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Abstract—We consider problems of optimal resource allocation
in zonal telecommunication networks with many users. In the
simplest formulation the network manager aims to distribute
some homogeneous resource (say bandwidth) among users within
one region with possible utilization of external resources. We
suggest to apply the bi-section method for the nonlinear dual
problem with a family of independent nonlinear problems. Next,
we consider a more general resource allocation problem where
the region a wireless communication network is divided into
zones (clusters) and develop an extension of the above dual
decomposition method for this problem. We present results of
computational experiments which confirm the efficiency of the
new method in comparison of the previous ones.

Index Terms—Resource allocation, wireless networks, multi-
zonal networks, nonlinear functions, convex optimization, La-
grangian duality methods, decomposition.

I. I NTRODUCTION

Despite the existence of powerful processing and transmis-
sion devices, increasing demand of different telecommuni-
cation services and its variability lead to serious congestion
effects and inefficient utilization of network resources; e.g.,
bandwidth and batteries capacity. This situation forces one to
replace the fixed allocation rules with more flexible mecha-
nisms, which are based on proper mathematical models; see
e.g. [1]–[3]. In particular, spectrum sharing is now one of the
most critical issues in this field and various adaptive mecha-
nisms have been suggested. Most papers are devoted either to
game-theoretic or various optimization based models whose
implementation is based on decentralized iterative methods;
see e.g. [4], [5], [6], [3], [7], [8].

In [9], [10], [11], several optimal resource allocation prob-
lems in telecommunication networks and proper decomposi-
tion based methods were suggested. They assumed that the
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network manager can satisfy all the varying users require-
ments. However, the resource of one network may be not
sufficient in some time periods due to instable behavior of
many users, hence the network manager can buy additional
volumes of the resource. We note that such a strategy is
rather typical for telecommunication networks, where WiFi
or femtocell communication services are utilized in addition
to the usual network resources; see e.g. [12].

In this paper, we consider just this extended formulation
of the resource allocation problem with possible external
resources, which was proposed in [13]. That is, the network
manager also aims to maximize the network profit from
allocation of a homogeneous resource (bandwidth) among
users of a telecommunication network. As usual, the network
income is received from users payments but the suitable
network service level requires proper expenses. Besides, the
network manager can utilize the resource of the other (ex-
ternal) networks, which implies the proper charge, and the
problem involves the balance and capacity constraints. The
first convex optimization formulation of this problem was
proposed in [13]. In [13], it was suggested to solve the problem
with a hierarchical method that reduces this problem to a
sequence of multi-level one-dimensional problems. In [14], a
dual decomposition Lagrangian method with solution of zonal
optimization problem with the conditional gradient method
was proposed. Due to the linearization we obtain a family
of simple two-side allocation problems with fixed prices, each
of them can be solved in a finite number of iterations by a
simple arrangement type procedure. The performance of the
method from [14] appeared better essentially in comparison
with that from [13].

In this paper, we consider the nonlinear convex optimization
problem of optimal allocation of resources in a telecommuni-
cation network where the network manager can take the re-
source of external networks. We first consider this optimization
problem for the case where all the users are situated in one
region. This means that conditions (data) for all the parts of
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this region are almost the same. We now suggest to apply the
dual Lagrangian method with respect to the balance constraint
without utilization of the conditional gradient method. This
approach enables us to apply the bisection method for the
nonlinear dual problem with a family of independent non-
linear problems. Next, we consider a more general resource
allocation problem where the region a wireless communication
network is divided into zones (clusters) and develop suitable
extensions of the above dual decomposition methods for this
problem. We present results of computational experiments
which confirm the efficiency of the new method in comparison
of the previous ones.

II. SINGLE-ZONAL RESOURCE ALLOCATION MODEL

The single-zonal problem of a telecommunication network
manager is to find an optimal allocation of a resource among
the users in order to maximize the total payment received
from the users and to minimize the total network maintenance
expenses. That is,x is an unknown quantity of the resource
offered by the network, within the capacity boundsx ∈ [0, b],
which yields the network expense (cost of implementation)
u(x). Similarly, yi is the unknown resource offered to user
i ∈ I andϕi(yi) is the fee (incentive) value paid by useri
within the capacity boundsyi ∈ [0, ai], whereI is the index
set of users. The network manager can take some external
resource valuezj ∈ [0, cj ], j ∈ J (J denotes the index set
of external network providers). Clearly, these values require
proper paymentshj(zj), j ∈ J . The problem is formulated as
follows:

max
(x,y,z)∈D

→
∑

i∈I

ϕi(yi)− u(x)−
∑

j∈J

hj(zj), (1)

wherez = (zj)j∈J , y = (yi)i∈I ,

D =















(x, y, z)

∑

i∈I

yi = x+
∑

j∈J

zj ,

0 ≤ yi ≤ ai, i ∈ I, 0 ≤ x ≤ b,

0 ≤ zj ≤ cj , j ∈ J















.

Suppose that the setD is non-empty, the functionsu(x) and
hj(zj), j ∈ J are strictly convex, whereas all the functions
ϕi(yi), i ∈ I are strictly concave. Then (1) is a convex opti-
mization problem with a unique solution. Setg(x) = u′(x),
vj(zj) = h′j(zj) and wi(yi) = ϕ′

i(yi). The necessary and
sufficient optimality condition for problem (1) is written in
the form of the variational inequality: find(x̄, ȳ, z̄) ∈ D such
that

g(x̄)(x− x̄) +
∑

j∈J

vj(z̄j)(zj − z̄j)

−
∑

i∈I

wi(ȳi)(yi − ȳi) ≥ 0, ∀(x, y, z) ∈ D.
(2)

Moreover, they are equivalent to the following conditions:

(x̄, ȳ, z̄) ∈ D, ∃p̄,

g(x̄)







≥ p̄ if x̄ = 0,
= p̄ if x̄ ∈ (0, b),
≤ p̄ if x̄ = b;

(3)

vj(v̄j)







≥ p̄ if z̄j = 0,
= p̄ if z̄j ∈ (0, cj),
≤ p̄ if z̄j = cj ,

for j ∈ J ; (4)

wi(ȳi)







≤ p̄ if ȳi = 0,
= p̄ if ȳi ∈ (0, ai),
≥ p̄ if ȳi = ai,

for i ∈ I. (5)

This problem is treated as above two-side market equilibrium
model; see [15]–[17] for more details. In the case where
all the functionsu(x), hj(zj), and ϕi(yi) are affine, (3)–
(5) is a market equilibrium problem with fixed prices, which
can be solved by a simple ordering algorithm; see [17]. The
well-known conditional gradient method (see [18]–[20]) just
reduces (1) to a sequence of problems of form (2) with fixed
prices. For the sake of simplicity, we describe this method for
the general format:

min
w̃∈D

→ η(w̃), w̃ = (x, y, z).

(CGM) Take an arbitrary initial point̃w0 ∈ D and a number
δ > 0. At the s-th iteration,s = 0, 1, . . ., we have a point
w̃s ∈ D and calculatew̃s ∈ D as a solution of the linear
programming problem

min
ũ∈D

→ 〈η′(w̃s), ũ〉. (6)

Then we setps = ũs−w̃s. If 〈η′(w̃s), ps〉 ≥ −δ, stop, we have
an approximate solution. Otherwise we find the next iterate
w̃s+1 = w̃s + θsp

s, whereθs ∈ (0, 1) is a stepsize parameter.

The stepsizeθs can be chosen with the inexact line search
procedure: Findm as the minimal non-negative integer such
that

η(w̃s + γmps) ≤ η(w̃s) + αγm〈η′(w̃s), ps〉,

for someα ∈ (0, 1) andγ ∈ (0, 1), and setθs = γm; see [20].
Observe that (6) coincides (2) where the derivatives (prices)
are fixed atw̃s.

Let us now describe the bi-section algorithm(BS). In [11],
it was proposed for problems with affine prices and without
external providers. First we write the Lagrange function of
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problem (1) with the negative sign:

M(x, y, z, p) = u(x) +
∑

j∈J

hj(zj)−
∑

i∈I

ϕi(yi)

−p



x+
∑

j∈J

zj −
∑

i∈I

yi





= (u(x)− px) +
∑

j∈J

(hj(zj)− pzj)

−
∑

i∈I

(ϕi(yi)− pyi).

In order to find a value of the dual cost function

θ(p) = min
x∈[0,b], y∈[0,a], z∈[0,c]

M(x, y, z, p),

wherea = (ai)i∈I and c = (cj)j∈J , we have to solve one-
dimensional problems:

min
0≤xk≤bk

→ (u(x)− px), (7)

min
0≤zj≤cj

→ (hj(zj)− pzj), for j ∈ J, (8)

min
0≤yi≤ai

→ (−ϕi(yi) + pyi), for i ∈ I. (9)

Solutions of these problems denoted byx(p), zj(p), j ∈ J ,
andyi(p), i ∈ I, respectively, are defined uniquely.

It follows that the functionθ(p) is concave and differen-
tiable with

θ′(p) =
∑

i∈I

yi(p)− x(p)−
∑

j∈J

zj(p).

Besides, the one- dimensional dual problem

max
p

→ θ(p)

coincides with the simple equation

θ′(p) = 0, (10)

whereθ′(p) is non-increasing. Ifp∗ is a solution of (10), then
we can find the solution of the initial problem (1) from (7)–(9)
at p = p∗; cf. (3)–(5).

Set p′ = min{g(0),min
j∈J

vj(0)}. Then, due to the mono-

tonicity p′ < g(b) and p′ < vj(cj) for all j ∈ J . Next,
set p′′ = max

i∈I
wi(0). Then, due to the anti-monotonicity

p′′ > wi(ai) for all i ∈ I.
Suppose thatp′′ ≤ p′. Then takingp̄ ∈ [p′′, p′] and using

(3)–(5) or (7)–(9) gives immediately the zero solutions. So,
we can consider only the non-trivial case wherep′ < p′′.
Take p = p′. Thenx(p) = 0 and zj(p) = 0, j ∈ J , are the
unique solutions of problems (7)–(8). Besides, there exists at
least one indexi ∈ I such thatyi(p) > 0. It follows that
θ′(p′) > 0. Now takep = p′′. Thenyi(p) = 0, i ∈ I, are the
unique solutions of problems (9). Besides, eitherx(p) > 0 or
there exists at least one indexj ∈ J such thatzj(p) > 0. It
follows that θ′(p′′) < 0. These properties enable us to find a
solution of (3) by the simple bisection procedure, denoted as
Algorithm (BS).

Given an accuracyε > 0 and the initial segment[p′, p′′],
we takep̃ = 0.5(p′+ p′′), calculateθ′(p̃). Then we setp′ = p̃

if θ′(p̃) > 0 andp′ = p̃ otherwise, until(p′′ − p′) < ε.

III. M ULTI -ZONAL NETWORK PROBLEM

Let us consider a more general model where a telecom-
munication network is divided into several zones (clusters).
This means that conditions (data) for different zones vary for
both providers and users. The problem of a manager of the
network is to find the optimal allocation of all the resources,
including those received from external providers. Besides,
the own network resource volume is limited. The problem
hence again consists in maximizing the total profit containing
the total income from consumers’ fees minus maintenance
expenses and payments to the external providers.

Let us use the following notation:

• n is the number of zones;
• Ik is the index set of users (currently) located in zonek

(k = 1, . . . , n);
• Jk is the index set of external providers (currently)

located in zonek (k = 1, . . . , n);
• B is the total resource supply (the total bandwidth) for

the system (network);
• xk is an unknown quantity of the resource allotted to zone
k with the upper boundbk andfk(xk) is the maintenance
expenses for this quantity of the resource for zonek (k =
1, . . . , n);

• zj is an unknown quantity of the additional resource
bought fromj-th external provider in zonek with the
upper boundcj and hj(zj) is the payment to thej-th
external provider for utilization of this quantityzj the
additional resource in zonek (j ∈ Jk, k = 1, . . . , n);

• yi is the resource amount received by useri with the
upper boundai andϕi(yi) is the charge value paid by
useri for the resource valueyi.

The multi-zonal network manager problem is formulated as
follows:

max →
n
∑

k=1





∑

i∈Ik

ϕi(yi)− fk(xk)−
∑

j∈Jk

hj(zj)



 , (11)

subject to

n
∑

k=1

xk ≤ B; (12)

∑

i∈Ik

yi = xk +
∑

j∈Jk

zj , k = 1, . . . , n; (13)

0 ≤ yi ≤ ai, i ∈ Ik, 0 ≤ xk ≤ bk,

0 ≤ zj ≤ cj , j ∈ Jk, k = 1, . . . , n. (14)

That is, (13) is the balance equation for demand and supply
in each zone, (14) contains capacity constraints for users and
network supply values in each zone, and (12) gives the upper
bound for the total resource supply.
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In what follows we assume that there exists at least one
feasible point satisfying conditions (12)–(14), all the func-
tions fk(xk) and hj(zj) are strictly convex, whereas all the
functions ϕi(yi), i ∈ I are strictly concave. This means
that (11)–(14) is a convex optimization problem. However,
due to large dimensionality and inexact data one can meet
serious drawbacks in solving this problem with custom itera-
tive solution methods. In order to create an efficient method
we have to take into account its separability and apply cer-
tain decomposition approach. However, the standard duality
approach using the Lagrangian function with respect to all
the functional constraints leads to the multi-dimensional dual
optimization problem. We will apply another approach, which
was suggested in [21]. Let us define the Lagrange function of
problem (11)–(14) as follows:

L(x, y, z, λ) =

n
∑

k=1





∑

i∈Ik

ϕi(yi)− fk(xk)−
∑

j∈Jk

hj(zj)





−λ

(

n
∑

k=1

xk −B

)

.

We utilize the Lagrangian multiplierλ only for the upper
bound constraint of the total resource supply (13). We can
now write the dual for problem (11)–(14):

min
λ≥0

→ ψ(λ), (15)

where

ψ(λ) = max
(x,y,z) ∈ W

L(x, y, z, λ)

= λB + max
(x,y,z) ∈ W

n
∑

k=1





∑

i∈Ik

ϕi(yi)− fk(xk)

−λxk −
∑

j∈Jk

hj(zj)



 ,

and

W =















(x, y, z)

∑

i∈Ik
yi = xk +

∑

j∈Jk
zj ,

0 ≤ yi ≤ ai, i ∈ Ik,

0 ≤ zj ≤ cj , j ∈ Jk,

0 ≤ xk ≤ bk, k = 1, . . . , n















.

By duality (see e.g. [22], [23]), problems (11)–(14) and (15)
have the same optimal value. But solution of (15) can be
found by one of well-known single-dimensional optimization
algorithms; see e.g. [23]. In order to calculate the value of
ψ(λ) we have to solve the inner problem:

max →

n
∑

k=1





∑

i∈Ik

ϕi(yi)− fk(xk)− λxk −
∑

j∈Jk

hj(zj)



 ,

subject to
∑

i∈Ik

yi = xk +
∑

j∈Jk

zj ,

0 ≤ yi ≤ ai, i ∈ Ik,

0 ≤ zj ≤ cj , j ∈ Jk,

0 ≤ xk ≤ bk, k = 1, . . . , n.

Obviously, this problem decomposes inton independent zonal
optimization problems

max →





∑

i∈Ik

ϕi(yi)− fk(xk)− λxk −
∑

j∈Jk

hj(zj)



 , (16)

subject to
∑

i∈Ik

yi = xk +
∑

j∈Jk

zj ,

0 ≤ yi ≤ ai, i ∈ Ik,

0 ≤ zj ≤ cj , j ∈ Jk,

0 ≤ xk ≤ bk,

for k = 1, . . . , n. Eachk-th independent zonal problem (16)
clearly coincides with problem (1) whereu(x) = fk(xk) +
λxk, I = Ik, J = Jk. Therefore, we can find its solution by
the algorithms described in Section II.

IV. N UMERICAL EXPERIMENTS

In order to evaluate the performance of the methods we
made a number of computational experiments. We denote by
(DBS) the above dual method with bi-section, and by (CGDM)
the above dual method with the conditional gradient method.
The methods were implemented in C++ with a PC with the
following facilities: Intel(R) Core(TM) i7-4500, CPU 1.80
GHz, RAM 6 Gb.

The initial intervals for choosing the dual variableλ were
taken as [0,1000]. Values ofbk were chosen by trigonometric
functions in[1, 51], values ofai were chosen by trigonometric
functions in[1, 2], values ofcj were chosen by trigonometric
functions in[1, 10]. ValueB were taken equal 1000. Valuesγ
andα in (CGDM) was chosen to be 0.7 and 0.4, respectively.
The number of external providers in all the zones was equal
and varied from 0 to 10. The number of zones was varied from
5 to 105, the number of users was varied from 210 to 10010.
Users were distributed in zones either uniformly or according
to the normal distribution.

For all the methods of finding solution of problem (11)–
(14) the accuracy of upper dual problem solution were varied
from 10−1 to 10−4. The accuracy of lower level problem
solution was fixed and equal to10−2. For each set of the
parameters made 50 tests. LetI denote the total number of
users,J denote the number of external providers in one zone
(let us remind that the number of external providers in each
zone were taken equal),Tε the total processor time in seconds.
Method (CGDM) with the initial pointw0 = 0 is marked as
(CGDM0), whereas the same method with the initial pointw0

taken in the upper boundary ofD is marked as (CGDMB).
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TABLE I
RESULTS OF TESTINGEXP WITH J = 0, I = 510, n = 70

ελ Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
10

−1 0.0128 0.3854 0.0010
10

−2 0.0130 0.4556 0.0013
10

−3 0.0163 0.5553 0.0009
10

−4 0.0194 0.6378 0.0019

TABLE II
RESULTS OF TESTINGEXP WITH J = 5, I = 510, n = 70

ελ Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
10

−1 0.0188 0.3452 0.0027
10

−2 0.0174 0.3953 0.0025
10

−3 0.0237 0.4938 0.0025
10

−4 0.0296 0.5799 0.0034

We took the quadratic concave fee functions

ϕi(yi) = 0.5αiy
2
i + βiyi, i ∈ Ik, k = 1, . . . , n;

with the coefficients

αi = −3| cos(2i+ 1)| − 3, βi = | sin(i+ 2)|+ 1.

We first took the exponential convex functions

fk(xk) = γke
δkxk

and
hj(zj) = γ̃je

δ̃jzj

with the coefficients

γk = | cos(2k + 2)|+ 1, δk = | cos(k + 1)|+ 3,

γ̃j = | sin(2j + 2)|+ 1, δ̃j = | sin(j + 1)|+ 3.

We mark as EXP this series of experiments. The results of
computations are given in Tables I–X.

We also took the non-convex logarithmic functions

fk(xk) = ln(γk + δkxk)

and
hj(zj) = ln(1 + γ̃j + δ̃jzj)

with the coefficients

γk = |2 ∗ cos(2k + 2)|+ 1, δk = | cos(k + 1)|+ 1,

γ̃j = |2 ∗ sin(2j + 2)|, δ̃j = | sin(j + 1)|+ 1.

Observe that we then in principle have a global optimization
problem. We mark as LOG this series of experiments. The
results of computations are given in Tables XI–X.

TABLE III
RESULTS OF TESTINGEXP WITH J = 10, I = 510, n = 70

ελ Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
10

−1 0.0278 0.4518 0.0015
10

−2 0.0266 0.5312 0.0031
10

−3 0.0310 0.6516 0.0032
10

−4 0.0390 0.7157 0.0032

TABLE IV
RESULTS OF TESTINGEXP WITH J = 0, n = 70, ε = 10

−2

I Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
210 0.0094 0.1099 0.0003
310 0.0093 0.2012 0.0009
410 0.0116 0.3181 0.0013
510 0.0130 0.4556 0.0013
610 0.0152 0.6057 0.0009
710 0.0177 0.7820 0.0012
810 0.0197 0.9729 0.0022
910 0.0219 1.1644 0.0012
1010 0.0231 1.3875 0.0019
2010 0.0428 3.3751 0.0028
3010 0.0615 5.2503 0.0024
4010 0.0797 7.1370 0.0044
5010 0.0969 9.0495 0.0056
6010 0.1188 11.0049 0.0050
7010 0.1372 12.9454 0.0075
8010 0.1565 14.9661 0.0056
9010 0.1774 16.9421 0.0087
10010 0.1955 18.9424 0.0097

TABLE V
RESULTS OF TESTINGEXP WITH J = 0, I = 510, ε = 10

−2

n Tε: (CGDM0) Tε: (CGDMB) Tε:(DBS)
5 0.0090 0.9197 0.0003
15 0.0109 0.8677 0.0003
25 0.0106 0.8047 0.0015
35 0.0112 0.7032 0.0006
45 0.0135 0.6128 0.0004
55 0.0134 0.5281 0.0012
65 0.0137 0.4752 0.0010
75 0.0136 0.4392 0.0019
85 0.0141 0.4075 0.0010
95 0.0150 0.3832 0.0022
105 0.0157 0.3608 0.0009

TABLE VI
RESULTS OF TESTINGEXP WITH J = 5, n = 70, ε = 10

−2

I Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
210 0.0157 0.1843 0.0016
310 0.0171 0.2655 0.0016
410 0.0172 0.3435 0.0021
510 0.0174 0.3953 0.0025
610 0.0219 0.4577 0.0016
710 0.0266 0.5641 0.0014
810 0.0251 0.6453 0.0019
910 0.0297 0.7202 0.0010
1010 0.0312 0.8031 0.0017
2010 0.0484 2.0846 0.0015
3010 0.0671 5.5736 0.0032
4010 0.0874 8.4238 0.0015
5010 0.1061 10.3438 0.0016
6010 0.1203 12.1534 0.0047
7010 0.1483 14.2568 0.0048
8010 0.1635 16.2254 0.0048
9010 0.1827 18.2004 0.0062
10010 0.2031 20.1129 0.0060
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TABLE VII
RESULTS OF TESTINGEXP WITH J = 5, I = 510, ε = 10

−2

n Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
5 0.0109 0.8782 0.0016
15 0.0141 0.7280 0.0010
25 0.0140 0.4625 0.0015
35 0.0154 0.4173 0.0021
45 0.0201 0.4124 0.0012
55 0.0158 0.3873 0.0016
65 0.0158 0.4358 0.0019
75 0.0232 0.4157 0.0016
85 0.0249 0.4375 0.0016
95 0.0235 0.4218 0.0027
105 0.0236 0.4328 0.0031

TABLE VIII
RESULTS OF TESTINGEXP WITH J = 10, n = 70, ε = 10

−2

I Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
210 0.0233 0.2922 0.0031
310 0.0234 0.3656 0.0021
410 0.0280 0.4892 0.0023
510 0.0266 0.5312 0.0031
610 0.0298 0.6030 0.0016
710 0.0296 0.6784 0.0032
810 0.0298 0.7498 0.0016
910 0.0344 0.8344 0.0016
1010 0.0342 0.9235 0.0022
2010 0.0547 2.0797 0.0031
3010 0.0783 3.8813 0.0015
4010 0.0969 7.1769 0.0016
5010 0.1108 10.2110 0.0064
6010 0.1360 12.6454 0.0061
7010 0.1533 14.8563 0.0031
8010 0.1689 16.9521 0.0046
9010 0.1909 19.0532 0.0077
10010 0.2143 21.1689 0.0047

TABLE IX
RESULTS OF TESTINGEXP WITH J = 10, I = 510, ε = 10

−2

n Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
5 0.0093 0.9468 0.0016
15 0.0140 0.5046 0.0012
25 0.0157 0.4828 0.0016
35 0.0205 0.4766 0.0024
45 0.0251 0.4746 0.0016
55 0.0252 0.5093 0.0031
65 0.0236 0.5232 0.0028
75 0.0278 0.5361 0.0011
85 0.0311 0.5641 0.0016
95 0.0327 0.5765 0.0017
105 0.0343 0.5907 0.0022

TABLE X
RESULTS OF TESTINGEXP WITH I = 510, n = 70, ε = 10

−2

J Tε:(CGDM0) Tε:(CGDMB) Tε:(DBS)
0 0.0130 0.4556 0.0013
5 0.0174 0.3953 0.0025
10 0.0266 0.5312 0.0031

TABLE XI
RESULTS OF TESTINGLOG WITH J = 0, I = 510, n = 70

ελ Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
10

−1 0.5376 0.5530 0.0094
10

−2 0.8096 0.7876 0.0126
10

−3 1.1438 1.0534 0.0156
10

−4 1.4748 1.2596 0.0220

TABLE XII
RESULTS OF TESTINGLOG WITH J = 5, I = 510, n = 70

ελ Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
10

−1 33.5816 33.6256 0.0532
10

−2 34.8609 35.5017 0.0570
10

−3 46.2510 47.5979 0.0633
10

−4 53.1885 54.2517 0.0781

TABLE XIII
RESULTS OF TESTINGLOG WITH J = 10, I = 510, n = 70

ελ Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
10

−1 43.9518 43.4692 0.0631
10

−2 48.8135 49.4540 0.0780
10

−3 60.6781 62.6795 0.0933
10

−4 71.3513 73.0485 0.1097

TABLE XIV
RESULTS OF TESTINGLOG WITH J = 0, n = 70, ε = 10

−2

I Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
210 0.1096 0.1278 0.0040
310 0.3594 0.2874 0.0064
410 0.4972 0.4626 0.0092
510 0.8096 0.7876 0.0126
610 1.1530 1.1406 0.0128
710 1.4782 1.4126 0.0158
810 1.9750 1.9186 0.0154
910 2.5688 2.4688 0.0188
1010 3.3440 2.9998 0.0250
2010 29.0004 12.2876 0.0436
3010 99.6226 30.9940 0.0624
4010 203.2690 64.3018 0.0780
5010 192.3142 113.7266 0.1002
6010 346.9848 188.6262 0.1250
7010 456.8418 282.0170 0.1530
8010 662.6904 428.4620 0.1688
9010 784.1608 592.4142 0.1936
10010 619.5352 705.0890 0.2184
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TABLE XV
RESULTS OF TESTINGLOG WITH J = 0, I = 510, ε = 10

−2

n Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
5 110.1356 13.5044 0.0158
15 8.7282 3.9936 0.0156
25 1.5020 2.2940 0.0064
35 2.0746 1.5470 0.0094
45 1.2124 1.2188 0.0096
55 1.0406 1.0064 0.0094
65 0.7940 0.8498 0.0092
75 0.7688 0.7502 0.0128
85 0.8130 0.6472 0.0126
95 0.6530 0.5968 0.0126
105 0.5222 0.4938 0.0124

TABLE XVI
RESULTS OF TESTINGLOG WITH J = 5, n = 70, ε = 10

−2

I Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
210 5.7184 4.9695 0.0324
310 12.6603 12.0622 0.0471
410 23.3911 23.7660 0.0637
510 34.8609 35.5017 0.0570
610 53.7515 54.4546 0.0623
710 71.9853 71.6409 0.0783
810 93.3601 92.7030 0.0639
910 122.5000 119.9533 0.0947
1010 152.6745 147.5653 0.0786
2010 569.8197 566.8493 0.1416
3010 1289.3284 1270.3125 0.1871
4010 2385.9490 2344.7468 0.2345
5010 3640.6492 3593.2404 0.3753
6010 5046.9814 4970.5373 0.3445
7010 6708.4588 6249.4869 0.3916
8010 8311.4033 7437.4960 0.4389
9010 10139.8603 8701.0172 0.5321
10010 11900.9121 10015.6371 0.6111

As we can see from the results in the tables, in all the
cases the suggested methods were capable to find a solution.
Moreover, for the same accuracy, both the methods gave the
same numbers of upper iterations, so that the main difference
was in the processor time which showed that utilization of
Algorithm (BS) for inner optimization problems gives better
performance, especially on large problems. Also in the non-

TABLE XVII
RESULTS OF TESTINGLOG WITH J = 5, I = 510, ε = 10

−2

n Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
5 474.7975 441.7209 0.0311
15 185.2360 185.7031 0.0313
25 102.5799 97.4371 0.0310
35 79.8297 79.2511 0.0475
45 56.8925 56.7504 0.0463
55 48.2816 47.7207 0.0478
65 42.4691 43.5637 0.0632
75 36.2815 35.5634 0.0635
85 29.2823 29.0943 0.0629
95 25.2664 26.2046 0.0781
105 22.0949 21.5310 0.0791

TABLE XVIII
RESULTS OF TESTINGLOG WITH J = 10, n = 70, ε = 10

−2

I Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
210 6.6720 6.3446 0.0473
310 15.9533 15.9076 0.0624
410 31.1725 31.8287 0.0787
510 48.8135 49.4540 0.0780
610 70.7205 71.1993 0.0781
710 100.3282 100.6011 0.0944
810 121.1159 123.7584 0.0930
910 155.9370 155.7436 0.1102
1010 186.7681 191.0187 0.1099
2010 681.9694 678.8754 0.1721
3010 1452.2272 1440.2179 0.2181
4010 2535.7178 2514.0659 0.2812
5010 3974.3384 3945.2081 0.3296
6010 5905.8590 5802.3383 0.3605
7010 7812.5409 7858.1012 0.4223
8010 10151.1191 10137.5370 0.4903
9010 12648.5315 12701.1092 0.5784
10010 16040.0027 15915.1477 0.6428

TABLE XIX
RESULTS OF TESTINGLOG WITH J = 10, I = 510, ε = 10

−2

n Tε: (CGDM0) Tε: (CGDMB) Tε: (DBS)
5 529.6564 513.4950 0.0474
15 198.3463 199.3771 0.0470
25 122.5231 121.8903 0.0473
35 96.7040 97.0791 0.0630
45 73.7825 74.2585 0.0636
55 63.5329 64.6424 0.0786
65 58.1260 57.7986 0.0787
75 47.9841 48.3767 0.0783
85 38.1881 38.5440 0.0949
95 36.4686 36.7199 0.1102
105 35.2355 33.5791 0.0931

convex case (see Tables XI-XX) Algorithm (DBS) appeared
faster significantly than (CGDM).

V. CONCLUSIONS

We considered nonlinear convex optimization problems
of optimal allocation of resources in a telecommunication
network where the network manager can take the resource
of external networks. We presented a dual bi-section type
solution method for the case where the network manager
aims to distribute some homogeneous resource (bandwidth)
among users of one region and compare it with the conditional
gradient method. Next, we considered a more general resource
allocation problem where the region a wireless communication
network is divided into zones (clusters) and develop suitable

TABLE XX
RESULTS OF TESTINGLOG WITH I = 510, n = 70, ε = 10

−2

J Tε:(CGDM0) Tε:(CGDMB) Tε: (DBS)
0 0.8096 0.7876 0.0126
5 34.8609 35.5017 0.0570
10 48.8135 49.4540 0.0780
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extensions of the above dual methods for this problem, where
calculation of the cost function value leads to independent
solution of zonal problems, which coincide with the single
region problem. We present results of computational exper-
iments which confirm the efficiency of the new method in
comparison of the previous ones.
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