
Learning of The Neural System Based on Nonlinear
Aggregation Operations of Quaternionic-Valued

Signals in Neuron Cell
Sushil Kumar1 and B K Tripathi

Department of Computer Science & Engineering
Harcourt Butler Technical University, Kanpur, India

Abstract—This paper illustrates the new structure of artificial neuron
which is based on the non-linear aggregation operation of
quaternionic-valued signals in neuron cell. The main aim of this
neuron is to present the comparative potential capabilities of non-
linear aggregation over conventional aggregation (summation) of the
quaternionic-valued signals. The root-power mean is used as a
nonlinear aggregation operation which has an ability to construct a
wide spectrum of aggregation means in between minima and maxima
depending on degree of compensation (exponent). It has a beautiful
property of changing its degree of compensation in the natural way
which emulates the various existing neuron models as its special
cases. The three-layer multilayer perceptron networks are designed
with proposed and conventional neurons in quaternionic domain
separately. These networks are trained through quaternionic-valued
back-propagation (ℍ-BP) learning algorithm for various benchmark
problems. The results demonstrate the improvement on training
cycles and exhibits better approximation accuracy. A wide spectrum
of benchmark problems are considered to evaluate the performance
of proposed quaternionic root-power mean neuron with ℍ-BP
learning algorithm.

Keywords—Quaternion, quasi-arithematic means, quaternionic-
valued root-power means, quaternionic multilayer perceptron, and
quaternionic backpropagation.

I. INTRODUCTION
The information processing in cell body is an important

functionality of a neuron, which emulates the computational
power of a neuron [1]-[4]. In the last few years, various
neurocomputing researches have confirmed the computational
capability of a neuron with nonlinear aggregation operations on
synaptic inputs [1], [2], [5]-[8] and presented various higher
order neurons based on the nonlinear correlation among
different impinging signals. These attempts resulted in various
classes of neural structure as pi-sigma [9], [10] second order
neuron [11], Compensatory neuron [12] and other higher order
neurons [13]-[16]. However, the higher order neurons have
proved to be efficient, but they face the problem of explosion
of terms as the number of inputs increases hence demanding
sparseness in representation. The problem worsens when
neurons are implemented in high dimension. It is highly
demanding to investigate a neuron model like conventional
neuron in higher dimension, but is free from problem of higher
order neurons. This paper presents a neuron model with
complete specification for quaternionic-valued that employs
the non-linear correlation among input components; but it is
free from above problem even when there is an increase in the
degree of approximation. The corresponding neural network
with learning algorithm in quaternionic domain provides a
better learning and generalization opportunity for problems in
three or four dimensions. The weighted root-power mean

covers the various classes of aggregation in the interval
between minima to maxima operations [17], [18]. It provides
the flexibility to approximate appropriate operation in the
widest range of aggregation through variation of power
coefficient. The weighted root-power mean as an aggregation
function of the proposed neuron model with quaternionic-
valued signals exhibits the natural and general model that
presents the various existing neuron models as its special cases,
depending on the domain of input signals and value of power
coefficient.

The back-propagation (BP) learning algorithm has gained
popularity due its simplicity in implementation. Therefore,
some of other proposals have been given, like modified error
function [19], [20], addition of variable learning rate [21], [22],
addition of momentum [23], [24], delta-bar-delta algorithm
[25], [26], and quick prop [27], to accelerate the convergence
to a significant amount. The fast convergence with efficacious
performance along with less complexity of neural network is
the important matter for a variety of applications in higher
dimensions. This paper presents a quaternionic-valued based
backpropagation (ℍ-BP) learning algorithm of the network
employed with proposed quaternionic-valued root-power mean
neurons (ℍ-RPMN) in hidden and output layers.

The proposed quaternionic-valued root power mean neuron
along with the derivation of learning rules through a bounded
but non-holomorphic activation function is compared with
conventional neuron in quaternionic domain which
demonstrates the better generalization in simulation results.
This paper is organized as follows. The section II presents a
new structure of neuron in quaternionic domain which
emulates many neuron models as its special cases. The BP
weight update rules for a three layer network based on ℍ-
RPMN are derived here. In section III, the comparative
performance is given for a wide spectrum of benchmark
problems. Section IV concludes the paper with future scope.

II. NEURAL NETWORK AND LEARNING
In variety of researches it is observed that the

approximation capabilities of an artificial neuron are governed
through spatial aggregation input signals [1], [2], [5]-[7]. This
paper focuses on the design and assessment of a generalized
artificial neuron whose aggregation operation provides wide
spectrum of approximation in between minima to maxima.

A. Root Power Mean Neuron in Quaternionic Domain
The aggregation operation for proposed neuron is

conceptually based on weighted root-power means of input
signals which belongs to the family of quasi-arithmetic means
[28], [29] and expressed as:

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 125

ℳ𝜑𝜑 (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ; 𝜔𝜔1, … , 𝜔𝜔𝑛𝑛) = 𝜑𝜑−1�∑ 𝜔𝜔𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝜑𝜑(𝑥𝑥𝑖𝑖)� (1)

where 𝜑𝜑 : ℝ𝑛𝑛 → ℝ is a continuous and strictly monotonic
function which is a generator of quasi-arithmetic mean (ℳ𝜑𝜑).
The 𝜑𝜑−1 is the inverse of function 𝜑𝜑 : 𝑥𝑥 → 𝑥𝑥𝛼𝛼 , where 𝛼𝛼 ∈
ℝ − {0}, thus weight root-power mean [30] is defined as:

ℳ(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ; 𝜔𝜔1, 𝜔𝜔2, … , 𝜔𝜔𝑛𝑛 ; 𝛼𝛼) = (∑ 𝜔𝜔𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖

𝛼𝛼)
1
𝛼𝛼 (2)

This function models a compensation operation to adjust
the degree of approximation by varying the power coefficient
𝛼𝛼, from −∞ (minimum) to +∞ (maximum). The specific
power coefficients determine various classical means. When
𝛼𝛼 → 0, then ℳ converges to geometric mean and when
𝛼𝛼 = −1, 1, 2, then ℳ acts as harmonic, arithmetic, and
quadratic means, respectively. Most of the common averaging
operations come under the family of root-power mean (2),
which motivated us to define new aggregation function for a
neuron in a quaternionic domain (ℍ). This neuron is named as
ℍ-RPMN whose net potential (𝑉𝑉) is defined as follows :

𝑉𝑉(𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ; 𝛼𝛼) = (∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 ⊗ 𝑞𝑞𝑖𝑖

𝛼𝛼)
1
𝛼𝛼 (3)

where 𝑉𝑉, 𝑤𝑤𝑖𝑖 , 𝑞𝑞𝑖𝑖 ∈ ℍ and 𝛼𝛼 ∈ ℝ. ℍ and ℝ are the set of
quaternion and complex numbers respectively. The symbol ⊗
denotes the quaternion multiplication, which satisfies the
Hamilton’s properties as 𝒊𝒊2 = 𝒋𝒋2 = 𝒌𝒌2 = 𝒊𝒊𝒊𝒊𝒊𝒊 = −1, 𝒊𝒊𝒊𝒊 =
−𝒋𝒋𝒋𝒋 = 𝒌𝒌, 𝒋𝒋𝒋𝒋 = −𝒌𝒌𝒌𝒌 = 𝒊𝒊, and 𝒌𝒌𝒌𝒌 = −𝒊𝒊𝒊𝒊 = 𝒋𝒋 [31]. The net
potential through quaternionic variables is further transformed
through quaternionic-valued split activation function 𝑓𝑓ℍ
(𝑓𝑓ℍ ∶ ℍ → ℍ). This presents the four dimensional extension
with the suitable real activation function 𝑓𝑓 (‘split-quaternion’)
[32]. This idea has been motivated from split-type action
function in complex domain whose approximation capabilities
have been thoroughly justified in [12], [30], [33]. The split-
type activation function in quaternionic domain is bounded but
non-holomorphic since Cauchy–Riemann-Fueter (CRF)
condition does not hold for it [34]. Let 𝑉𝑉 = ℜ(𝑉𝑉) + ℑ1(𝑉𝑉)𝒊𝒊 +
ℑ2(𝑉𝑉)𝒋𝒋 + ℑ3(𝑉𝑉)𝒌𝒌 is a quaternionic variable, then 𝑓𝑓ℍ is defined
as :

𝑓𝑓ℍ(𝑉𝑉) = 𝑓𝑓�ℜ(𝑉𝑉)� + 𝑓𝑓�ℑ1(𝑉𝑉)�𝒊𝒊 + 𝑓𝑓�ℑ2(𝑉𝑉)�𝒋𝒋 + 𝑓𝑓�ℑ3(𝑉𝑉)�𝒌𝒌 (4)

where, ℜ, ℑ1, ℑ2 and ℑ3 denote a real and other three
imaginary components of a quaternionic variable respectively.
The various types of non-linear real valued activation functions
𝑓𝑓 have been defined in literatures. The choice of a suitable
activation function depends on the intended applications. The
output of proposed ℍ-RPMN can be defined as :

𝑌𝑌(𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ; 𝛼𝛼) = 𝑓𝑓ℍ �(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 ⊗ 𝑞𝑞𝑖𝑖

𝛼𝛼)
1
𝛼𝛼 � (5)

where, the power coefficient 𝛼𝛼 provides wide ranging
functionality of ℍ-RPMN. The many existing neuron models
can be realized as special cases of (5) by substituting the
specific value of power coefficient 𝛼𝛼. Some special type of
existing neuron models are extracted from (5) as follows :

On substituting 𝛼𝛼 = 1 in (5), then the output of neuron

𝑌𝑌(𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛) = 𝑓𝑓ℍ(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 ⊗ 𝑞𝑞𝑖𝑖) (6)

which is conventional type of neuron model proposed in the
real [35], complex [33], [36] and quaternionic domain [37] as
cases apply in consideration of imaginary components. Let
consider all parameters in complex domain, then the output of
a neuron

𝑌𝑌(𝑧𝑧0, 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ; 𝛼𝛼) = 𝑓𝑓ℂ �(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 𝑧𝑧𝑖𝑖

𝛼𝛼)
1
𝛼𝛼 � (7)

which presents the ℂ-RPMN model in complex domain, whose
functional capabilities are investigated in [30].

 The multiplicative neuron model proposed in [38], whose
capability has been proven there, can be realized by (5) when
𝛼𝛼 → 0

𝑌𝑌(𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛) = 𝑓𝑓 �lim𝛼𝛼→0(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 𝑥𝑥𝑖𝑖

𝛼𝛼)
1
𝛼𝛼 � =

𝑓𝑓�∏ 𝑥𝑥𝑖𝑖
𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=0 � (8)

The harmonic neuron model proposed in [39] can be
obtained when 𝛼𝛼 = −1 in (5), thus output of neuron :

𝑌𝑌(𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛) = 𝑓𝑓 � 1
∑

𝑤𝑤 𝑖𝑖
𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=0

� (9)

Similarly, when 𝛼𝛼 = 2 and all variables are in real domain,
then the output from (5) is conceptually similar to the quadratic
neuron model proposed in [40] and expressed as follows :

𝑌𝑌(𝑥𝑥0, 𝑥𝑥1, . . , 𝑥𝑥𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1. . , 𝑤𝑤𝑛𝑛 ; 𝛼𝛼 = 2) = 𝑓𝑓 �(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 𝑥𝑥𝑖𝑖

2)
1
2�(10)

B. Learning in ℍ-RPMN Network
The multilayer network with proposed neuron model is

similar to the network of conventional neuron. Consider a
three-layer (𝐿𝐿 − 𝑀𝑀 − 𝑁𝑁) network of ℍ-RPMN where first layer
possesses 𝐿𝐿(𝑙𝑙 = 1, … , 𝐿𝐿) inputs, and second and third layer
contain 𝑀𝑀(𝑙𝑙 = 1, … , 𝑀𝑀) and 𝑁𝑁(𝑙𝑙 = 1, … , 𝑁𝑁) neurons
respectively. All weights, biases, and input-output signals are
quaternionic numbers. Let 𝑄𝑄 = [𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝐿𝐿] be the vector of
quaternionic input 𝑞𝑞 = ℜ(𝑞𝑞) + ℑ1(𝑞𝑞)𝒊𝒊 + ℑ2(𝑞𝑞)𝒋𝒋 + ℑ3(𝑞𝑞)𝒌𝒌
and 𝑞𝑞� = ℜ(𝑞𝑞) − ℑ1(𝑞𝑞)𝒊𝒊 − ℑ2(𝑞𝑞)𝒋𝒋 − ℑ3(𝑞𝑞)𝒌𝒌 be the conjugate.
Let 𝑓𝑓 be the real-valued activation function and 𝑓𝑓′ be its
derivative and 𝜂𝜂 ∈ [0,1] be the learning rate. Let weight 𝑤𝑤𝑙𝑙𝑙𝑙
be from lth input to mth hidden neuron and 𝑤𝑤𝑚𝑚𝑚𝑚 be from mth
hidden neuron to nth output neuron of the network. Let 𝑤𝑤0 be
the bias weight and 𝑞𝑞0 be the bias input. Let 𝑉𝑉 be net internal
potential of a neuron and output can be computed through the
split-quaternion activation function 𝑓𝑓ℍ. For mth hidden neuron
𝑉𝑉𝑚𝑚 = ℜ(𝑉𝑉𝑚𝑚) + ℑ1(𝑉𝑉𝑚𝑚)𝒊𝒊 + ℑ2(𝑉𝑉𝑚𝑚)𝒋𝒋 + ℑ3(𝑉𝑉𝑚𝑚)𝒌𝒌, then output :

𝑌𝑌𝑚𝑚 = 𝑓𝑓ℍ(𝑉𝑉𝑚𝑚) = 𝑓𝑓ℍ �(∑ 𝑤𝑤𝑙𝑙𝑙𝑙⊗ 𝑞𝑞𝑙𝑙
α𝐿𝐿

𝑙𝑙=0)
1
𝛼𝛼 � (11)

Let 𝑢𝑢𝑚𝑚 = ∑ 𝑤𝑤𝑙𝑙𝑙𝑙⊗ 𝑞𝑞𝑙𝑙
α𝐿𝐿

𝑙𝑙=0 and 𝑉𝑉𝑚𝑚 is expressed as power of
quaternionic variable 𝑢𝑢𝑚𝑚 = ℜ(𝑢𝑢𝑚𝑚) + ℑ1(𝑢𝑢𝑚𝑚)𝒊𝒊 + ℑ2(𝑢𝑢𝑚𝑚)𝒋𝒋 +
ℑ3(𝑢𝑢𝑚𝑚)𝒌𝒌. Let 𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚) = ℑ1(𝑢𝑢𝑚𝑚)𝒊𝒊 + ℑ2(𝑢𝑢𝑚𝑚)𝒋𝒋 + ℑ3(𝑢𝑢𝑚𝑚)𝒌𝒌 is the
vector component of 𝑢𝑢𝑚𝑚 then 𝑢𝑢𝑚𝑚 can be expressed as a real
and its vector part together as ℜ(𝑢𝑢𝑚𝑚) + 𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚) and it can be
represented in the polar form [41] as :

‖𝑢𝑢𝑚𝑚 ‖ �𝐶𝐶𝐶𝐶𝐶𝐶�𝜃𝜃(𝑢𝑢𝑚𝑚)� +
𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚)

�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚)�
𝑆𝑆𝑆𝑆𝑆𝑆�𝜃𝜃(𝑢𝑢𝑚𝑚)��,

where,

𝜃𝜃(𝑢𝑢𝑚𝑚) = tan−1��𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚)� ℜ(𝑢𝑢𝑚𝑚)� �,

the norm of quaternionic variable 𝑢𝑢𝑚𝑚 is ‖𝑢𝑢𝑚𝑚 ‖ = ��ℜ(𝑢𝑢𝑚𝑚)�2 +
ℑ1𝑢𝑢𝑚𝑚2+ℑ2𝑢𝑢𝑚𝑚2+ℑ3𝑢𝑢𝑚𝑚212, and

�𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚)� = ��ℑ1(𝑢𝑢𝑚𝑚)�2 + �ℑ2(𝑢𝑢𝑚𝑚)�2 + �ℑ3(𝑢𝑢𝑚𝑚)�2�
1
2, which

denotes the magnitude of the vector component (𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚)) of 𝑢𝑢𝑚𝑚 .
The net internal potential 𝑉𝑉𝑚𝑚 of mth hidden neuron can be
obtained by applying De Moivre’s theorem on 𝑢𝑢𝑚𝑚 [42] as :

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 126

𝑉𝑉𝑚𝑚 = ‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼 �𝐶𝐶𝐶𝐶𝐶𝐶 �

𝜃𝜃(𝑢𝑢 𝑚𝑚)

𝛼𝛼
� +

𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚)

�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚)�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑚𝑚)

𝛼𝛼
�� (12)

The output of the nth neuron in output layer can be
expressed as similar to (11) as :

𝑌𝑌𝑛𝑛 = 𝑓𝑓ℍ(𝑉𝑉𝑛𝑛) = 𝑓𝑓ℍ �(∑ 𝑤𝑤𝑚𝑚𝑚𝑚 ⊗ 𝑌𝑌𝑚𝑚
α𝑀𝑀

𝑚𝑚 =0)
1
𝛼𝛼 � (13)

Let 𝑢𝑢𝑛𝑛 = ∑ 𝑤𝑤𝑚𝑚𝑚𝑚 ⊗ 𝑌𝑌𝑚𝑚
α𝑀𝑀

𝑚𝑚 =0 and 𝑉𝑉𝑛𝑛 be the net internal
potential of nth neuron which can be derived as similar to (12)

𝑉𝑉𝑛𝑛 = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼 �𝐶𝐶𝐶𝐶𝐶𝐶 �

𝜃𝜃(𝑢𝑢 𝑛𝑛)

𝛼𝛼
� +

𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛)

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛)�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛)

𝛼𝛼
�� (14)

The gradient-descent-based error back-propagation learning
scheme for feed-forward neural network has been extended in
quaternionic domain. Let error 𝑒𝑒𝑛𝑛 = 𝐷𝐷𝑛𝑛 − 𝑌𝑌𝑛𝑛 = ℜ(𝑒𝑒𝑛𝑛) +
ℑ1(𝑒𝑒𝑛𝑛)𝒊𝒊 + ℑ2(𝑒𝑒𝑛𝑛)𝒋𝒋 + ℑ3(𝑒𝑒𝑛𝑛)𝒌𝒌 be the difference between
desired (𝐷𝐷𝑛𝑛) and actual (𝑌𝑌𝑛𝑛) output of nth neuron at output
layer. The weight update formula can be derived by
minimizing the real-valued error function (𝐸𝐸) as follows :

𝐸𝐸 = 1
2𝑁𝑁

∑ ‖𝑒𝑒𝑛𝑛 ‖2𝑁𝑁
𝑛𝑛=1 = 1

2𝑁𝑁
∑ ��ℜ(𝑒𝑒𝑛𝑛)�2 + �ℑ1(𝑒𝑒𝑛𝑛)�2 +𝑁𝑁

𝑛𝑛=1

ℑ2𝑒𝑒𝑛𝑛2+ ℑ3𝑒𝑒𝑛𝑛2 (15)

The real-valued error function (𝐸𝐸) does not follow the
Cauchy-Riemann condition, therefore it is not holomorphic.
The error function is minimized by recursively altering the
weight coefficients as :

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜂𝜂 𝛻𝛻𝑤𝑤 (𝐸𝐸) (16)

where, 𝛻𝛻𝑤𝑤 (𝐸𝐸) presents the gradient of the error function (𝐸𝐸)
which is derived with respect to real and other three imaginary
components of quaternionic weights. The weight update (∆𝑤𝑤)
is proportional to the negative gradient of the error function
with respect to quaternionic weight as :

∆𝑤𝑤 = −𝜂𝜂 𝛻𝛻𝑤𝑤 (𝐸𝐸) = −𝜂𝜂 � 𝜕𝜕𝜕𝜕
𝜕𝜕ℜ(𝑤𝑤)

+ 𝜕𝜕𝜕𝜕
𝜕𝜕ℑ1(𝑤𝑤)

𝒊𝒊 + 𝜕𝜕𝜕𝜕
𝜕𝜕ℑ2(𝑤𝑤)

𝒋𝒋 +
𝜕𝜕𝐸𝐸𝜕𝜕ℑ3𝑤𝑤𝒌𝒌
(17)

For the weight (𝑤𝑤 = 𝑤𝑤𝑚𝑚𝑚𝑚) that connects mth hidden neuron
to nth output neuron, the weight update is obtained using chain
rule of derivation as :

∆𝑤𝑤𝑚𝑚𝑚𝑚 = −𝜂𝜂 𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 (𝐸𝐸) = 𝜂𝜂
𝑁𝑁

�ℜ(𝑒𝑒𝑛𝑛)𝑓𝑓′ �ℜ(𝑉𝑉𝑛𝑛)� 𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑉𝑉𝑛𝑛)� +
𝑖𝑖=13ℑ𝑖𝑖𝑒𝑒𝑛𝑛𝑓𝑓′ℑ𝑖𝑖𝑉𝑉𝑛𝑛 𝛻𝛻𝑤𝑤𝑚𝑚𝑛𝑛ℑ𝑖𝑖𝑉𝑉𝑛𝑛 (18)

The weight update (∆𝑤𝑤𝑚𝑚𝑛𝑛) depends on gradients of each
component of the net potential (𝑉𝑉𝑛𝑛) of nth output neuron with
respect to weight (𝑤𝑤𝑚𝑚𝑚𝑚). The gradient of the real component of
the net potential can be obtained using real part of (14) e.g.
‖𝑢𝑢𝑛𝑛 ‖

1
𝛼𝛼 𝐶𝐶𝐶𝐶𝐶𝐶 �

𝜃𝜃(𝑢𝑢 𝑛𝑛)

𝛼𝛼
� as :

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑉𝑉𝑛𝑛)� = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼 − 2

𝛼𝛼
�𝐴𝐴1ℜ(𝑢𝑢𝑛𝑛)𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑢𝑢𝑛𝑛)� +

𝐵𝐵1𝑗𝑗=13ℑ𝑗𝑗𝑢𝑢𝑛𝑛 𝛻𝛻𝑤𝑤𝑚𝑚𝑛𝑛ℑ𝑗𝑗𝑢𝑢𝑛𝑛 (19)

and the gradients of three imaginary components of the net
potential (ℑ𝑖𝑖(𝑉𝑉𝑛𝑛), 𝑖𝑖 = 1, 2, 3) can be obtained as :

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑖𝑖(𝑉𝑉𝑛𝑛)� = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼 − 2

𝛼𝛼�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛)�
ℑ𝑖𝑖(𝑢𝑢𝑛𝑛) �𝐴𝐴2ℜ(𝑢𝑢𝑛𝑛)𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑢𝑢𝑛𝑛)� +

𝐵𝐵2 ∑ ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛) 𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛)�3
𝑗𝑗 =1 � +

‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛)�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛)

𝛼𝛼
� 𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑖𝑖(𝑢𝑢𝑛𝑛)� −

‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛)�
3 ℑ𝑖𝑖(𝑢𝑢𝑛𝑛)𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛)

𝛼𝛼
� �∑ ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛)𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛)�3

𝑗𝑗 =1 � (20)

where,

‖𝑢𝑢𝑛𝑛 ‖ = ��ℜ(𝑢𝑢𝑛𝑛)�2 + �ℑ1(𝑢𝑢𝑛𝑛)�2 + �ℑ2(𝑢𝑢𝑛𝑛)�2 +
ℑ3𝑢𝑢𝑛𝑛212,

�𝑉𝑉�⃗ (𝑢𝑢𝑛𝑛)� = ��ℑ1(𝑢𝑢𝑛𝑛)�2 + �ℑ2(𝑢𝑢𝑛𝑛)�2 + �ℑ3(𝑢𝑢𝑛𝑛)�2�
1
2,

𝐴𝐴1 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑛𝑛))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑢𝑢𝑛𝑛)),

𝐵𝐵1 = 𝑆𝑆𝑆𝑆𝑆𝑆((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑛𝑛))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑢𝑢𝑛𝑛)),

𝐴𝐴2 = −𝑆𝑆𝑆𝑆𝑆𝑆((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑛𝑛))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑢𝑢𝑛𝑛)),

𝐵𝐵2 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑛𝑛))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑢𝑢𝑛𝑛)), and

𝜃𝜃(𝑢𝑢𝑛𝑛) = tan−1��𝑉𝑉�⃗ (𝑢𝑢𝑛𝑛)� ℜ(𝑢𝑢𝑛𝑛)� �.

The gradients of real and three imaginary components of 𝑢𝑢𝑛𝑛
with respect to the weight (𝑤𝑤𝑚𝑚𝑚𝑚) can be obtained as :

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑢𝑢𝑛𝑛)� = �𝑌𝑌𝑚𝑚 �
𝛼𝛼

, (21)

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ1(𝑢𝑢𝑛𝑛)� = 𝒊𝒊 ⊗�𝑌𝑌𝑚𝑚 �
𝛼𝛼

,
(22)

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ2(𝑢𝑢𝑛𝑛)� = 𝒋𝒋 ⊗�𝑌𝑌𝑚𝑚 �
𝛼𝛼

, (23)

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ3(𝑢𝑢𝑛𝑛)� = 𝒌𝒌 ⊗�𝑌𝑌𝑚𝑚 �
𝛼𝛼

.
(24)

For the weight (𝑤𝑤 = 𝑤𝑤𝑙𝑙𝑙𝑙) that connects lth input to mth
hidden neuron

∆𝑤𝑤𝑙𝑙𝑙𝑙 = −𝜂𝜂 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 (𝐸𝐸) =
𝜂𝜂
𝑁𝑁

∑ �ℜ(𝑒𝑒𝑛𝑛)𝑓𝑓′ �ℜ(𝑉𝑉𝑛𝑛)�𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑛𝑛)� +𝑁𝑁
𝑛𝑛=1

𝑖𝑖=13ℑ𝑖𝑖𝑒𝑒𝑛𝑛𝑓𝑓′ℑ𝑖𝑖𝑉𝑉𝑛𝑛𝛻𝛻𝑤𝑤𝑙𝑙𝑚𝑚ℑ𝑖𝑖𝑉𝑉𝑛𝑛 (25)

The weight update (∆𝑤𝑤𝑙𝑙𝑙𝑙) between lth input and mth hidden
neuron depends on gradients of each component of the net
potential (𝑉𝑉𝑛𝑛) of nth output neuron with respect to weight (𝑤𝑤𝑙𝑙𝑙𝑙).
The gradient of the real component of the net potential can be
obtained as :

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑛𝑛)� = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼 − 2

𝛼𝛼
�𝐴𝐴1ℜ(𝑢𝑢𝑛𝑛)𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑛𝑛)� +

𝐵𝐵1𝑗𝑗=13ℑ𝑗𝑗𝑢𝑢𝑛𝑛 𝛻𝛻𝑤𝑤𝑙𝑙𝑚𝑚ℑ𝑗𝑗𝑢𝑢𝑛𝑛 (26)

and the gradients of three imaginary components of the net
potential (ℑ𝑖𝑖(𝑉𝑉𝑛𝑛), 𝑖𝑖 = 1, 2, 3) can be obtained as :

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑉𝑉𝑛𝑛)� = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼 − 2

𝛼𝛼�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛)�
ℑ𝑖𝑖(𝑢𝑢𝑛𝑛) �𝐴𝐴2ℜ(𝑢𝑢𝑛𝑛)𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑛𝑛)� +

𝐵𝐵2 ∑ ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛)�3
𝑗𝑗 =1 � +

‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛)�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛)

𝛼𝛼
� 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑢𝑢𝑛𝑛)� −

‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛)�
3 ℑ𝑖𝑖(𝑢𝑢𝑛𝑛)𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛)

𝛼𝛼
� �∑ ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛)𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛)�3

𝑗𝑗 =1 � (27)

The gradients of real and three imaginary components of 𝑢𝑢𝑛𝑛
with respect to the weight (𝑤𝑤𝑙𝑙𝑙𝑙) can be obtained as :

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 127

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑛𝑛)� =
 ℜ(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚

𝛼𝛼)� − ℑ1(𝑤𝑤𝑚𝑚𝑚𝑚)𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑌𝑌𝑚𝑚
𝛼𝛼)� −

ℑ2(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑌𝑌𝑚𝑚
𝛼𝛼)� − ℑ3(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑌𝑌𝑚𝑚

𝛼𝛼)� (28)

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑢𝑢𝑛𝑛)� =
 ℜ(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑌𝑌𝑚𝑚

𝛼𝛼)� + ℑ1(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚
𝛼𝛼)� +

ℑ2(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑌𝑌𝑚𝑚
𝛼𝛼)� − ℑ3(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑌𝑌𝑚𝑚

𝛼𝛼)� (29)

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑢𝑢𝑛𝑛)� =
 ℜ(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑌𝑌𝑚𝑚

𝛼𝛼)� − ℑ1(𝑤𝑤𝑚𝑚𝑚𝑚)𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑌𝑌𝑚𝑚
𝛼𝛼)� +

ℑ2(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚
𝛼𝛼)� + ℑ3(𝑤𝑤𝑚𝑚𝑚𝑚)𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑌𝑌𝑚𝑚

𝛼𝛼)� (30)

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑢𝑢𝑛𝑛)� =
 ℜ(𝑤𝑤𝑚𝑚𝑚𝑚)𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑌𝑌𝑚𝑚

𝛼𝛼)� + ℑ1(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑌𝑌𝑚𝑚
𝛼𝛼)� −

ℑ2(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑌𝑌𝑚𝑚
𝛼𝛼)� + ℑ3(𝑤𝑤𝑚𝑚𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚

𝛼𝛼)� (31)

The gradient of real component of 𝑌𝑌𝑚𝑚
𝛼𝛼 can be obtained as :

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚
𝛼𝛼)� =

𝛼𝛼‖𝑌𝑌𝑚𝑚 ‖𝛼𝛼 − 2 �𝐴𝐴3ℜ(𝑌𝑌𝑚𝑚)𝑓𝑓′ �ℜ(𝑉𝑉𝑚𝑚)�𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑚𝑚)� +
𝐵𝐵3𝑗𝑗=13ℑ𝑗𝑗𝑌𝑌𝑚𝑚𝑓𝑓′ℑ𝑗𝑗𝑉𝑉𝑚𝑚𝛻𝛻𝑤𝑤𝑙𝑙𝑚𝑚ℑ𝑗𝑗𝑉𝑉𝑚𝑚 (32)

and the gradients of three imaginary components of the net
potential (ℑ𝑖𝑖(𝑌𝑌𝑚𝑚

𝛼𝛼), 𝑖𝑖 = 1, 2, 3) can be obtained as :

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑖𝑖(𝑌𝑌𝑚𝑚
𝛼𝛼)� =

𝛼𝛼‖𝑌𝑌𝑚𝑚 ‖𝛼𝛼 – 2

�𝑉𝑉��⃗ (𝑌𝑌𝑚𝑚)�
ℑ𝑖𝑖(𝑌𝑌𝑚𝑚) �𝐴𝐴4ℜ(𝑌𝑌𝑚𝑚)𝑓𝑓′ �ℜ(𝑉𝑉𝑚𝑚)�𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑚𝑚)� +

𝐵𝐵4 ∑ ℑ𝑗𝑗 (𝑌𝑌𝑚𝑚)𝑓𝑓′ �ℑ𝑗𝑗 (𝑉𝑉𝑚𝑚)� 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑉𝑉𝑚𝑚)�3
𝑗𝑗 =1 � +

‖𝑌𝑌𝑚𝑚 ‖𝛼𝛼

�𝑉𝑉��⃗ (𝑌𝑌𝑚𝑚)�
𝑆𝑆𝑆𝑆𝑆𝑆�𝛼𝛼𝛼𝛼(𝑌𝑌𝑚𝑚)�𝑓𝑓′ �ℑ𝑖𝑖(𝑉𝑉𝑚𝑚)� 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑉𝑉𝑚𝑚)� −

‖𝑌𝑌𝑚𝑚 ‖𝛼𝛼

�𝑉𝑉��⃗ (𝑌𝑌𝑚𝑚)�
3 ℑ𝑖𝑖(𝑌𝑌𝑚𝑚)𝑆𝑆𝑆𝑆𝑆𝑆�𝛼𝛼𝛼𝛼(𝑌𝑌𝑚𝑚)� ×

�∑ ℑ𝑗𝑗 (𝑌𝑌𝑚𝑚)𝑓𝑓′ �ℑ𝑗𝑗 (𝑉𝑉𝑚𝑚)� 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑉𝑉𝑚𝑚)�3
𝑗𝑗 =1 � (33)

where,

‖𝑌𝑌𝑚𝑚 ‖ = ��ℜ(𝑌𝑌𝑚𝑚)�2 + �ℑ1(𝑌𝑌𝑚𝑚)�2 + �ℑ2(𝑌𝑌𝑚𝑚)�2 +
ℑ3𝑌𝑌𝑚𝑚212,

�𝑉𝑉�⃗ (𝑌𝑌𝑚𝑚)� = ��ℑ1(𝑌𝑌𝑚𝑚)�2 + �ℑ2(𝑌𝑌𝑚𝑚)�2 + �ℑ3(𝑌𝑌𝑚𝑚)�2�
1
2,

𝐴𝐴3 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 𝛼𝛼)𝜃𝜃(𝑌𝑌𝑚𝑚))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑌𝑌𝑚𝑚)),

𝐵𝐵3 = 𝑆𝑆𝑆𝑆𝑆𝑆((1 − 𝛼𝛼)𝜃𝜃(𝑌𝑌𝑚𝑚))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑌𝑌𝑚𝑚)),

𝐴𝐴4 = −𝑆𝑆𝑆𝑆𝑆𝑆((1 − 𝛼𝛼)𝜃𝜃(𝑌𝑌𝑚𝑚))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑌𝑌𝑚𝑚)),

𝐵𝐵4 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 𝛼𝛼)𝜃𝜃(𝑌𝑌𝑚𝑚))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑌𝑌𝑚𝑚)), and

𝜃𝜃(𝑌𝑌𝑚𝑚) = tan−1��𝑉𝑉�⃗ (𝑌𝑌𝑚𝑚)� ℜ(𝑌𝑌𝑚𝑚)� �.

The gradient of real component of the net potential (𝑉𝑉𝑚𝑚) can
be obtained as :

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑚𝑚)� = ‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼 − 2

𝛼𝛼
�𝐴𝐴5ℜ(𝑢𝑢𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑚𝑚)� +

𝐵𝐵5𝑗𝑗=13ℑ𝑗𝑗𝑢𝑢𝑚𝑚 𝛻𝛻𝑙𝑙𝑚𝑚ℑ𝑗𝑗𝑢𝑢𝑚𝑚 (34)

and the gradients of three imaginary components of the net
potential (ℑ𝑖𝑖(𝑉𝑉𝑚𝑚), 𝑖𝑖 = 1, 2, 3) can be obtained as :

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑉𝑉𝑚𝑚)� = ‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼 − 2

𝛼𝛼�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚)�
ℑ𝑖𝑖(𝑢𝑢𝑚𝑚) �𝐴𝐴6ℜ(𝑢𝑢𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑚𝑚)� +

𝐵𝐵6 ∑ ℑ𝑗𝑗 (𝑢𝑢𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑢𝑢𝑚𝑚)�3
𝑗𝑗 =1 � +

‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚)�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑚𝑚)

𝛼𝛼
� 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑢𝑢𝑚𝑚)� −

‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚)�
3 ℑ𝑖𝑖(𝑢𝑢𝑚𝑚)𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑚𝑚)

𝛼𝛼
� �∑ ℑ𝑗𝑗 (𝑢𝑢𝑚𝑚) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑢𝑢𝑚𝑚)�3

𝑗𝑗 =1 �

 (35)

where,

‖𝑢𝑢𝑚𝑚 ‖ = ��ℜ(𝑢𝑢𝑚𝑚)�2 + �ℑ1(𝑢𝑢𝑚𝑚)�2 + �ℑ2(𝑢𝑢𝑚𝑚)�2 +
ℑ3𝑢𝑢𝑚𝑚212,

�𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚)� = ��ℑ1(𝑢𝑢𝑚𝑚)�2 + �ℑ2(𝑢𝑢𝑚𝑚)�2 + �ℑ3(𝑢𝑢𝑚𝑚)�2�
1
2,

𝐴𝐴5 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑚𝑚))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑢𝑢𝑚𝑚)),

𝐵𝐵5 = 𝑆𝑆𝑆𝑆𝑆𝑆((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑚𝑚))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑢𝑢𝑚𝑚)),

𝐴𝐴6 = −𝑆𝑆𝑆𝑆𝑆𝑆((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑚𝑚))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑢𝑢𝑚𝑚)),

𝐵𝐵6 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑚𝑚))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑢𝑢𝑚𝑚)), and

𝜃𝜃(𝑢𝑢𝑚𝑚) = tan−1��𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚)� ℜ(𝑢𝑢𝑚𝑚)� �.

The gradients of real and three imaginary components of
𝑢𝑢𝑚𝑚 with respect to the weight (𝑤𝑤𝑙𝑙𝑙𝑙) can be obtained as :

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑚𝑚)� = �𝑞𝑞𝑙𝑙�
𝛼𝛼

. (36)

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑢𝑢𝑚𝑚)� = 𝒊𝒊 ⊗�𝑞𝑞𝑙𝑙�
𝛼𝛼

.
(37)

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑢𝑢𝑚𝑚)� = 𝒋𝒋 ⊗�𝑞𝑞𝑙𝑙�
𝛼𝛼

.
(38)

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑢𝑢𝑚𝑚)� = 𝒌𝒌 ⊗�𝑞𝑞𝑙𝑙�
𝛼𝛼

.
(39)

III. PERFORMANCE EVALUATION THROUGH
BENCHMARK PROBLEMS

In this paper, we present the effectiveness of proposed
neuron ℍ-RPMN and algorithm ℍ-RPMN through wide
spectrum of benchmark problems. Comparative evaluation is
done by networks designed by conventional neurons (MLP)
and root-power-mean neurons with ℍ-BP learning algorithms
in quaternionic domain. Four components of all quaternionic
weights and biases for both networks are randomly initialized
in the range -1 to 1. The quaternionic varaiable 𝒒𝒒0 = 1 + 𝒊𝒊 +
𝒋𝒋 + 𝒌𝒌 is assumed as bias input and the hyperbolic tangent
function is used as activation function. The comparison of
training and testing performance through function
approximation is thoroughly evaluated by statistical
parameters like error variance, correlation, and AIC [43].
Another class of benchmark problem is the learning of linear
transformations (rotation, scaling, and translation and their
combinations) through a set of points lying on line whose
generalization abilities are tested over complicated 3D
geometric structure. In last subsection, two primary
experiments are presented for 3D face recognition which
surely it will be stepping stone for prospective researchers.

A. Function Approximations
1) Approximation of Model for Spread of Tuberculosis:

The spread of tuberculosis model [44] is the system of four
differential equations with respect to time along with four
variables that can be denoted together as a quaternion number

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 128

instead of four real numbers. This model needs the intelligent
behavior and automated analysis of bacterial effect to reach
equilibrium from different initial conditions. A mathematical
model aims to analyze the effect of accumulation of bacteria
which survive due to conducive ecological factors such as
flower pots, plants, grasses, human clothes, etc. in the habitat,
acting as reservoir, on the spread of tuberculosis (TB) in
human population. The total population (𝑁𝑁(𝑡𝑡)) is categorized
into classes, susceptible (𝑆𝑆(𝑡𝑡)) and infective (𝑇𝑇(𝑡𝑡)). 𝐵𝐵(𝑡𝑡)
governs the bacteria density in the environment and 𝐸𝐸(𝑡𝑡) is
cumulative density of ecological factors which is conducive to
the accumulation of bacteria population. All these factors of
this model are treated as quaternion number (𝑆𝑆(𝑡𝑡) + 𝑇𝑇(𝑡𝑡)𝒊𝒊 +
𝐵𝐵(𝑡𝑡)𝒋𝒋 + 𝐸𝐸(𝑡𝑡)𝒌𝒌) with respect to time. In this model, it is
assumed that TB is spread by direct contacts with infective in
the population and indirect contacts with bacteria which is
emitted by infective in the habitat. The dynamics of the spread
of TB is governed by the system of nonlinear differential
equations as :
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝐴𝐴 − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑑𝑑𝑑𝑑 + 𝜈𝜈𝜈𝜈,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜈𝜈 + 𝛼𝛼 + 𝑑𝑑)𝑇𝑇,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑠𝑠𝑠𝑠 − 𝑠𝑠0𝐵𝐵 + 𝑠𝑠1𝐵𝐵𝐵𝐵,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾 − 𝛾𝛾0𝐸𝐸2 + 𝛾𝛾1(𝑆𝑆 + 𝑇𝑇)𝐸𝐸,
𝑆𝑆(0) > 0, 𝑇𝑇(0) ≥ 0, 𝐵𝐵(0) ≥ 0, 𝐸𝐸(0) ≥ 0 (40)

where, 𝐴𝐴 is the immigration rate of susceptibles. 𝛽𝛽 and 𝜆𝜆 are
the transmission coefficients of TB by contact of susceptibles
with infectives and by inhalation of bacteria from
environment; 𝑑𝑑 is the natural death rate, 𝜈𝜈 is the therapeutic
treatment rate of infected individuals and 𝛼𝛼 is the death rate
due to TB infection. The parameter 𝑠𝑠 is the release rate of
bacteria from the TB infected individuals, 𝑠𝑠0 is the decrease
coefficient due to natural factors and 𝑠𝑠1 is the rate of survival
and accumulation of bacteria population due to conducive
ecological factors in the habitat. 𝛾𝛾 is the growth rate, 𝛾𝛾/𝛾𝛾0 is
the carrying capacity in the habitat and 𝛾𝛾1 is the increase
coefficient due to total human population. All these
parameters in this model are assumed only for positive values.
The TB model presented in (40) with parameters 𝐴𝐴 = 500,
𝛽𝛽 = 0.0003, 𝜆𝜆 = 0.0001, 𝑑𝑑 = 0.15,𝜈𝜈 = 0.01,𝛼𝛼 = 0.2,
𝑠𝑠 = 0.1, 𝑠𝑠0 = 0.3, 𝑠𝑠1 = 0.0001, 𝛾𝛾 = 25, 𝛾𝛾0 = 0.1, and
𝛾𝛾1 = 0.002 generates four dataset containing 200 data points
in 100 hours with time interval ∆𝑡𝑡 = 0.5 and four initial
conditions are given as :

(i) 𝑆𝑆(0) = 1400, 𝑇𝑇(0) = 1600, 𝐵𝐵(0) = 358,𝐸𝐸(0) = 290
(ii) 𝑆𝑆(0) = 200, 𝑇𝑇(0) = 1300, 𝐵𝐵(0) = 358, 𝐸𝐸(0) = 290
(iii) 𝑆𝑆(0) = 2600, 𝑇𝑇(0) = 400, 𝐵𝐵(0) = 358, 𝐸𝐸(0) = 290
(iv) 𝑆𝑆(0) = 600, 𝑇𝑇(0) = 400, 𝐵𝐵(0) = 358, 𝐸𝐸(0) = 290

The system presented in (40) reaches an equilibrium point
𝑆𝑆(100) = 1068.5313355,𝑇𝑇(100) = 970.6294275,
𝐵𝐵(100) = 358.2693836, and 𝐸𝐸(100) = 290.7832153 from
given four different initial conditions given (i), (ii), (iii) and
(iv). With the help of each equilibrium point with its
parameters as given above, the system generates four datasets
containing four components (𝑆𝑆(𝑡𝑡), 𝑇𝑇(𝑡𝑡), 𝐵𝐵(𝑡𝑡), and 𝐸𝐸(𝑡𝑡)). All
four datasets are further normalized between -0.9 to 0.9 and its
80 data points are used for training by ℍ-BP (learning rate η
=0.001). The normalized datasets containing 200 points are
used for testing of networks trained by both algorithms.

Fig. 1. Comparison of testing result of ℍ-RPMN based network trained by ℍ-
BP algorithm with normalized desired.

TABLE I
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR THE SPREAD OF

TB MODEL
 ℍ-MLP ℍ-RPMN (𝛼𝛼 =0.94)

Learning Algorithm ℍ-BP(η=0.001) ℍ-BP(η=0.001)
Network 4-8-4 4-8-4

Parameters 76 76
MSETraining 0.0005 0.0004

Learning Cycles 6000 4000
MSETesting 3.4615e-04 2.9362e-04

Error Variance 5.8870e-04 5.0581e-04
Correlation 0.9965 0.9970

AIC -6.6409 -7.0640

The comparative analysis for training and testing data
through conventional and proposed neuron based networks
performed by ℍ-BP algorithm are presented in Table I. It
clearly shows that ℍ-BP with ℍ-RPMN has significantly
faster convergence and has better testing results in terms of
error, variance, correlation, and AIC. Fig. 1 demonstrates the
testing results by ℍ-BP with ℍ-RPMN and compares with
desired result in 3D for different initial conditions, where
normalized total human population (𝑆𝑆(𝑡𝑡) + 𝑇𝑇(𝑡𝑡)), bacterial
population density (𝐵𝐵(𝑡𝑡)) and cumulative population density
(𝐸𝐸(𝑡𝑡)) are in x, y and z direction respectively. The overall
training and testing performance infer the superiority of ℍ-BP
algorithm with ℍ-RPMN over quaternionic-valued
conventional neuron.

2) Approximation of Vector Operations: A quaternion
number correspond to radius vector from origin to the point in
space. The interpretation of vectors and operations over them
has the important and valuable impact on the analysis of
various geometrical relationships in space. The quaternion
addition (QADD), subtraction (QSUB), multiplication
(QMULT) and normalized division (N-QDIV) as basic
algebraic operations facilitate to define different vector
operations in the four dimensional space. The learning and
generalization capability of a single network for the above
four operations is evaluated in this experiment.

TABLE II
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR QUATERNION

OPERATIONS
 ℍ-MLP ℍ-RPMN (𝛼𝛼 =0.9)

Algorithm ℍ-BP(η=0.001) ℍ-BP(η=0.001)
Network 2-20-4 2-20-4

Parameters 144 144
MSE training 0.0009 0.0008

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 129

Average Learning Cycles 25000 15000
MSE(Testing) QADD 0.0008 0.0006

QSUB 0.0008 0.0007
QMULT 0.0035 0.0028
N-QDIV 0.0064 0.0040

Error Variance QADD 0.0008 0.0008
QSUB 0.0009 0.0007

QMULT 0.0046 0.0027
N-QDIV 0.0072 0.0041

Correlation QADD 0.9985 0.9981
QSUB 0.9987 0.9972

QMULT 0.2836 0.6178
N-QDIV 0.1794 0.5381

AIC -6.12 -6.28

Let 𝑞𝑞1 = ‖𝑞𝑞1‖𝑒𝑒𝑛𝑛�1𝜃𝜃1 and 𝑞𝑞2 = ‖𝑞𝑞2‖𝑒𝑒𝑛𝑛�2𝜃𝜃2 be the two
quaternion numbers presented in polar form, where – 𝜋𝜋 ≤
𝜃𝜃1, 𝜃𝜃2 ≤ 𝜋𝜋, 0.1 ≤ ‖𝑞𝑞1‖, ‖𝑞𝑞2‖ ≤ 0.4, and three components of
both unit vectors (𝑛𝑛�1 and 𝑛𝑛�2) lie between 0 to 1. A set of 200
samples was randomly chosen for training and a set containing
5000 samples was used for testing of trained network. Table II
analyses the performance with ℍ-BP (𝜂𝜂 = 0.001) algorithm
for conventional and RPMN neurons in quaternionic domain.
Results demonstrate that ℍ-RPMN based network requires
reasonably smaller network topology with comparatively
better accuracy in terms of statistical parameters like error
variance, correlation, and AIC. The performance for QADD
and QSUB operations do not change on increasing the number
of neurons at hidden layer, but slow improvement is observed
in case of QMULT and N-QDIV operations. ℍ-RPMN based
network with ℍ-BP performs better, especially in QMULT
and N-QDIV operations with fewer numbers of learning
cycles and learning parameters.

B. Linear Transformations
This experiment presents the capability to learn 3D motion

patterns through a training set containing points on a line and
motion or transformation generalization over complicated
geometrical structures in space. As a benchmark problem, this
section presents the learning and generalization of linear
transformations (rotation, scaling, and translation and their
combinations) through ℍ-BP algorithm for the network based
on ℍ-RPMN and ℍ-MLP. This facilitates the viewing of 3D
objects from different orientations as well as the interpretation
of their motion in space.

We have considered a three layer network (2-4-2), as
defined in II.B, in learning process for input-output mapping
over a straight line containing a reference point (like mid of
the line) in 3D space for all experiments. First input receives
set of point that lies on a straight line and second input passes
the reference point. The simulation results show that the ℍ-BP
algorithm with ℍ-RPMN drastically reduces the number of
training epochs and also able to generalize more accurately as
compare to conventional.

Fig. 2.Training with input-output mapping of straight line with scaling factor
½.

The learning of a three layer network is performed for
different class of transformations, which are as follows : The
input-output mapping for scaling with factor ½ is shown in
Fig. 2; scaling with factor ½ followed by 0.3 unit translation
along the positive z-direction is shown in Fig. 4; and scaling
with factor ½ followed by 0.3 unit translation along the
positive z-direction and π/2 radian rotation around the unit
vector (𝒊𝒊) is shown in Fig. 6. This mapping is defined over
straight line containing 21 points and referenced at (0, 0, 0), as
shown in Fig. 2, 4 and 6. The training through ℍ-BP with
conventional neural network requires comparatively larger
average epochs then ℍ-BP with ℍ-RPMN neuron to achieve
similar MSE, as shown in Fig. 2, Fig. 4 and Fig. 6, and
presented in Table III, IV and V respectively. Thus, the
convergence of proposed algorithm is faster over conventional
ℍ-BP.

The generalization of trained networks has been performed
over complicated 3D objects like sphere (4141 data points),
cylinder (2929 data points) and torus (10201 data points). The
ℍ-BP with ℍ-RPMN (Fig. (3), Fig. (5) and Fig. (7)) show
excellent generalization for all three cases of transformations
over rest of the algorithms. Tables III, IV and V clearly
demonstrate the superiority of ℍ-BP with RPMN in all
experiments.

(a)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 130

(b)

(c)

Fig. 3.The generalization through ℍ-BP algorithm with ℍ-RPMN:
Transformations with scaling factor ½; over (a) Sphere (b) Cylinder and (c)
Torus.

TABLE III
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR SCALING

 ℍ-RPMN (𝛼𝛼 = 0.95) ℍ-MLP
Algorithm ℍ-BP ℍ-BP
Network 2-4-2 2-4-2

Parameters 88 88
MSE training through straight line 0.0007 0.0007

Average Learning Cycles 12000 25000
MSE

testing
through

Sphere 0.0017 0.0052
Cylinder 0.0014 0.0034

Torus 0.0033 0.0098

Fig. 4.Training with input-output mapping over straight line with scaling
factor ½ and 0.3 unit translation in positive z-direction.

(a)

(b)

(c)

Fig. 5.The generalization through ℍ-BP algorithm : Transformations with
scaling factor ½ and 0.3 unit translation in positive z-direction; over (a)
Sphere (b) Cylinder and (c) Torus.

TABLE IV
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR SCALING AND

TRANSLATION
 ℍ-RPMN (𝛼𝛼 = 0.95) ℍ-MLP

Algorithm ℍ-BP ℍ-BP
Network 2-4-2 2-4-2

Parameters 88 88
MSE training through straight line 0.0007 0.0007

Average Learning Cycles 15040 28000
MSE testing through Sphere 0.0021 0.0063

Cylinder 0.0016 0.0054
Torus 0.0041 0.0095

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 131

Fig. 6. Training with input-output mapping of straight line with scaling factor
½, 0.3 unit translation in positive z-direction, and π/2 radian rotation around
the unit vector (𝒊𝒊).

(a)

(b)

(c)

Figure 7. The generalization through ℍ-BP algorithm: Transformations with
scaling factor ½, 0.3 unit translation in positive z-direction, and π/2 radian
rotation around the unit vector (𝒊𝒊); over (a) Sphere (b) Cylinder and (c) Torus.

TABLE V
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR SCALING,

TRANSLATION AND ROTATION
 ℍ-RPMN (𝛼𝛼 = 0.95) ℍ-MLP

Algorithm ℍ-BP ℍ-BP

Network 2-4-2 2-4-2
Parameters 88 88

MSE training through straight line 0.0007 0.0007
Average Learning Cycles 16500 30000
MSE testing through Sphere 0.0025 0.0062

Cylinder 0.0018 0.0035
Torus 0.0047 0.0088

C. 3D Face Recognition

In this section, we have focused on 3D face identification
as biometrics application through proposed methodology and
compare it with related methods. The two human face datasets
of 3D points cloud containing variable head position,
orientation, and facial expressions, have been considered for
training and testing. The first set consists of five faces of same
person and other set have five faces of different persons. In
both experiments, one face has been used for training of the 1-
2-1 network and the rest for testing. Thus, it is a basic and
primitive experiment that learns the complex geometrical
surface of one face and classify the rest of the faces through
quaternionic signal based networks; surely it will put a leading
direction to future researchers to work with large dataset using
such a simple and small neural network.

The first experiment is performed on first dataset
containing 05 faces of same person with different orientation
and poses; the learning of NN in quaternionic domain is done
with one face (Fig. 8(a)) and testing with all faces where each
3D face consists of 4654 points cloud data. Table VI presents
the training and testing analysis of faces through learning
algorithms of each face. The Table VI also presents the
comparative analysis of threshold MSEs with respect to
average epochs for all algorithms. The threshold MSE reaches
significantly faster during training in case of RPMN model
(power coefficient 𝛼𝛼 = 0.90) in ℍ-BP (learning rate 𝜂𝜂 =
0.001). This table shows that the testing error of all five faces
are less comparable to each other for all algorithms which
demonstrate they are faces of same person irrespective of
minor variations in face orientation and poses. These results
infer the learning and generalization capability of neural
network in quaternionic domain.

Similarly, the second experiment is performed on another
dataset containing 05 faces of different persons; the learning
of NN in quaternionic domain is done with one face (Fig. 9(a))
and testing with all faces where each 3D face consists of 6397
points cloud data. Table VII presents the training and testing
analysis of faces through learning algorithms. The Table VII
also presents the comparative analysis of threshold MSEs with
respect to average epochs for all algorithms. The threshold
MSE reaches significantly faster during training in case of
RPMN model (power coefficient 𝛼𝛼 = 0.90) in ℍ-BP (learning
rate 𝜂𝜂= 0.001). For all algorithms, the table shows the testing
error of all five faces but MSE of other four faces are much
higher in comparison to the face (Fig. 9(a)) which is used in
training of the network. This demonstrates that the network
classifies the faces of same or different person with different
orientation and poses. These results also infer the learning and
generalization capability of neural network.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 132

(a) (b)

(c) (d)

(e)

Fig. 8. Five 3D faces of same person with different orientation and poses.

TABLE VI

COMPARISON OF TESTING ERROR OF EACH FACE OF SAME PERSON WITH
DIFFERENT ORIENTATION AND POSES

 ℍ-RPMN (𝛼𝛼 = 0.90) ℍ-MLP
Algorithm ℍ-BP ℍ-BP
Network 1-2-1 1-2-1

Parameters 28 28
MSE training through Fig. 8(a) 0.0001 0.0001

Average Learning Cycles 12000 28000
MSE testing through Fig. 8(a) 2.4842e-04 2.7214e-04

8(b) 3.8822e-04 3.5431e-03
8(c) 3.13943-04 5.1153e-03
8(d) 4.8824e-04 4.5212e-04
8(e) 3.6904e-04 3.9148e-04

(a) (b)

(c) (d)

(e)

Fig. 9. Five 3D faces of different persons

TABLE VII
COMPARISON OF TESTING ERROR OF EACH FACE OF DIFFERENT PERSON

 ℍ-RPMN (𝛼𝛼 = 0.90) ℍ-MLP
Algorithm ℍ-BP ℍ-BP
Network 1-2-1 1-2-1

Parameters 28 28
MSE training through Fig. 8(a) 0.0001 0.0001

Average Learning Cycles 13000 29000
MSE testing through Fig. 8(a) 1.7721e-04 1.8521e-04

8(b) 8.2840e-01 8.7296e-01
8(c) 3.3772e-00 3.5742e-00
8(d) 5.5721e-02 6.2996e-02
8(e) 3.7327e-01 3.9274e-01

IV. CONCLUSION
This paper presents an efficient neuron model with

nonlinear aggregation function of quaternionic-valued signals
and its evaluation is performed through error propagation (BP)
learning algorithm in quaternionic domain. The proposed
methodology is systematically evaluated and compared with
convention neuron in quaternion domain through a wide
spectrum of 3D and 4D problems. The root-power mean of
quaternionic signal is conceptually used as an aggregation
function of the proposed neuron which emulates better
performance than conventional neuron. The quicker
convergence with better performance is the significant
advantage of algorithm with RPMN which always revealed. Its
computational power is also demonstrated through various
benchmark problems (function approximation, prediction,
linear transformation and 3D face recognition). The power
coefficient (𝛼𝛼) is an important parameter in which exhibits the
approximation capabilities of root-power mean neuron (ℍ-
RPMN). The development of an adaptive algorithm to define
the power coefficient of ℍ-RPMN will be interesting work for
future research.

REFERENCES
[1] B. W. Mel, “Information processing in dendritic trees,” Neural Comput.,

vol. 6, no. 6, pp. 1031–1085, Nov. 1994.
[2] C. Koch and I. Segev, “The role of single neurons in information

processing,” Nat Neurosci., 3(Suppl), pp. 1171–1177, Nov. 2000.
[3] A. Polsky, B. W. Mel, and J. Schiller, “Computational subunits in thin

dendrites of pyramidal cells,” Nat Neurosci.,7, pp. 621–627, May, 2004.
[4] K. Sidiropoulou, E. K. Pissadaki, and P. Poirazi, “Inside the brain of a

neuron,” EMBO Rep., vol. 7, no. 9, pp. 886–892, Sep. 2006.
[5] M. Lavzin, S. Rapoport, A. Polsky, L. Garion, and J. Schiller,

“Nonlinear dendritic processing determines angular tuning of barrel
cortex neurons in vivo,” Nature, vol. 490, no. 7420, pp. 397–401, Sep.
2012.

[6] Y. Todo, H. Tamura, K. Yamashita, and Z.
Tang,“Unsupervisedlearnableneuronmodelwithnonlinearinteractiononde
ndrites,” Neural Netw., vol. 60, pp. 96–103, Dec. 2014.

[7] T. Jiang,D. Wang, J. Ji,Y. Todo, andS. Gao, “Single dendritic neuron
with nonlinear computation capacity: A case study on XOR problem,” in
Proc. Int. Conf. on Progress in Informatics and Computing (PIC), pp.
20–24, Dec. 2015.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 133

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sidiropoulou%20K%5BAuthor%5D&cauthor=true&cauthor_uid=16953202
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pissadaki%20EK%5BAuthor%5D&cauthor=true&cauthor_uid=16953202
https://www.ncbi.nlm.nih.gov/pubmed/?term=Poirazi%20P%5BAuthor%5D&cauthor=true&cauthor_uid=16953202
http://www.nature.com/nature/journal/v490/n7420/full/nature11451.html
http://www.nature.com/nature/journal/v490/n7420/full/nature11451.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Tao%20Jiang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Tao%20Jiang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Junkai%20Ji.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Junkai%20Ji.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Junkai%20Ji.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Junkai%20Ji.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Shangce%20Gao.QT.&newsearch=true

[8] W. Chen, J. Sun, S. Gao, J.-J. Cheng, J. Wang, and Y. Todo, “Using a
Single Dendritic Neuron to Forecast Tourist Arrivals to Japan,” IEICE
Trans. Inf. & Syst., vol. E100–D, no. 1, pp. 190–202, Jan. 2017.

[9] Y. Xiong, W. Wu, X. Kang, and C. Zhang, “Training Pi-Sigma Network
by Online Gradient Algorithm with Penalty for Small Weight Update,”
Neural Comput., vol. 19, no. 12, 3356–3368, Jan. 2008.

[10] C.-K. Li, “A sigma-pi-sigma neural network (SPSNN),” Neural Process.
Lett., vol. 17, no. 1, pp. 1–19, Mar. 2003.

[11] N. Homma and M. M. Gupta, “A general second-order neural unit,”Bull.
Coll. Med. Sci. Tohoku Univ., vol. 11, no. 1, pp. 1–6, 2002.

[12] B. K. Tripathi and P. K. Kalra, “The novel aggregation function-based
neuron models in complex domain,” Soft Comput., vol. 14, no. 10, pp.
1069–1081, Aug. 2010.

[13] C. L. Giles and T. Maxwell, “Learning, invariance, and generalization in
high-order neural networks,” Appl. Opt., vol. 26, no. 23, pp. 4972–4978,
1987.

[14] M. Zhang, S. Xu, and J. Fulcher, “Neuron-adaptive higher order neural
network models for automated financial data modeling,” IEEE Trans.
Neural Netw., vol. 13, no. 1, pp. 188–204, Jan. 2002.

[15] S. Xu, “Adaptive higher order neural network models and their
applications in business,”IGI Global, pp. 314–329, 2009.

[16] E. B. Kosmatopoulos,M. M. Polycarpou, M. A. Christodoulou, and P.A.
Ioannou, “High-order neural network structures for identification of
dynamical systems,” IEEE Trans. Neural Netw., vol. 6, no. 2, pp. 422–
431, Mar. 1995.

[17] H. Dyckhoff and W. Pedrycz, “Generalized means as model of
compensative connectives,” Fuzzy Sets Syst., vol. 14, no. 2, pp. 143–154,
Nov. 1984.

[18] R. R. Yager, “Generalized OWA aggregation operators,” Fuzzy
Optimization and Decision Making, vol. 3, no. 1, pp. 93–107, Mar.
2004.

[19] A. V. Ooyen and B. Nienhuis, “Improving the convergence of the
backpropagationalgorithm,” Neural Netw., vol. 5, no. 3, pp. 465–472,
1992.

[20] X. Chen, Z. Tang, and S. Li, “An modified error function for the
complex-value backpropagation neural network,” Neural Inf. Process.,
vol. 8, no. 1, pp. 1–8, Jul. 2005.

[21] G. D. Magoulas, N. V. Michael, and S. A. George, “Effective
backpropagation training with variable stepsize,” Neural Netw., vol. 10,
no.1, pp. 69–82, 1997.

[22] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon,
“Accelerating the convergence of the back-propagation method,”
Biological Cybernetics, vol. 59, no. 4, pp. 257–263, 1988.

[23] C. C. Yu and D. B. Liu, “A backpropagation algorithm with adaptive
learning rate and momentum coefficient,” in Proc. IEEE Int. Joint Conf.
Neural Netw., vol. 2, 2002, pp. 1218–1223.

[24] E. Istook and T. Martinez, “Improved backpropagation learning in
neural networks with windowed momentum,” Int. J. Neural Sys., vol.
12, no. 3 and 4,pp. 303–318, Jan. 2002.

[25] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,” Neural Netw., vol. 1, no. 4, pp. 295–307, 1988.

[26] A. A. Minai and R. D. Williams, “Back-propagation heuristics: a study
of the extended delta-bar-delta algorithm,” in Proc. Int. Jt. Conf. Neural
Netw., June 1990, pp. 595–600.

[27] S. E. Fahlman, “An empirical study of learning speed in
backpropagation networks,” Tech. Rep. CMU-CS-88-162, Sep. 1988.

[28] A. N. Kolmogoroff, “Sur la notion de la moyenne,” Acad. Naz. Lincei
Mem. Cl. Sci. Fis. Mat. Natur. Sez., vol. 12, no. 6, pp. 388–391, 1930.

[29] M. Nagumo, “Über eine klasse der mittelwerte,” Jpn. J. Math., vol. 7,
pp. 71–79, 1930.

[30] B. K. Tripathi and P. K. Kalra, “On efficient learning machine with root-
power mean neuron in complex domain,” IEEE Trans. Neural netw.,
vol. 22, no. 5, pp. 727–738, May 2011.

[31] W. R. Hamilton, “On a new species of imaginary quantities connected
with a theory of quaternions,” in Proc. Royal Irish Academy, vol. 2, no.
1843, pp. 424–434, Nov. 1844.

[32] B. C. Ujang, C. C. Took, and D. P. Mandic, “Split quaternion nonlinear
adaptive filtering,” Neural Netw., vol. 23, no. 3, pp. 426–434, Apr. 2010.

[33] T. Nitta, “An extension of the back-propagation algorithm to complex
numbers,” Neural Netw., vol. 10, no. 8, pp. 1391–1415, Nov. 1997.

[34] B. K. Tripathi, “High dimensional neurocomputing: Growth, Appraisal
and Applications,” Springer, India, 2015.

[35] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bull. Math. Biophys., vol. 4, no. 4, pp.
115–133, Dec. 1943.

[36] A. Hirose, “Complex-valued neural networks: theories and
applications,” vol. 5., World Scientific, 2003.

[37] T. Nitta, “A quaternary version of the back-propagation algorithm,” in
Proc. Int. Conf. Neural Netw., vol. 5, Nov. 1995, pp. 2753–2756.

[38] M. Schmitt, “On the complexity of computing and learning with
multiplicative neural networks,” Neural Comput., vol. 14, no. 2, pp.
241–301, Feb. 2002.

[39] P. K. Kalra, B. Chandra, and M. Shiblee, “New neuron model for blind
source separation,” in Proc. Int. Conf. Neural Inf. Process., Auckland,
New Zealand, Nov. 2008, pp. 27–36.

[40] G. M. Georgiou, “Exact interpolation and learning in quadratic
neuralnetworks,” in Proc. Int. Joint Conf. Neural Netw., Vancouver, BC,
Canada, Jul. 2006, pp. 230–234.

[41] S. J. Sangwine and N. L. Bihan, “Quaternion polar representation with a
complex modulus and complex argument inspired by the Cayley-
Dickson form,” Advances in Applied Clifford Algebras, vol. 20, no. 1,
pp. 111–120, Mar. 2010.

[42] E. Cho, “De moivre's formula for quaternions,” Appl. Math. Lett.,vol.
11, no. 6, pp. 33–35, Nov. 1998.

[43] D. B. Foggel, “An information criterion for optimal neural network
selection,” IEEE Trans. Neural Netw., vol. 2, no. 5, pp. 490-497,
Sep.1991.

[44] R. Naresh, S. Pandey, and JB Shukla, “Modeling the cumulative effect
of ecological factors in the habitat on the spread of tuberculosis,”
International Journal of Biomathematics, vol. 2, no. 3, pp. 339-355, Sep.
2009.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 134

https://www.researchgate.net/researcher/2095192090_Yan_Xiong
https://www.researchgate.net/profile/Wei_Wu95
https://www.researchgate.net/researcher/35668581_Xidai_Kang
https://www.researchgate.net/profile/Chao_Zhang145
https://www.researchgate.net/researcher/8016998_Chien-Kuo_Li
https://www.researchgate.net/journal/1370-4621_Neural_Processing_Letters
https://www.researchgate.net/journal/1370-4621_Neural_Processing_Letters
https://www.researchgate.net/journal/1370-4621_Neural_Processing_Letters
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.E.B.%20Kosmatopoulos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.E.B.%20Kosmatopoulos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.A.%20Christodoulou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.A.%20Ioannou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.A.%20Ioannou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.A.%20Ioannou.QT.&newsearch=true

	I. Introduction
	II. Neural Network and Learning
	A. Root Power Mean Neuron in Quaternionic Domain
	B. Learning in ℍ-RPMN Network

	III. Performance Evaluation through Benchmark Problems
	IV. Conclusion
	References

