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Abstract— This study presents a time efficient, exact analytical 
approach for finding the inverse, decomposition, and solving linear 
systems of equations where symmetric and symmetric circulant 
matrices appear is presented. A set of matrices are introduced that 
any symmetric circulant matrix could be decomposed into them as 
well as their straightforward inverse. After that, it will be shown how 
they could be used to find the inverse of the matrix. Moreover, 
solving related linear equations can be carried out using implemented 
decomposition for these special, prevalent matrices. 
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I. INTRODUCTION 

A N N×  matrix , ; , 0,1,...., 1n i jA a i j n = = −   is 

said to be symmetric if , ,i j j ia a=  and is said to be 
tridiagonal if it has nonzero elements only on the diagonal plus 
or minus one column. 

A circulant matrix is a special type of Toeplitz matrix. A 
N N×  matrix , ; , 0,1,...., 1n i jA a i j n = = −   is said to 

be Toeplitz if . 1, 1i j i ja a + += . A Toeplitz matrix is said to be 
circulant if the matrix is row-wise wrap-around, or simply the 
subscripts are taken modulo n. Thus a ciculant matrix can be 
written  
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2 1 0 3

1 2 3 0
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n n

n n n

a a a a
a a a a

A a a a a

a a a a
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− −

− − −
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 
 
 =
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



    
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In cases where only 0a , 1a  and 1na −  are nonzero, the 
matrix denoted by A is said circulant tridiagonal and if 

1 1na a −=  the matrix is symmetric circulant.  

Symmetric linear systems are very popular and prevalently 
appear in literature, such as electromagnetic scattering 
problem[1], molecular scattering [2], structural dynamics [3] 
and quantum mechanics[4]. There are a number of studies in 
literature that have focused on Toeplitz and circulant systems. 
Garey and Shaw [5] studied nonsymmetric Toepliz systems 
and nonsymmetric circulant systems. In the same manner, 
Nemani and Garey [6] presented a new stable algorithm for the 
solution of tridiagonal circulant linear systems of equationsBy 
making the transformation matrices, Zheng and Shon [7] 
studied the determinant and inverse of a generalized Lucas 
skew circulant matrix. Also, in very important applications the 
matrices of coefficients of these resulting systems are 
symmetric circulant and Toeplitz tridiagonal such as finite 
difference approximation solution of elliptic equations over a 
rectangle with periodic boundary conditions[8]. Vidal and 
Alonso [9] extended Rojo algorithm to the case of symmetric 
Toeplitz tridiagonal equations. In another study Broughton [10] 
represented an analytical formula for the inverse of a 
symmetric circulant tridiagonal matrix as a product of a 
circulant matrix and its transpose.  

The current study aims to present a new and comprehensive 
approach to decompose, calculate the inverse and solve linear 
system of equations where symmetric matrices and symmetric 
circulant matrices appear. It is worth noting that the method 
proposed in the current study is quite competitive with the 
Gaussian elimination, both in terms of arithmetic operations 
and storage requirements. A novel decomposition method is 
introduced that is used in the procedure. Using present method, 
the decomposition of symmetric circulant matrices may be 
found efficiently in 2( )O n and the inverse of that in 

2.3728639( )O n operations.  
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II. DECOMPOSITION METHOD 
 

Any matrix n nA ×  could be decomposed into n matrices as 

1 2.... ...m nA A A A A=  where  

1,

2,

1,

,1 ,2 1, ,

1 0 0 0 0
0 1 0 0 0

0
0 0 1 0

0
0 0 0 0 1

0
0 0 0 0 1

m

m
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m

m m m m m m
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g
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a a a a
−

−
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(2) 

 

 

Substituting iA  into Eq. (2) yields a closed formula for g's 
as follows: 

1 1
, 1 ,1 , 1 1, 1 1, 1( )

, 1
, ,1 , 1 1, 1,

( ) ( 1) ( ) ( )
, 1 , 1 , , 1

..... .....

..... .....
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g
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   −    
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(3) 

For ( 1,2,..., 1, 1, 2,..., 1, )i n s i k i= − = − = .  If we 

apply the Gaussian elimination to TA , we can obtain a lower 
triangular matrix, L , and an upper triangular matrix, U , as 
follows:  

TLA U=  (4) 

By transposing this equation, we have: 

T TAL U=  (5) 

1, 2, 1,, , ,m m m mg g g −  are found as: 

1,2 1,3 1,

2,3 2,

1,

1
0 1
0 0 1

0 0 0 1

n

n
T

n n

g g g
g g
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g −

− − − 
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(6) 

What makes the application of MDM even simpler is that 
for triangular matrices all g’s are zero. Consider a lower 
triangular matrix of order n to demonstrate the idea: 
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(7) 

Applying the MDM to this matrix yields: 

1,1
2,1 2,2

4 4

,1 ,2 ,
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(8) 

The inverse of matrix A  is 

1
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(9) 

 

According to the above demonstration of the MDM, matrix 
operations, including finding the inverse of a lower triangular 
matrix, become much easier 

III. DECOMPOSITION OF A SYMMETRIC CIRCULANT NON-
DIAGONAL MATRIX 

 
An optimum strategy to invert a matrix is, first, to reduce 

the matrix to a simple form, only then beginning a 
mathematical procedure. For symmetric matrices, the preferred 
simple form is tridiagonal [11]. The matrices which could be 
solved with the present method would be all symmetric 
tridiagonal and symmetric circulant tridiagonal nonsingular 
matrices which appear in many researches , namely 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017 

ISSN: 1998-0159 62



 

 

computational fluid dynamics [12], and all symmetric circulant 
matrices could be transformed to this matrices using Givens 
rotation or householder method or other computational and 
analytical algorithms. Using present method tridiagonal 
symmetric matrix could be solved for inverting problem with 
one step less than procedure needed for the circulant symmetric 
matrix. In the case where only 0a , 1a  and 1na −  in Eq. (1) are 
nonzero, the matrix denoted by A is circulant tridiagonal and if 

1 1na a −=  the matrix is symmetric. Here we consider 0a c=  

and 1 1na a a−= =  for convenience 

, 2

0 0
0

0 0
0 0

0
0 0

n n

n n

A c a

c a a
a c a

a
a

a c a
a a c

×

×

= >

 
 
 
 
 
 
 
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 



 

  
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 



 

(10) 

Where 2c a>  denotes that the matrix is strictly diagonal 
dominant. The normalized form of the matrix is as: 

1 0 ... 0 1
1 1 0
0 1 0

0 1 1 0
0 1 1
1 0 ... 0 1

n n
n n n n

n n

d
d

A a a A

d
d

× ×

×

 
 
 
 

= = × 
 
 
 
  

 

  

 
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(11) 

Where acd /= . Let matrix n nK ×  be of the form 

1

1 2

2

1

1 2 1
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( ) ( )

( )
( ) 0

( ) ( ) ( ) ( )
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n
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f d f d

K f d
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×

−
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 
 
 =
 
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 

  
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

 

(12) 

Where matrix K  is a lower triangular alternant matrix, an 
inspired formula derived from Jacobi method, and if  are 
obtained from the following recurrence relation:         

1 1

0 1

( ) ( ) ( ),
( ) 0, ( ) 1 1,2,3,..., 1

i i if d df d f d
f d f d i n

+ −=− −
= = = −

 (13) 

The bidiagonal inverse of matrix K  could be obtained: 

1

2 2

3

1

1 0 0
( )
1 1
( ) ( )
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( )
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( )
1 10 0
( ) ( )

n n

n
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×

−

×

 
 
 
 −
 
 −=  
 
 
 
 − 
 

 
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(14) 

Based on Eq. (13), all entries of matrix 1−
×nnK are zero 

except for the elements of the main diagonal and subdiagonal. 
It can be seen in Eqs. (12) and (14) that matrix K  and its 
inverse have elements that can be calculated easily using Eq. 
(13) 

In cases where matrix A is tridiagonal the procedure is over 

here since matrix 
K

n nA ×  is an upper triangular matrix without 
having nonzero component at first column and last row. On the 
other hand, if matrix A is circulant tridiagonal it is needed to 
continue the procedure as follows 

Let matrix n nR ×  be of the form 

1 2 1

1 0 0 0
0 1 0

.0
0 0 1 0
( ) ( ) ( ) 1

n n

n n n

R

r d r d r d

×

− ×

 
 
 
 =
 
 
  



 

   





 

(15) 

Where matrix R  is a sparse matrix in a way that the entries 
of its last row are jr  except for the entry of the nth column of 
that row which is one and this matrix could be derived using 
Housholder transformation method. In Eq. (16) jr  can be 
calculated easily: 

)()(
)()()(

1

1

dfdf
dfdfdr

jj

n
j

+

= ,  1,...,3,2,1 −= nj  (16) 

The inverse of the matrix R  can be calculated using 
decomposition method: 
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Now let introduce matrix 1
kRA  

(17) 

2

1 3

2 4
1
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(18) 

In this matrix only one element should be computed which 
is )(1 dgn+  to generate matrix 1

kR
n nA × and  it can be obtained 

as follows: 

.)()()()(1)(
1

1
1111 ∑

−

=
−−++ ++−=

n

j
nnjnn dfdrdrdfdg  

(19) 

Or  
1

1 1 1 1
1

( ) 1 ( ) ( ) ( ), ( ) 1.
n

n n j
j

g d f d f d r d f d
−

+ +
=

= + − + =∑  
(20) 

Matrix 1
kRA  is a lower triangular matrix and its 

decomposition and inverse can be obtained using Eqs. (6). 
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Displa        

In order to illustrate the decomposition of matrix A  to 
these three matrices, we have: 

( ) ,1
1

11 TkRARK
a

A −−=  (22) 

Eq. (22) represents a decomposition of matrix A into three 

sparse and easy to calculate matrices. 
1−K  is calculated in Eq. 

(14), 
1−R   in Eq. (17), and 

KRA1  using Eq. (18). Using this 
decomposition, the inverse of matrix A can easily be derived as 
follow: 

( )[ ] RKA
a

A
T

kR 1

1
1 1 −− =  (23) 

However, based on Eq. (23), the linear system of bAX =  
may be solved easily as bAX 1−= . In addition, as a different 
approach to solve bAX = , we have the following relation 
based on Eq. (21): 

( ) bXAbXAbXAaRKbAX kRTkR =→=→=→= 1  (24) 

Where aRKbb = . With respect to the last equation of Eq. 
(24) which is an updated form of bAX = , the values of X  
can be easily obtained using gauss method (back substitution). 

IV. NUMERICAL EXAMPLE  
Now let us consider the following 5x5 ciculant tridiagonal 

symmetric matrix: 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
5 2 0 0 2
2
0
0
2

5
2
0
0

2
5
2
0

0
2
5
2

0
0
2
5⎦
⎥
⎥
⎥
⎤
,𝐴𝐴� =

⎣
⎢
⎢
⎢
⎡
2.5
1
0
0
1

1
2.5
1
0
0

0
1

2.5
1
0

0
0
1

2.5
1

1
0
0
1

2.5⎦
⎥
⎥
⎥
⎤
𝑑𝑑 =

2.5 , 𝑎𝑎 = 2 
From Eq. (10) 𝑓𝑓𝑖𝑖  are calculated as follow: 

𝑓𝑓2 = −2.5, 𝑓𝑓3 = 5.25, 𝑓𝑓4 = −10.625, 𝑓𝑓5 = 21.3125, 
𝑓𝑓6 = −42.6566   

Subsequently matrix 𝐾𝐾 is calculated by using Eqs. (10) and 
(12): 

 

𝐾𝐾 =

⎣
⎢
⎢
⎢
⎡
1
1
1
1
1

0
−2.5
−2.5
−2.5
−2.5

0
0

5.25
5.25
5.25

0
0
0

−10.625
−10.625

0
0
0
0

21.3125⎦
⎥
⎥
⎥
⎤
 

Inverse of this matrix can easily be obtained by using Eq. 
(13): 

𝐾𝐾−1 =

⎣
⎢
⎢
⎢
⎡

1
0.4
0
0
0

0
−0.4

−0.1905
0
0

0
0

0.1905
0.0941

0

0
0
0

−0.0941
−0.0469

0
0
0
0

0.0469⎦
⎥
⎥
⎥
⎤
 

Matrix 𝑅𝑅 is obtained using Eqs . (17) and (18): 

𝑅𝑅 =

⎣
⎢
⎢
⎢
⎡

1
0
0
0

−8.525

0
1
0
0

−1.6238

0
0
1
0

−0.3821

0
0
0
1

−0.0941

0
0
0
0
1⎦
⎥
⎥
⎥
⎤
 

 
Considering Eq. (19) its inverse is 
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𝑅𝑅−1 =

⎣
⎢
⎢
⎢
⎡

1
0
0
0

8.525

0
1
0
0

1.6238

0
0
1
0

0.3821

0
0
0
1

0.0941

0
0
0
0
1⎦
⎥
⎥
⎥
⎤
 

By multiplying matrixes 𝑅𝑅 and 𝐾𝐾 from left to matrix 𝐴𝐴 or 

using Eq. (20), matrix 
kRA AkR  is obtained ( 𝑔𝑔6(𝑑𝑑) =

34.0312): 

𝐴𝐴𝐾𝐾𝐾𝐾 =

⎣
⎢
⎢
⎢
⎡
5
0
0
0
0

2
−10.5

0
0
0

0
−5

21.25
0
0

0
0

10.5
−42.625

0

2
2
2

−19.25
68.0625⎦

⎥
⎥
⎥
⎤
 

And its transpose is defined as: 

𝐴𝐴1
𝐾𝐾𝐾𝐾 =

⎣
⎢
⎢
⎢
⎡
5
2
0
0
2

0
−10.5
−5
0
2

0
0

21.25
10.5

2

0
0
0

−42.625
−19.25

0
0
0
0

68.0625⎦
⎥
⎥
⎥
⎤
 

Finally inverse of matrix 𝐴𝐴 is calculated using Eq. (25): 

𝐴𝐴−1

=

⎣
⎢
⎢
⎢
⎡

0.3131
−0.1414
0.1414
0.1414
−0.1414

−0.1414
0.3131
−0.1414
0.0404
0.0404

0.0404
−0.1414
0.3131
−0.1414
0.0404

0.0404
0.0404
−0.1414
0.3131
−0.1414

−0.1414
0.0404
0.0404
−0.1414
0.3131 ⎦

⎥
⎥
⎥
⎤
 

V. CONCLUSION 
The amount of labor and time has always been an issue for 

computations of circulant matrices appearing in numerous 
researches. For instance, consider a circulant matrix of order 
greater than 100. It is almost impossible to compute inverse of 
this matrix with its corresponding determinant or solve linear 
systems of equations with circulant matrix as coefficient matrix 
in a straightforward way. However, the matrix decomposition 
method presented in section 2 is a timely solution to this 
problem. This study presented a new comprehensive approach 
using matrix decomposition method for calculation of the 
symmetric circulant tridiagonal matrices. As such, the two R 
and K matrices were used in order to make the original matrix 
upper triangular. The suggested decomposition method for 
special matrices could be utilized for solving related linear 
equations. It is also worth noting that the other decompositions 
and methods applicable in making the matrices lower (upper) 
triangular such as the Householder transformation or QR 
factorization are much more difficult and complicated to work 
with than the presented method. Additionally, other sparse 
matrices with a small change can be factorized to the presented 
decomposition. The proposed method in this study is even 
simpler in some cases including tridiagonal matrices since 
there is no need for computing matrix R. By only obtaining K, 
we can make the original matrix upper triangular. Further 
studies on the other special case of toeplitz and sparse matrices 
would be helpful to find a lower (upper) triangular form of 
them and use the matrix decomposition method presented in 
section 2 of this study to decompose them. 
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