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Abstract— We present a numerical scheme for approximating
solutions of large systems of ordinary differential equations which
at its core employs a stochastic component. The approach used
for this level is called stochastic direct simulation method and is
based on path simulations of suitable Markov jump processes. It is
efficient especially for large systems with a sparse incidence matrix,
the most typical application being spatially discretized partial
differential equations, for example by finite differences. Due to its
explicit character, this method is easy to implement and can serve as
a predictor for improved approximations. One possibility to reach
this is by the Picard principle. Since we have simulated a full path
of the corresponding Markov jump process, we can obtain more
precise values by using Picard–iterations over small time intervals.
This requires the computation of integrals of step–functions, which
can be performed explicitly. A further way to increase the precision
of the direct simulation method is to use a Runge–Kutta principle.
In contrast to the Picard–scheme, here one integrates a polynomial
function which interpolates either the values of the original jump
process, or the values improved by the Picard iterations, at some
equidistant points in the time discretization interval. These integrals
can be computed by a proper quadrature formula from the Newton–
Cotes family, which is also used in the standard deterministic
Runge–Kutta schemes. However, the intermediate values which are
plugged into the quadrature formulae are computed in our method
by stochastic simulation, possibly followed by a Picard iteration,
while in the usual Runge–Kutta methods one uses the well-known
Butcher–tableau. We also introduce a time–adaptive version of the
stochastic Runge–Kutta scheme. Here we do not take fixed time
intervals, but a fixed number of jumps of the underlying process.
Depending on the scheme, we may consider intermediate points
after the half of this number of jumps. Since in this case the points
are not necessarily equidistant in time, we have to compute the
corresponding interpolation polynomial and its integral exactly. If
high precision is required, this adaptive variant of the stochastic
Runge–Kutta method combined with Picard–iterations turns out
to be the most effective if compared to the other methods from
this family. We illustrate the features of all considered schemes
at a standard benchmark problem, a reaction–diffusion equation
modeling a combustion process in one space dimension (1D) and
two space dimensions (2D).
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Flavius Guiaş is with the Dortmund University of Applied Sciences and
Arts, Sonnenstr. 96, 44139 Dortmund, Germany; phone: +49-231-9112260;
e-mail: flavius.guias@fh-dortmund.de

I. INTRODUCTION

Consider n-dimensional autonomous systems of ordinary
differential equations (ODEs) Ẋ = F (X), F = (Fi)

n
i=1

written in an integral form on a small time interval:

X(t+ h) = X(t) +

∫ t+h

t

F (X(s)) ds.

The value X̄(t) ≈ X(t) is assumed to be computed by a
certain numerical scheme and the goal is now to determine
a value X̄(t+h) which approximates the solution at the next
point of the time discretization grid. If we have computed
a predictor X̃(s) on the whole interval [t, t,+h], then one
can in principle obtain a better approximation result by
performing a Picard–iteration:

X̄(t+ h) = X̄(t) +

∫ t+h

t

F (X̃(s)) ds. (1)

In our approach we compute the predictor X̃(s) by the
stochastic direct simulation method (see also [2], [3], [4],
[5]) as a path of an appropriate Markov jump process, in
which at every jump only one component of the process is
changed with a fixed increment (±1/N ). The steps of this
method are the following:

1) Given the state vector X̃(s) of the
Markov process at time s :

2) Choose a component i with probability
proportional to |Fi(X̃)|.

3) The random waiting time δt is expo-
nentially distributed with parameter
λ = N

∑n

j=1
|Fj(X̃)|: δt = − logU/λ, where U

is a uniformly distributed RV on (0, 1).
4) Update the value of the time variable:

s = s+ δt.
5) Update the value of the sampled

component: X̃i 7→ X̃i +
1
N
sign(Fi(X̃)).

6) Update the values Fj(X̃) for all j for
which Fj(X̃) depends on the sampled
component i.

7) GOTO 1.

We note that the larger N or the larger the absolute values
of the r.h.s. of the equations, the smaller the random time
step between two jumps. This implies an automatic time–
adaption of the scheme which computes the predictor X̃(s)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017 

ISSN: 1998-0159 93



by direct simulation. The result of this simple algorithm is a
vector–valued step–function which, if we let the magnitude
of the jumps being sufficiently small, is a decent approxima-
tion for the exact solution. Rigorous results concerning the
stochastic convergence of Markov jump processes towards
solutions of ODEs were proved in [1], and [7], while [4]
formulates the convergence result for this particular scheme.

Having computed this jump process, the integral in the
Picard–iteration step (1) can be computed exactly (to be
precise, it can be updated at every jump of X̃(s)) and so we
obtain an improved approximation X̄(t+h) ≈ X(t+h). For
each component j of the system we define the quantities:
Ij(s) =

∫ s

t
Fj(X̃(u))du and τj as the last time moment

when Ij was changed due to a jump of a component
which influences the term Fj(X̃(s)). The algorithm based
on Markov jump processes using Picard iterations can be
then described as follows:

1) Given the state vector X̃(s) of the
Markov process at time s :

2) Choose a component i with probability
proportional to |Fi(X̃)|.

3) The random waiting time δt is expo-
nentially distributed with parameter
λ = N

∑n

j=1
|Fj(X̃)|: δt = − logU/λ, where U

is a uniformly distributed RV on (0, 1).
4) Update the value of the time variable:

s = s+ δt.
5) Update the Picard-integrals:

Ij 7→ Ij +(s− τj)Fj(X̃) and set τj = s, for all
j for which Fj(X̃) depends on the sampled
component i.

6) Update the value of the sampled
component: X̃i 7→ X̃i +

1
N
sign(Fi(X̃)).

7) Update the values of Fj(X̃) for all j
for which Fj(X̃) depends on the sampled
component i.

8) Counter=Counter+1;
9) if (Counter=M) Picard-Iteration();

10) GOTO 1.

The above loop changes only the values of the process
X̃(s). In the procedure Picard-Iteration() we perform
the following steps by which we obtain the improved ap-
proximation X̄(t+ h) given the known value X̄(t):

1) Ij := Ij + (s− τj)Fj(X̃) for all j.
2) Update all components: X̄j 7→ X̄j + Ij for

all j.
3) Update all sampling probabilities,

setting them as Fj(X̄) for all j.
4) Reset: X̃j = X̄j, Counter=0, Ij = 0, τj = s,

for all j.

A more detailed discussion of this issue can be found in
[5], where also the sampling and implementation methods
are explained.

Based on the predictor X̃(s), by performing a Picard–
iteration we thus obtain improved approximations X̄(t) and
X̄(t + h) (possibly also at several intermediate time steps
X̄(t+hci), 0 ≤ ci ≤ 1). Having done this, we discuss next
the possibility of further improving our approximation of the
exact solution, by computing a new quantity following the

integral scheme:

X∗(t+ h) = X∗(t) +

∫ t+h

t

Q(s) ds. (2)

As integrand Q(s) we take the polynomial which interpo-
lates some intermediate values of F (X̃(·)) or F (X̄(·)). The
directly simulated process X̃ or the Picard–approximations
X̄ are evaluated here at some few equidistant points between
t and t+ h. By using an exact quadrature formula in order
to compute the integral in (2), we can employ the principle
of the Runge–Kutta method in order to further improve our
approximation.

The purpose of this paper is to present a general frame-
work for this family of schemes and to illustrate this prin-
ciple with several concrete examples. We mention that one
scheme belonging to this family was previously introduced
in our paper [5].

II. THE FRAMEWORK OF THE SCHEMES BASED ON THE
RUNGE–KUTTA PRINCIPLE

The family of Runge–Kutta (RK) methods is based on the
scheme

X∗(t+ h) = X∗(t) + h
m∑
i=1

biki, (3)

where ki are suitable approximations for F (X(t+hci)), 0 ≤
ci ≤ 1 (we consider here only the case of autonomous
systems, to which the stochastic simulation method can be
efficiently applied).

For different values of m, the sum in the r.h.s. of (3)
is taken as an exact quadrature formula for the polynomial
Q(s) which interpolates the nodes (t+hci, ki), i = 1 . . .m,
on the interval [t, t+ h].

For m = 2 and c1 = 0, c2 = 1 we obtain the trapezoidal
rule:

h

(
1

2
k1 +

1

2
k2

)
(4)

which integrates exactly the linear interpolant for the two
nodes.

For m = 3 and c1 = 0, c2 = 1/2, c3 = 1 we obtain
Simpson’s 1/3 (or Kepler’s) rule:

h

(
1

6
k1 +

4

6
k2 +

1

6
k3

)
(5)

which integrates exactly the quadratic interpolation polyno-
mial for the three nodes, but in this particular case all cubic
polynomials are also integrated exactly.

For m = 4 and c1 = 0, c2 = 1/3, c3 = 2/3, c4 = 1 we
obtain Simpson’s 3/8 rule:

h

(
1

8
k1 +

3

8
k2 +

3

8
k3 +

1

8
k4

)
(6)

which integrates exactly the cubic interpolation polynomial
for the four nodes.

By considering for the ki the values of F (X̃(t+hci)) or
F (X̄(t+hci)) based on the simulated Markov process or on
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its Picard iterate, we can obtain several stochastic Runge–
Kutta or Picard–Runge–Kutta schemes. The scheme (5) was
already introduced in [5] (in a slightly modified version),
while the other ones are new.

To make a comparison: for the well-known classical
Runge–Kutta methods the k’s can be computed recursively
by

ki = F (X∗(t) + h
i−1∑
j=1

aijkj).

The values of bi, ci and aij have to be properly chosen,
in order to obtain consistency and convergence. The most
typical examples are enumerated in the following.

For m = 3 the scheme corresponding to (5) leads to the
RK method of order 3:

k1 = F (X∗(t)), k2 = F (X∗(t) + hk1/2),

k3 = F (X∗(t)− hk1 + 2hk2).

But, since the used quadrature formula integrates exactly
also cubic polynomials, in the deterministic setting one can
take c1 = 0, c2 = c3 = 1/2, c4 = 1 in order to obtain the
standard RK scheme of order 4:

k1 = F (X∗(t)), k2 = F (X∗(t) + hk1/2),

k3 = F (X∗(t) + hk2/2), k4 = F (X∗(t) + hk3)

based on the integration formula

h

(
1

6
k1 +

2

6
k2 +

2

6
k3 +

1

6
k4

)
(7)

which is fact derived from (5) but with two approximating
values k2 and k3 at the middle of the interval.

For m = 4, the scheme corresponding to (6) leads to the
3/8 RK method of order 4:

k1 = F (X∗(t)), k2 = F (X∗(t) + hk1/3),

k3 = F (X∗(t)− hk1/3 + hk2),

k4 = F (X∗(t) + hk1 − hk2 + hk3).

We note that the classical scheme (7) has no natural
stochastic counterpart, since in the middle of the interval we
would need two approximating values k2 and k3. Neverthe-
less, the stochastic scheme based on (6) is formally similar
to the 3/8 RK method of order 4 presented above. As we
will see in the numerical examples, although the intermediate
values ki computed by the stochastic method demand more
computational effort, they are more precise than those used
by the classical deterministic RK schemes and the overall
efficiency of the new solver can be superior, especially in
the case of equations which are difficult to integrate.

III. STOCHASTIC RUNGE–KUTTA SCHEMES

In this paper we consider three versions of stochastic
Runge–Kutta schemes, based on the quadrature formulae
(4), (5), (6). We will denote them by RK2, RK3, RK4
respectively, the number suggesting the convergence order
of the corresponding deterministic method. To be precise,
we consider either ki = F (X̃(t + hci)), where X̃(·) is the
path simulated by (dODE), or ki = F (X̄(t + hci)), where
X̄(t + hci) is the result of the Picard iteration (1) at the
corresponding time moment, taken on the interval elapsed
since the previous iteration.

We will illustrate the features of the method on a very
simple example. Consider the ODE x′ = x, x(0) = 1 with
exact solution x(t) = et. We chose for example N = 50
and tmax = 0.3. We simulate the stochastic process X̃(·)
by the algorithm: X̃(0) = 1, X̃ → X̃+1/N after a random
waiting time τ = −log(U)/(N ·X̃), where U is a uniformly
distributed RV on (0, 1). This means that the waiting time
τ is exponentially distributed with parameter λ = N · X̃ .
Moreover, the time steps τ are automatically adapted, since
this approach imposes that the current value of X̃ changes
always by the fixed quantity 1/N . We note that the size of
the time steps is inverse proportional to the value of X̃ and
also to the value of N , which can be increased if we want to
improve the time resolution and by this the overall precision
of our approximation.

We compute successive jumps, until the simulation time
t∗ of the process exceeds tmax, so X̃(t∗) will be the first
approximation for et∗ (predictor). Since we have computed
a full path, we gained information not only by the final
value of the simulation, which may be biased by random
fluctuations, but also by the whole behavior of the process
X̃ on the current time interval. We can therefore exploit
this global information by performing a Picard iteration
at t = t∗ in order to improve the approximation: X̄ =

x(0) +

∫ t∗

0

X̃(s) ds. This is the integral of a step function

which can be computed explicitly as
∑

X̃(ti)(ti+1 − ti),
where ti are the jump times of the step function X̃(·)
(more precisely, the value of the Picard integral cand be
updated after every jump). We can also compute an improved
approximation using the RK2-step (4), where k1 = x(0) = 1
and either k2 = X̃(t∗) (RK2-method) or k2 = X̄ (Picard-
RK2-method). The results are plotted in Fig. 1. We illustrate
here a situation where the error of the computed path is very
large compared to the exact value et∗ and show how the
Picard iteration, the RK2-step or the combination of both
improves the approximation. In the same figure is plotted
the error curve from 48 simulations (magnified by the factor
5) of the four stochastic approximations of the exact value of
the exponential function (absolute value of the differences
at t∗). For this error curve the tics on the x-axis have no
relevance. We note that the fluctuations of (dODE) are very
large, while Picard or RK2 have the effect to significantly
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Fig. 1. A sample path of X̃(·) and the improved approximations at t = t∗
with error curves from 48 simulations

reduce the error. Moreover, the combination of both is even
more precise.

Turning back to the general problem, we note that since
we consider stochastic processes with small random jump
times, we cannot hit exactly the prescribed time steps
required by the Runge–Kutta scheme. Instead, we take the
first time when the prescribed time step is exceeded during
the simulation. If the jump time intervals τ of the stochastic
process are small compared to the time step h considered in
the Runge–Kutta scheme (a typical example: h = 10−7, τ =
O(10−11)), the error is expected also to be sufficiently small.
Alternatively, one can work with the exact times given by
the stochastic process, but then the simple formulae (4)-
(6) have to be replaced with the exact computation of the
linear, quadratic or cubic interpolation polynomial and of
its integral. This eliminates the error induced by (5)-(6)
when using slightly different time moments, but at a higher
computational cost. This version was used in [5] in order to
correct the formula (5).

For this paper we performed several experiments, which
showed the following facts. First, if the time steps h are
not extremely small, the overall efficiency does not change,
regardless which alternative we will choose: the cheap
approximate computation of the integral with inexact time
moments, or the more expensive interpolation-based exact
computation. Moreover, the stochastic RK2-method for fixed
time steps h is too imprecise in problems which require a
high time resolution as in our test case, where the other
two are preferable. Nevertheless, we will see later that it
is a good choice if we consider a stochastic Runge–Kutta
scheme with adapted time steps h. Second, if the time
steps h are taken very small, then the computation of the
interpolation polynomials (either by the Lagrange or by the
Newton formula) will involve difference quotients with very
small terms and the output given by the computer is biased
by rounding errors. This phenomenon can be observed in a

sudden lost of precision if we use quadratic polynomials in
the RK3-method or even in chaotic results if we use cubic
interpolation polynomials in the RK4-method.

IV. ADAPTIVE STOCHASTIC RUNGE–KUTTA SCHEMES

Another possibility is to use a stochastic RK-scheme with
adapted time steps. That is, we do not prescribe the value
h of the time step, but we fix a number M of jumps of the
process (typical example: M = n in 1D and M = 0.3n
in 2D, where n is the number of equations) and the time
step h is determined automatically as the sum of all lengths
of jump intervals since the previous step (which are in turn
automatically adapted, by the nature of the jump process).
As in the situation with fixed time intervals, we can either
use as predictor only the simulated Markov jump process
X̃(·), or its Picard iterates X̄(·). For the RK2-method we
thus consider simply the process or its Picard iterate at
the time moment when M jumps were performed. The
formula (4) yields the exact integral of the corresponding
linear interpolant. For the RK3 and RK4-methods we have
to compute the intermediate ki’s, now related to the number
M of jumps: after M/2 jumps in case of RK3 and after M/3
and 2M/3 jumps in case of RK4. But now, since the time
moments are not necessarily equidistant (even not approxi-
mately so), we are obliged to use an exact computation of the
interpolation polynomial and of its integral. The drawbacks
of this approach were presented above and the experience
showed that the adapted RK4-method, although theoretically
it should be the most precise, is impracticable due to the
mentioned rounding errors. Nevertheless, the adapted RK3-
method functions well and is in principle slightly better
than the adapted RK2-method, except in the range where
the time intervals h after M jumps become too small (due
to large values of N considered in the stochastic scheme).
With increasing values of N , the convergence of the RK2-
method is improving, while the RK3-method, for N larger
than a threshold value, remains at the same level of the error
due to the rounding effects. Another aspect of the adapted
RK3-method is the handling of the results when reaching
the maximal computation time tmax. If this occurs after
computing k2 after M/2 jumps, then we simply compute
k3 at the stopping time of the process and take the usual
approach. However, if we reach tmax with less than M/2
jumps, then we simply perform a RK2-step for this last time
interval.

V. NUMERICAL EXAMPLES

We illustrate the application of several stochastic, but also
deterministic methods at the test equation

∂u

∂t
= ∆u+

5eδ

δ
(2− u) exp

(
− δ

u

)
(8)

with initial condition u0 ≡ 1, either on (0, 1) with boundary
conditions ∂νu(0) = 0 and u(1) = 1, or on the square
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Fig. 2. The solution of (8) in one space dimension for δ = 30.

(0, 1)2, with boundary conditions ∂νu = 0 if x = 0 or
y = 0 and u = 1 if x = 1 or y = 1.

This is a standard benchmark problem which requires a
high time resolution [6]. Its solution in 1D is plotted in Fig.
2. The variable u denotes a temperature which increases
gradually up to a critical value when ignition occurs (in this
example at time t = 0.240) resulting in a fast propagation
of a reaction front towards the right end of the interval.
Due to the very high speed and the steepness of the front,
a very precise time resolution is crucial in any numerical
approximation of this problem.

By a finite–difference discretization with spatial mesh
size of 1/400 we obtain a system of ODEs, for which we
compute the solution up to t = 0.244 in the case δ = 30
and up to t = 0.27 in the case δ = 20. Note that the
larger the value of δ, the larger the stiffness of the problem.
As error measure we consider the supremum norm of the
difference to a reference solution vector u∗ at the end of
the computational time interval. The reference solution is
computed in MATLAB with the highest possible degree of
precision by the standard solver ode45. As alternative we
test also the stiff solver ode15s. For δ = 20 the CPU-
times were 18 seconds for ode45 and less than 2 seconds for
ode15s, the maximal difference between the two solutions
being of about 1.4·10−9. For δ = 30 the CPU-times were 36
seconds and 14 seconds for ode45 and ode15s respectively,
the difference between the two solution being slightly less
than 10−7. Since the solver ode15s has a lower convergence
order, we consider as reference solution the results of ode45,
which are much closer (O(10−13) for δ = 20 and O(10−10)
for δ = 30) to the results produced by the solver ode113.
The high performance of all these solvers relies on the
powerful facilities of MATLAB, which involve computations
performed in a vectorial manner. The codes have only a few
program lines, with few function calls and the pattern of
the corresponding Jacobian is computed apriori, within a
separate function.

1 1.5 2 2.5 3
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Fig. 3. Efficiency comparison in 1D δ = 20, n = 400
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Fig. 4. Efficiency comparison in 1D for δ = 30, n = 400

Our algorithms were however programmed in an object-
oriented manner in C++ and the computations involving
vectors were performed sequentially, within usual loops. For
this reason, in order to get a better comparison, we use
also a self-programmed version of ode45, which is nothing
but a time-adaptive Runge–Kutta method of order 5, called
the Dormand–Prince method. In contrast to MATLAB, here
the updates of the involved vectorial quantities occur also
within normal loops. In the legend this method is referred
to as ’rk5-adap’. At the same time we use also the results
produced by three standard Runge–Kutta solvers with fixed
time steps, called ’rk2’, ’rk3’ and ’rk4’, which correspond
to the schemes (4), (5) and (7).

Fig. 3 shows the results of the different methods for the
case δ = 20, which is the easier case, with a less steep
front. We note that the standard solvers ’rk2’, ’rk3’ and
’rk4’ exhibit an unstable behavior. For a certain range of
the time steps the error is extremely small, but if we take
larger or smaller values, the error will get larger. However,
the time adapted solver ’rk5-adap’ shows stability and a good
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precision.
We discuss now the performance of the stochastic solvers.

Due to the poor performance in problems like this, where
an extremely precise time resolution is needed, we omit
plotting the results of (dODE) (i.e. the direct simulation
of the Markov jump process, which is at the core of all
the other schemes) and of RK2. Nevertheless, the solver
(dODE) combined with Picard iterations shows a similar
performance to RK3 and RK4. The method ’RK2-adap’
behaves slightly better, while ’RK3-adap’, after showing for
a while a similar efficiency to the latter solver, exhibits
afterward the previously described phenomenon of rounding
errors, which becomes visible by the loss of precision if we
increase N , decreasing thus the length of the time intervals.
The score obtained by the deterministic solver ’rk5-adap’ is
slightly better than that of the previous group of stochastic
methods.

As next group of stochastic solvers we consider ’RK3-
Picard’ and ’RK4-Picard’. That is, at the time moments
prescribed by the Runge–Kutta methods we do not use
the values produced by (dODE), but we improve them by
a Picard iteration. In this case, the precision is increased
by taking larger N and smaller time steps h. Note that h
cannot be arbitrarily increased (for deterministic methods
this would yield instability, here larger errors), while for
small h, we have to take a sufficiently large N in order
to obtain good results. This implies smaller jump times and
therefore longer computation times. Nevertheless, if N is too
large, for fixed h we do not observe an increased precision.
There is therefore an optimal dependency between h and N ,
which can be determined experimentally in order to obtain
the best efficiency. We note that the RK-Picard solvers are
not cheap ones, their employment makes therefore sense
only if we seek a high degree of precision, even at a
higher computational cost. Anyway, at the same (high)
computational cost, they are definitely more precise than the
previous groups of solvers.

The last group of solvers consists of the adaptive Runge–
Kutta-Picard solvers ’RK2-adap-Picard’ and ’RK3-adap-
Picard’ in its first variant (where we stop after M/2 and
M iterations). In a certain range they seem to exhibit a
similar performance, clearly better than all the other solvers,
while for large values of N the already discussed imprecision
of ’RK3-adap-Picard’ shows up again. Nevertheless, since
in the solver ’RK2-adap-Picard’ we don’t use interpolation
polynomials of high degree, this type of errors does not
appear and overall this solver may be considered as the ’test-
winner’.

Fig. 4 shows the results for δ = 30, which is a much more
demanding problem than the previous one. We will mention
only some differences compared to the former situation.
The solvers ’RK3’ and ’RK4’ perform now similarly to
’rk5-adap’ and better than the (dODE)-Picard solver or
’RK2-adap’ or ’RK3-adap’. Within a certain range, the best
efficiency is provided this time by ’RK3-adap’, and ’RK2-
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Fig. 5. 1D for δ = 20, n = 1000
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Fig. 6. 1D for δ = 30, n = 1000

adap’ surpasses it only for larger values of N . Within this
range, even if ’RK2-adap’ is again the best one, its efficiency
is comparable to that of ’RK3-adap’, ’RK3-Picard’ and
’RK4-Picard’.

We perform next computations for the smaller spatial
discretization step of 1/1000. In order to obtain a good
reference solution we use the solver ’RK2-adap-Picard’ with
a large value of N . The reason for this choice is that
in this case the MATLAB-solvers reach their limits. The
solver ode15s with the minimal value of the parameter
’RelTol’=2.2 ·10−14 is still fast but, by its construction, it is
not a high precision solver. For δ = 20 we can use the solver
ode113 with the smallest possible value ’RelTol’=10−10

(due to memory reasons), the difference between the two
computed solutions being of 10−8. So, this is virtually the
best precision which can be reached by the MATLAB-
solvers. For δ = 30 we can use ode113 only with ’RelTol’
larger than 10−5, the difference to the solution delivered
by ode15s being of 10−4. The results of the numerical
experiments are plotted in Fig. 5 and 6. We compare here
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Fig. 8. Efficiency comparison in 2D for δ = 30, n = 200× 200

only stochastic solvers, all based on Picard-iterations in
different variants: ’Picard’ and the adaptive schemes ’RK2-
adap-Picard’ and ’RK3-adap-Picard’. As deterministic solver
in this test we use the standard one, ’rk5-adap’. We note
that this scheme performs similarly to the stochastic Picard–
solver and in the precision range up to 10−4 − 10−5 both
of them are faster than the adaptive stochastic RK-solvers.
Nevertheless, if higher precision is required (for example
to compute a good reference solution), the latter solvers
are more performant. ’RK2-adap-Picard’ turns to be again a
robust solver with a good precision. We observe the known
problems caused by rounding errors in the case of the solver
’RK3-adap-Picard’. Altough in a certain precision range
this solver performs slightly better than the other stochastic
Runge–Kutta solver, by increasing the precision parameters
above a certain level, the precision of the computed solutions
does not improve. However, this is not the case for the
solver ’RK2-adap-Picard’. We note also that by using this
scheme, we can obtain a higher precision than using the
solvers available in MATLAB.

The next figures depict the results in case of the 2D-
problem for δ = 30, computed up to tmax = 0.268. Fig.
7 corresponds to the spatial discretization step of 1/120
(reference solution computed by ode113), while Fig. 8 to a
step of 1/200 (reference solution computed by ’RK2-adap-
Picard’). We compare the same solvers as in the previous
example, together with the MATLAB-solver ode15s and the
standard Runge–Kutta method ’rk4’ (only for the spatial
discretization step of 1/120). We note that in the case of
this difficult problem, with a large number of equations, the
performance of this solver is poor compared to the others.
Concerning the stochastic solvers, the picture is almost the
same as before. The ’Picard’ solver performs similarly to the
deterministic ’rk5’-method. If one needs a higher precision,
the stochastic solvers ’RK2-adap-Picard’ and ’RK3-adap-
Picard’ are more performant. In both cases we considered
also the results of the MATLAB-solver ode15s, set up to
the maximal possible precision. Due to the fast MATLAB-
codes, based internally on strong parallelization, the ODE-
solvers available in this software are generally very fast.
Nevertheless, for difficult problems (as in the 1D case with
a very small discretization step of 1/1000 or in the 2D case
for steps 1/200 or smaller), the stochastic solvers presented
in this paper perform better in the range of high precision.

VI. CONCLUSIONS

The conclusion of these experiments is that by using the
Picard and/or Runge–Kutta principle, the performance of
the stochastic direct simulation method can be enhanced
considerably. The stochastic solvers presented here are com-
parable to deterministic ones, at least in a precision range
relevant for PDEs. Within the framework of all Runge-
Kutta-solvers of stochastic type, we distinguish the time
adaptive solver ’RK2-adap-Picard’, which shows the best
allround performance, either if we need a good precision at
a mostly cheap computational cost, or if we need a very high
precision, even at the price of an expensive computational
cost.
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