authors (see, e.g., [6], [19], [24] and the

references therein), where H∞ control design is referred

mainly with the system frequency performances while H2

control synthesis sets more suitable achievement on the

system transient behavior [10], [21], [27]. Combining H2 and

H∞ performance analysis, a mixed H2/H∞ control problem

was formulated in [13] with the goal to optimize H2 norm

of the system transfer function matrix subject the constraint

on H∞ norm of the disturbance transfer function matrix. To

derive the state feedback synthesis conditions, the benefit

was substantiated by applying the continuous-time mixed

H2/H∞ performance criterion [2], [4], [7], [20], as well as

by formulating the appropriate computational linear matrix

inequalities (LMI) technique [8], [16], [22].

To apply LMIs in control law parameter alignment, the

H2/H∞ control design strategies for discrete-time linear

systems are analyzed in the paper. In the sense of common

practice [11], [25], the approach extends the design method

presented in [15] to obtain associated interposed design crite-

ria. Accordingly, exploiting an extended quadratic Lyapunov

function, the obtained parameters of the state controller are

designed relying on H2, H∞ constraints and combined with

D-stability circle region parameters in the set of LMIs.

The outline of this paper is as follows. Section II and

Section III. introduce the basic preliminaries in control law

parameter design, while in Section IV and Section V. new

results in design conditions are established and proven.

Section VI. illustrates the properties of the proposed design

conditions by a numerical example and in Section VII. some

conclusions are established.
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Throughout the paper, the notations is narrowly standard

in such way that diag[ · ] denotes a block diagonal matrix,

xT , XT denotes the transpose of the vector x and matrix

X , respectively, for a square matrix X < 0 means that X

is a symmetric negative definite matrix, In marks the n-th

order unit matrix, IR denotes the set of real numbers and

IRn, IRn×r refer to the set of all n-dimensional real vectors

and n× r real matrices, respectively.

II. BASIC PRELIMINARIES

In this paper, the discrete-time linear MIMO systems are

considered, described in the state-space form by the set of

equations

q(i+1) = Fq(i) +Gu(i) +Ed(i) , (1)

y(i) = Cq(i) , (2)

where q(i) ∈ IRn, u(i) ∈ IR r, and y(i) ∈ IRm are

vectors of the system, input and output variables, respec-

tively, d(i) ∈ IRp is a bounded unknown disturbance and

F ∈ IRn×n, G ∈ IRn×r, C ∈ IRm×n, E ∈ IRn×p.

The transfer function matrices to (1), (2) are

H(z) = C(zIn − F )−1G , (3)

Hd(z) = C(zIn − F )−1E , (4)

where a complex z is the transform variable of the transform

Z [17].

Quantifications of the effect of the input onto the output

of the system are the so-called H2 and H∞ norms of the

transfer function matrix H(z) and Hd(z), respectively.

Definition 1: [6] The H2-norm of the transfer functions

matrix (3) is defined as

‖H(z)‖22 =
1

2π
tr

π

∫
−π

H(ejω)H∗(ejω)dω , (5)

where z = ejω , ω is the frequency variable, j :=
√
−1 and

H∗(ejω) is the adjoint of H(ejω).

Definition 2: [23] The H∞-norm of the transfer function

matrix (4) is defined as

‖Hd(z)‖∞ = sup
ω∈〈−π,π〉

σo(Hd(e
jω)) =

= sup
ω∈〈−π,π〉

σo(eig(Hd(e
jω)H∗

d(e
jω)) ,

(6)

where σo means the largest singular value of the matrix

Hd(e
jω).

Definition 3: [12] A square matrix F is stable if every

eigenvalue of F lies in the unit circle in the plain of the

complex variable z. If F is stable, then the dynamical system

(1), (2) has the stable transfer function matrix (3), i.e., the

poles of all elements of H(z) lies in the unit circle in the

plain of the complex variable z.
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Proposition 1: [18] (Lyapunov inequality (LI)) The linear

discrete-time system (1), (2) with a bounded disturbance is

stable if and only if there exist a symmetric positive definite

matrix X ∈ IRn×n such that

X = XT > 0 , (7)
[

−X ∗

FX −X

]

< 0 . (8)

Hereafter, ∗ labels the symmetric item in a symmetric matrix.

Proposition 2: [3] (LMI region) A subset D of the

complex plane Z is called a stable circle LMI region if

D = {z ∈ C : fD(z) < 0} , (9)

where a, ̺ ∈ IR, ̺ ≤ a, 0 < a < 1 and

fD(z) =

[

−̺ z∗ − a

z − a −̺

]

(10)

is the LMI region characteristic function.

Related by the substitution

(X,FX,XF T ) ↔ (1, z, z∗) (11)

it yields

MD(F ,X) =

[

−̺X XF T − aX

FX − aX −̺X

]

< 0 (12)

and the matrix F of the discrete-time linear system (1), (2)

is D-stable if and only if there exists a symmetric positive

definite matrix X ∈ IRn×n such that

X = XT > 0 , (13)

MD(F ,X) < 0 . (14)

Proposition 3: [5] (quadratic performance) If the matrix

F of system (1), (2) is stable and d(i) is bounded then

∞
∑

i=0

(yT(i)y(i)− γ2
∞dT (i)d(i)) > 0 , (15)

where γ∞ ∈ IR is the H∞ norm of the discrete-time

disturbance transfer function matrix (4).

Proposition 4: [6], [14] (bounded real lemma (BRL))

The discrete-time linear system (1), (2) with a bounded

disturbance is stable if there exist a symmetric positive

definite matrix X ∈ IRn×n and a positive scalar γ∞ ∈ IR
such that

X = XT > 0 , γ∞ > 0 , (16)








−X ∗ ∗ ∗

FX −X ∗ ∗

CX 0 −γ∞Im ∗

0 ET
0 −γ∞Ip









< 0 . (17)

Lemma 1: If the matrix F of the system (1), (2) is stable,

then

γ2
2 = tr(CWoC

T ) , (18)

where

FWoF
T −Wo +GGT = 0 , (19)

while Wo ∈ IRn×n is a positive definite symmetric matrix

and γ2 ∈ IR is H2 norm of the discrete-time system transfer

function matrix H(z).

Proof: Since a solution of (1), (2) is

q(n) = F nq(0) +
n−1
∑

l=0

A(l)u(n− 1− l) , (20)

where

A(l) = F lG , (21)

then as an explicit test for linear independence of A(l) can

be used its Gramian [1]

W (n) =

n−1
∑

l=0

F lGGTF Tl. (22)

Pre-multiplying the left side of (22) by F and post-

multiplying the right side by F T results in

FW (n)F T =

=
n−1
∑

l=0

F l+1GGT (F T ) l+1 =
n
∑

l=1

F lGGTF Tl (23)

and, subtracting (22) from (23), it yields

FW (n)F T −W (n) = F nGGT (F T )n −GGT . (24)

Thus, considering that (20) for l = n insert the input variable

value u(−1) which is identically equal zero, and defining a

stationary solution W (n) = Wo, then (24) implies

FWoF
T −Wo +GGT = 0 . (25)

This concludes the proof.

Lemma 2: The matrix F of the system (1), (2) is stable and

‖H(z)‖2 < γ2 if there exists a symmetric positive definite

matrix X ∈ IRn×n such that

X = XT > 0 , (26)

FXF T −X +GGT < 0 , (27)

tr(CXCT ) > γ2
2 . (28)

Proof: Let (27) yields for a symmetric positive definite

matrix X . Then subtracting (19) from (27) leads to the strict

inequality

F (X −Wo)F
T − (X −Wo) < 0 (29)

and with X > Wo the Lyapunov property implies that (29)

is negative definite if and only if F is stable. Moreover, the

relation X > Wo gives

tr(CXCT ) > tr(CWoC
T ) = γ2

2 (30)

and so (30) implies (28). This concludes the proof.

III. STATE FEEDBACK DESIGN

By applying the controllable system (1), (2) and the

control law

u(i) = −Kq(i) , (31)

where K ∈ IR r×n, then the closed-loop system description

takes the form

q(i+1) = (F−GK)q(i)+Ed(i) = Fcq(i)+Ed(i) , (32)

y(i) = Cq(i) , (33)

where

Fc = F −GK . (34)
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Rewriting that

FcX = FX −GY , Y = KX , (35)

the standard LMI design conditions are given by the follow-

ing theorems (some of the proofs are omitted since evidently

imply from the formulas stated in Section II).

Theorem 1: (LI synthesis) The control (31) to the system

(1), (2) exists if there exist a symmetric positive definite

matrix X ∈ IRn×n and a matrix Y ∈ IR r×n such that

X = XT > 0 , (36)
[

−X ∗

FX −GY −X

]

< 0 . (37)

When the above conditions hold, the control law gain is

given as

K = Y X−1. (38)

Theorem 2: (BRL synthesis) The control (31) to the

system (1), (2) exists and ‖Hd(z)‖∞ < γ∞ if there exist

a symmetric positive definite matrix X ∈ IRn×n, a matrix

Y ∈ IR r×m and a positive scalar γ∞ ∈ IR such that

X = XT > 0 , γ∞ > 0 , (39)








−X ∗ ∗ ∗

FX −GY −X ∗ ∗

CX 0 −γ∞Im ∗

0 ET
0 −γ∞Ip









< 0 . (40)

When the above conditions hold, the control law gain is

given by (38).

Theorem 3: (D-stable LI synthesis) The control (31) to

the system (1), (2) exists and the closed-loop eigenvalues are

clustered in the D-stable circle region if for given a, ̺ ∈ IR,

̺ ≤ a, 0 < a < 1 there exist a symmetric positive definite

matrix X ∈ IRn×n and a matrix Y ∈ IR r×n such that

X = XT > 0 , (41)
[

−̺X ∗

FX −GY − aX −̺X

]

< 0 . (42)

When the above conditions hold, the control law gain is

given by (38).

Corollary 1: Considering the extended Lyapunov function

v(q(i))=qT(i)Pq(i)+
(1−̺)2−a2

1−̺

i−1
∑

l=0

qT(l)Pq(l) , (43)

where a, ̺ ∈ IR, ̺ ≤ a, 0 < a < 1 and a positive definite

matrix P ∈ IRn×n, then it yields for the first forward

difference of the Lyapunov function (43)

∆v(q(i)) = v(q(i+ 1))− v(q(i)) =

= qT(i+1)Pq(i+1)− qT (i)Pq(i)+

+ (1−̺ )2−a2

1−̺ qT (i)Pq(i) < 0 .

(44)

Using the disturbance free part of (32) then (44) implies

qT (i)
(

F T
c PFc − P +

(1−̺)2 − a2

1−̺
P
)

q(i) < 0 . (45)

The negativeness of (45) demands to be valid

F T
c PFc − P +

(1−̺)2 − a2

1−̺
P < 0 (46)

and premultiplying the left side of (46) and postmultiplying

the right side by the matrix X = P−1 leads to

XF T
c PFcX −X +

(1−̺)2 − a2

1−̺
X < 0 . (47)

Subsequently, the Schur complement property implies a

reformulated form of (47) as
[

−X + (1−̺ )2−a2

1−̺ X XF T
c

FcX −X

]

< 0 , (48)

while, moreover,

(1−̺ )2−a2

1−̺ X =

= (1−̺)X − (−a)X(1−̺)−1X−1(−a)X .
(49)

Thus, using the Schur complement property, either it yields
[

−X XF T
c

FcX −X

]

+

[

(1−̺)X −aX

−aX (1−̺)X

]

< 0 (50)

Thus, exploiting (35), it is evident that (50) is identical

with (42) which implies that D-circle stability region in

the design condition means a quadratic constraint on the

Lyapunov function, acceptable in the sense of the Lyapunov-

Krasovskii theorem [9].

Theorem 4: (H2 control synthesis) The control (31) to

the system (1), (2) exists and ‖H(z)‖2 < γ2 if there

exist symmetric positive definite matrices X ∈ IRn×n,

Z ∈ IRm×m and a matrix Y ∈ IR r×n such that

X = XT > 0 , Z = ZT > 0 , (51)




−X FX −GY G

∗ −X 0

∗ ∗ −Ir



 < 0 , (52)

[

X XCT

∗ Z

]

> 0 . (53)

When the above conditions hold, the control law gain is

given by (38).

Proof: Rearranging the inequality (27) by using the Schur

complement property it yields




−X FX G

XF T −X 0

GT
0 −Ir



 < 0 . (54)

Supplanting F in (54) by (35) modifies the LMI (54) as




−X FX −GY G

XF T − Y TGT −X 0

GT
0 −Ir



 < 0 . (55)

Prom this it follows easily (52).

By H2 control nomination the inequality (28) could be

minimized, but this form cannot be directly included into

the set of LMIs. Introducing the inequality

Z > CXCT = CXX−1XCT , (56)

with Z ∈ IRm×m being symmetric and positive definite,

and applying appropriate the Schur complement property,

then (56) implies (53). This concludes the proof.

Corollary 2: It is evident that

η = tr(Z) > tr(CXCT ) > γ2
2 . (57)
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IV. MULTI-OBJECTIVE DESIGN

An integration of the above presented approaches can be

formulated by the multi-objective principle.

Theorem 5: (D-stable BRL synthesis) The control (31) to

the system (1), (2) exists, ‖Hd(z)‖∞ < γ∞ and the closed-

loop system matrix eigenvalues are clustered in the D-stable

circle region if for given a, ̺ ∈ IR, ̺ ≤ a, 0 < a < 1
there exist a symmetric positive definite matrix X ∈ IRn×n

a matrix Y ∈ IR r×n and a positive scalar γ∞ ∈ IR such

that

X = XT > 0 , γ∞ > 0 , (58)










−̺X ∗ ∗ ∗

FX−GY −aX −̺X ∗ ∗

CX 0 −γ∞Im ∗

0 ET
0 −γ∞Ip











< 0 . (59)

When the above conditions hold, the control law gain is

given by (38)

Proof: The proof of this theorem is a modification of the

argument given in the Corollary 1.

Considering the extended Lyapunov function

v(q(i))=qT(i)Pq(i) + (1−̺ )2−a2

1−̺

i−1
∑

l=0

qT(l)Pq(l)+

+γ−1
∞

i−1
∑

l=0

(yT(l)y(l)− γ2
∞dT(l)d(l)) ,

(60)

where P ∈ IRn×n is a positive definite symmetric matrix

and γ∞ ∈ IR is the H∞ norm of the disturbance transfer

function matrix, then using (2) it yields

∆v(q(i)) = qT(i+1)Pq(i+1)− qT (i)Pq(i)+

+γ−1
∞ qT(i)CTCq(i)− γ∞dT(i)d(i)+

+ (1−̺ )2−a2

1−̺ qT (i)Pq(i) < 0 .

(61)

Now let, with (32) and the notation

qT
c (i) =

[

qT (i) uT (i)
]

(62)

the inequality (61) is written as

∆v(qc(i)) = qT
c (i)Pcqc(i) < 0 , (63)

Pc =

=

[

F T
c PFc−P+γ−1

∞ CTC + (1−̺ )2−a2

1−̺ P PE

ETP −γ∞Ip

]

,
(64)

while Pc < 0, Pc ∈ IR(n+p)×(n+p). Defining the transform

matrix

T = diag
[

X Ip

]

, X = P−1 (65)

and premultiplying the left side and postmultiplying the right

side of (64) by the matrix T then
[

XF T
c PFcX−X+γ−1

∞XCTCX+ (1−̺ )2−a2

1−̺ X E

ET −γ∞Ip

]

<0 .

(66)

As explained above, an equivalent form of (66) is
[

−̺X XF T
c − aX

F cX − aX −̺X

]

+

+

[

γ−1
∞XCTCX 0

0 γ−1
∞ETE

]

< 0

(67)

Thus, using (35) and applying the Schur complement prop-

erty then (67) implies (59). This concludes the proof.

V. INTERPOSED DESIGN CRITERIA

Combining the algorithms for H2 and H∞ control design,

as well as the D-stable circle constraints, the following

theorems can be introduced.

Theorem 6: (mixed H2/H∞ synthesis) The state feedback

control (31) to the system (1), (2) exists and ‖H(z)‖2 < γ2
as well as ‖Hd(z)‖∞ < γ∞ if there exist symmetric positive

definite matrices X ∈ IRn×n, Z ∈ IRm×m, a matrix Y ∈
IR r×n and a positive scalar γ∞ ∈ IR such that

X = XT > 0 , Z = ZT > 0 , γ∞ > 0 , (68)








−X ∗ ∗ ∗

FX −GY −X ∗ ∗

CX 0 −γ∞Im ∗

0 ET
0 −γ∞Ip









< 0 , (69)





−X FX −GY G

∗ −X 0

∗ ∗ −Ir



 < 0 , (70)

[

X XCT

∗ Z

]

> 0 . (71)

When the above conditions hold, the control law gain is

given by (38).

Proof: Setting down a unique solution of K within the above

conditions then (39), (40), (51)-(53) imply (68)-(71). This

concludes the proof.

Theorem 7: (interposed H2/H∞ synthesis) The control

(31) to the system (1), (2) exists, ‖Hd(z)‖∞ < γ∞,

‖Hd(z)‖∞ < γ∞ and the closed-loop system matrix eigen-

values are clustered in the D-stable circle region if for given

a, ̺ ∈ IR, ̺ ≤ a, 0 < a < 1 there exist symmetric positive

definite matrices X ∈ IRn×n, Z ∈ IRm×m, a matrix

Y ∈ IR r×n and a positive scalar γ∞ ∈ IR such that

X = XT > 0 , Z = ZT > 0 , γ∞ > 0 , (72)










−̺X ∗ ∗ ∗

FX−GY −aX −̺X ∗ ∗

CX 0 −γ∞Im ∗

0 ET
0 −γ∞Ip











< 0 . (73)





−X FX −GY G

∗ −X 0

∗ ∗ −Ir



 < 0 , (74)

[

X XCT

∗ Z

]

> 0 . (75)

When the above conditions hold, the control law gain is

given by (38).

Proof: This is an immediate consequence of the above LMI

conditions.

VI. ILLUSTRATIVE EXAMPLE

To illustrate the proposed method, a system whose dynam-

ics is described by equations (1), (2) is considered with the

sampling period ts = 0.01 s, the disturbance noise variance

σ2
d = 0.028 and the matrix parameters

F =









1.0142 −0.0018 0.0651 −0.0546
−0.0057 0.9582 −0.0001 0.0067
0.0103 0.0417 0.9363 0.0563
0.0004 0.0417 0.0129 0.9797









,

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017 

ISSN: 1998-0159 48



G=









0.0000 −0.0010
0.0556 0.0000
0.0125 −0.0304
0.0125 −0.0002









, E=









0.0063
0.0216
0.0131
0.0044









,

C =

[

1 0 0 1
0 0 1 0

]

.

Solving (39)–(40) using Self-Dual-Minimization (SeDuMi)

package, the H∞ control design problem is feasible while

X =









0.0755 0.0645 −0.0733 −0.0054
0.0645 1.0991 −0.0586 −0.1332

−0.0733 −0.0586 0.4652 0.0062
−0.0054 −0.1332 0.0062 0.2011









,

Y =

[

−0.0073 1.3335 0.3439 1.0031
−0.4794 0.0571 −2.3094 0.3805

]

,

which results the control loop structure parameters

K1 =

[

−0.6037 2.0568 0.8192 6.3077
−13.6687 0.7487 −7.0524 2.2354

]

,

ρ(F c) =
{

0.8320± 0.0842 i 0.8952± 0.0599 i
}

,

γ∞ < 1.7586 , tr (CXCT ) = 0.7309 > γ2
2 ,

Frobenius norm of K1 = 16.9464 .

Solving (68)-(71) then

X =









0.1415 0.1030 −0.1383 −0.0049
0.1030 1.3972 −0.1322 −0.1814

−0.1383 −0.1322 0.6909 0.0183
−0.0049 −0.1814 0.0183 0.3182









,

Y =

[

−0.0732 3.0467 0.5694 1.5381
−0.7805 0.0778 −3.8454 0.6599

]

,

Z =

[

1.3909 −0.0854
−0.0854 1.5655

]

, γ∞ < 3.1650 ,

K2 =

[

−1.7621 3.2559 0.9198 6.6108
−14.0272 0.6547 −8.3200 2.7112

]

,

ρ(F c) =
{

0.7671± 0.0499 i 0.9058± 0.0382 i
}

,

trZ = 2.9563 > tr (CXCT ) = 1.1409 > γ2
2 ,

Frobenius norm of K2 = 44.2207 .

On the other side, applying the D-circle parameters a = 0.5,

ρ = 0.41 the LMI-based conditions (58), (59) are solvable

with

X =









0.0243 0.0265 −0.0579 0.0120
0.0265 1.4924 −0.0659 −0.0588

−0.0579 −0.0659 0.3791 −0.0061
0.0120 −0.0588 −0.0061 0.0623









,

Y =

[

0.0643 2.9413 −0.0268 0.5633
0.0127 −0.0821 −3.0039 0.3096

]

,

which results the control loop structure parameters

K3 =

[

−8.2100 2.5999 −0.6640 13.0181
−37.4652 0.4664 −13.3803 11.3358

]

,

ρ(F c) =
{

0.7421± 0.0785 i 0.8306± 0.0817 i
}

,

γ∞ < 1.8527 , tr (CXCT ) = 0.4897 > γ2
2 ,

Frobenius norm of K3 = 18.2214 .
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Fig. 1. Closed-loop system output response - H∞
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Fig. 2. Closed-loop system output response - H2/H∞

while the common solution of (68)–(71) gives the following

result

Q =









0.0411 0.0437 −0.0969 0.0207
0.0437 2.0370 −0.1092 −0.0801

−0.0969 −0.1092 0.6430 −0.0142
0.0207 −0.0801 −0.0142 0.0958









,

Y =

[

0.0982 4.7108 −0.0011 0.9448
−0.0353 0.0164 −5.2944 0.5093

]

,

Z =

[

1.2588 −0.0725
−0.0725 1.5552

]

, γ∞ < 3.0524 ,

K4 =

[

−9.4462 3.0486 −0.5891 14.3629
−40.7424 0.6257 −13.9865 12.5492

]

,

ρ(F c) =
{

0.7210± 0.0856 i 0.8196± 0.0616 i
}

,

trZ = 2.8140 > tr (CXCT ) = 0.8213 > γ2
2 .

Frobenius norm of K4 = 48.1519 .

All simulations are done in the forced mode, where

u(i) = −Kjq(i) +Wjwo , j ∈ 〈1, 4〉 ,

the set of gain matrices is given above and the associated

signal gain matrices Wj are computed by using the static

decoupling principle [26] as

Wj = (C(In − (F −GKj))
−1G)−1.

Therefore, the signal gain matrices are given as

W1 =

[

0.9608 7.6607
−9.7879 7.6909

]

, W2 =

[

−3.8384 19.8243
−27.2241 32.4430

]

,

W3 =

[

0.1562 9.3619
−9.9902 7.1958

]

, W4 =

[

−4.5478 22.4230
−29.6214 36.1152

]

.
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Fig. 3. Closed-loop system output response - D/H∞
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Fig. 4. Closed-loop system output response - H2/D/H∞

The trajectories of the output of this system are drawn

for the system state initial vector q(0) = 0 and the desired

steady state vector of the output variables wT
o = [ 0.2 0.4 ].

The simulation results for H∞ and H2/H∞ methodology as

well as D/H∞ and H2/D/H∞ principle are presented with

respect to the closed-loop systems responses in the Fig. 1 -

Fig. 4.

From the numerical results above it can see that by

adding an additional H2 constraint, these new conditions

can provide comparable H∞-norm of the closed-loop distur-

bance transfer function but substantially decrease the value

of H2-norm of the closed-loop system transfer function.

Consequently, the feasible solutions can be obtained in the

same manner.

It is natural that in terms of closed loop system dynamics,

it is essential to define the pole cluster of the closed loop

characteristic polynomial by using the D-stability region,

also because it is linked to a common matrix of the Ljapunov

function verifying the closed-loop stability.

VII. CONCLUDING REMARKS

This paper modifies the use of a control design ap-

proach, destined for MIMO linear systems with disturbance

attenuations by using γ2 and γ∞ norms of the closed-

loop discrete-time transfer function matrices, solving the

interposed H2/D/H∞ control design task. Using a originally

constructed extended BRL with D-stability region parame-

ters, the problems of H∞ and H2/H∞ control are redefined

and proven, documenting that the D-circle stability region

means a new quadratic constraint on the Lyapunov function

in the discrete system stability condition.

The proposed control design method is linear and estab-

lished as a set of LMIs utilizing quadratic constraints. This

design strategy is easy implementable, making it an eligible

method to factual applications. The numerical example is

given to show the feasibility and advantage of the criteria.
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