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Abstract—This paper illustrates the new structure of artificial neuron 
which is based on the non-linear aggregation operation of 
quaternionic-valued signals in neuron cell. The main aim of this 
neuron is to present the comparative potential capabilities of non-
linear aggregation over conventional aggregation (summation) of the 
quaternionic-valued signals. The root-power mean is used as a 
nonlinear aggregation operation which has an ability to construct a 
wide spectrum of aggregation means in between minima and maxima 
depending on degree of compensation (exponent). It has a beautiful 
property of changing its degree of compensation in the natural way 
which emulates the various existing neuron models as its special 
cases. The three-layer multilayer perceptron networks are designed 
with proposed and conventional neurons in quaternionic domain 
separately. These networks are trained through quaternionic-valued 
back-propagation (ℍ-BP) learning algorithm for various benchmark 
problems. The results demonstrate the improvement on training 
cycles and exhibits better approximation accuracy. A wide spectrum 
of benchmark problems are considered to evaluate the performance 
of proposed quaternionic root-power mean neuron with ℍ-BP 
learning algorithm. 

Keywords—Quaternion, quasi-arithematic means, quaternionic-
valued root-power means, quaternionic multilayer perceptron, and 
quaternionic backpropagation. 

I. INTRODUCTION 
The information processing in cell body is an important 

functionality of a neuron, which emulates the computational 
power of a neuron [1]-[4]. In the last few years, various 
neurocomputing researches have confirmed the computational 
capability of a neuron with nonlinear aggregation operations on 
synaptic inputs [1], [2], [5]-[8] and presented various higher 
order neurons based on the nonlinear correlation among 
different impinging signals. These attempts resulted in various 
classes of neural structure as pi-sigma [9], [10] second order 
neuron [11], Compensatory neuron [12] and other higher order 
neurons [13]-[16]. However, the higher order neurons have 
proved to be efficient, but they face the problem of explosion 
of terms as the number of inputs increases hence demanding 
sparseness in representation. The problem worsens when 
neurons are implemented in high dimension. It is highly 
demanding to investigate a neuron model like conventional 
neuron in higher dimension, but is free from problem of higher 
order neurons. This paper presents a neuron model with 
complete specification for quaternionic-valued that employs 
the non-linear correlation among input components; but it is 
free from above problem even when there is an increase in the 
degree of approximation. The corresponding neural network 
with learning algorithm in quaternionic domain provides a 
better learning and generalization opportunity for problems in 
three or four dimensions. The weighted root-power mean 

covers the various classes of aggregation in the interval 
between minima to maxima operations [17], [18]. It provides 
the flexibility to approximate appropriate operation in the 
widest range of aggregation through variation of power 
coefficient. The weighted root-power mean as an aggregation 
function of the proposed neuron model with quaternionic-
valued signals exhibits the natural and general model that 
presents the various existing neuron models as its special cases, 
depending on the domain of input signals and value of power 
coefficient. 

The back-propagation (BP) learning algorithm has gained 
popularity due its simplicity in implementation. Therefore, 
some of other proposals have been given, like modified error 
function [19], [20], addition of variable learning rate [21], [22], 
addition of momentum [23], [24], delta-bar-delta algorithm 
[25], [26], and quick prop [27], to accelerate the convergence 
to a significant amount. The fast convergence with efficacious 
performance along with less complexity of neural network is 
the important matter for a variety of applications in higher 
dimensions. This paper presents a quaternionic-valued based 
backpropagation (ℍ-BP) learning algorithm of the network 
employed with proposed quaternionic-valued root-power mean 
neurons (ℍ-RPMN) in hidden and output layers. 

The proposed quaternionic-valued root power mean neuron 
along with the derivation of learning rules through a bounded 
but non-holomorphic activation function is compared with 
conventional neuron in quaternionic domain which 
demonstrates the better generalization in simulation results. 
This paper is organized as follows. The section II presents a 
new structure of neuron in quaternionic domain which 
emulates many neuron models as its special cases. The BP 
weight update rules for a three layer network based on ℍ-
RPMN are derived here. In section III, the comparative 
performance is given for a wide spectrum of benchmark 
problems. Section IV concludes the paper with future scope. 

II. NEURAL NETWORK AND LEARNING 
In variety of researches it is observed that the 

approximation capabilities of an artificial neuron are governed 
through spatial aggregation input signals [1], [2], [5]-[7]. This 
paper focuses on the design and assessment of a generalized 
artificial neuron whose aggregation operation provides wide 
spectrum of approximation in between minima to maxima. 

A. Root Power Mean Neuron in Quaternionic Domain 
The aggregation operation for proposed neuron is 

conceptually based on weighted root-power means of input 
signals which belongs to the family of quasi-arithmetic means 
[28], [29] and expressed as: 
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ℳ𝜑𝜑 (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ; 𝜔𝜔1, … , 𝜔𝜔𝑛𝑛 ) = 𝜑𝜑−1�∑ 𝜔𝜔𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝜑𝜑(𝑥𝑥𝑖𝑖 )�                (1) 

where 𝜑𝜑 : ℝ𝑛𝑛 → ℝ is a continuous and strictly monotonic 
function which is a generator of quasi-arithmetic mean (ℳ𝜑𝜑 ). 
The 𝜑𝜑−1 is the inverse of function  𝜑𝜑 : 𝑥𝑥 → 𝑥𝑥𝛼𝛼 , where 𝛼𝛼 ∈
ℝ − {0}, thus weight root-power mean [30] is defined as:  

ℳ(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ; 𝜔𝜔1, 𝜔𝜔2, … , 𝜔𝜔𝑛𝑛 ;  𝛼𝛼) = (∑ 𝜔𝜔𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖

𝛼𝛼 )
1
𝛼𝛼            (2) 

This function models a compensation operation to adjust 
the degree of approximation by varying the power coefficient 
𝛼𝛼, from −∞ (minimum) to +∞ (maximum). The specific 
power coefficients determine various classical means. When 
𝛼𝛼 → 0, then ℳ converges to geometric mean and when 
𝛼𝛼 = −1, 1, 2, then ℳ acts as harmonic, arithmetic, and 
quadratic means, respectively. Most of the common averaging 
operations come under the family of root-power mean (2), 
which motivated us to define new aggregation function for a 
neuron in a quaternionic domain (ℍ). This neuron is named as 
ℍ-RPMN whose net potential (𝑉𝑉) is defined as follows : 

𝑉𝑉(𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ;  𝛼𝛼) = (∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 ⊗ 𝑞𝑞𝑖𝑖

𝛼𝛼 )
1
𝛼𝛼           (3) 

where 𝑉𝑉, 𝑤𝑤𝑖𝑖 , 𝑞𝑞𝑖𝑖 ∈ ℍ and 𝛼𝛼 ∈ ℝ. ℍ and ℝ are the set of 
quaternion and complex numbers respectively. The symbol ⊗ 
denotes the quaternion multiplication, which satisfies the 
Hamilton’s properties as 𝒊𝒊2 = 𝒋𝒋2 = 𝒌𝒌2 = 𝒊𝒊𝒊𝒊𝒊𝒊 = −1, 𝒊𝒊𝒊𝒊 =
−𝒋𝒋𝒋𝒋 = 𝒌𝒌, 𝒋𝒋𝒋𝒋 = −𝒌𝒌𝒌𝒌 = 𝒊𝒊, and 𝒌𝒌𝒌𝒌 = −𝒊𝒊𝒊𝒊 = 𝒋𝒋 [31]. The net 
potential through quaternionic variables is further transformed 
through quaternionic-valued split activation function 𝑓𝑓ℍ 
(𝑓𝑓ℍ ∶ ℍ → ℍ). This presents the four dimensional extension 
with the suitable real activation function 𝑓𝑓 (‘split-quaternion’) 
[32]. This idea has been motivated from split-type action 
function in complex domain whose approximation capabilities 
have been thoroughly justified in [12], [30], [33]. The split-
type activation function in quaternionic domain is bounded but 
non-holomorphic since Cauchy–Riemann-Fueter (CRF) 
condition does not hold for it [34]. Let 𝑉𝑉 = ℜ(𝑉𝑉) + ℑ1(𝑉𝑉)𝒊𝒊 +
ℑ2(𝑉𝑉)𝒋𝒋 + ℑ3(𝑉𝑉)𝒌𝒌 is a quaternionic variable, then 𝑓𝑓ℍ is defined 
as : 

𝑓𝑓ℍ(𝑉𝑉) = 𝑓𝑓�ℜ(𝑉𝑉)� + 𝑓𝑓�ℑ1(𝑉𝑉)�𝒊𝒊 + 𝑓𝑓�ℑ2(𝑉𝑉)�𝒋𝒋 + 𝑓𝑓�ℑ3(𝑉𝑉)�𝒌𝒌        (4) 

where, ℜ, ℑ1, ℑ2 and ℑ3 denote a real and other three 
imaginary components of a quaternionic variable respectively. 
The various types of non-linear real valued activation functions 
𝑓𝑓 have been defined in literatures. The choice of a suitable 
activation function depends on the intended applications. The 
output of proposed ℍ-RPMN can be defined as : 

𝑌𝑌(𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ; 𝛼𝛼) = 𝑓𝑓ℍ �(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 ⊗ 𝑞𝑞𝑖𝑖

𝛼𝛼 )
1
𝛼𝛼 �  (5) 

where, the power coefficient 𝛼𝛼 provides wide ranging 
functionality of ℍ-RPMN. The many existing neuron models 
can be realized as special cases of (5) by substituting the 
specific value of power coefficient 𝛼𝛼. Some special type of 
existing neuron models are extracted from (5) as follows : 

On substituting 𝛼𝛼 = 1 in (5), then the output of neuron 

𝑌𝑌(𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ) = 𝑓𝑓ℍ(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 ⊗ 𝑞𝑞𝑖𝑖)              (6) 

which is conventional type of neuron model proposed in the 
real [35], complex [33], [36] and quaternionic domain [37] as 
cases apply in consideration of imaginary components. Let 
consider all parameters in complex domain, then the output of 
a neuron 

𝑌𝑌(𝑧𝑧0, 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ;  𝛼𝛼) = 𝑓𝑓ℂ �(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 𝑧𝑧𝑖𝑖

𝛼𝛼 )
1
𝛼𝛼 �      (7) 

which presents the ℂ-RPMN model in complex domain, whose 
functional capabilities are investigated in [30]. 

 The multiplicative neuron model proposed in [38], whose 
capability has been proven there, can be realized by (5) when 
𝛼𝛼 → 0 

𝑌𝑌(𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ) = 𝑓𝑓 �lim𝛼𝛼→0(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 𝑥𝑥𝑖𝑖

𝛼𝛼 )
1
𝛼𝛼 � =

𝑓𝑓�∏ 𝑥𝑥𝑖𝑖
𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=0 �              (8) 

The harmonic neuron model proposed in [39] can be 
obtained when 𝛼𝛼 = −1 in (5), thus output of neuron : 

𝑌𝑌(𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 ) = 𝑓𝑓 � 1
∑

𝑤𝑤 𝑖𝑖
𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=0

�                         (9) 

Similarly, when 𝛼𝛼 = 2 and all variables are in real domain, 
then the output from (5) is conceptually similar to the quadratic 
neuron model proposed in [40] and expressed as follows : 

𝑌𝑌(𝑥𝑥0, 𝑥𝑥1, . . , 𝑥𝑥𝑛𝑛 ; 𝑤𝑤0, 𝑤𝑤1. . , 𝑤𝑤𝑛𝑛 ;  𝛼𝛼 = 2) = 𝑓𝑓 �(∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=0 𝑥𝑥𝑖𝑖

2)
1
2�(10) 

B. Learning in ℍ-RPMN Network 
The multilayer network with proposed neuron model is 

similar to the network of conventional neuron. Consider a 
three-layer (𝐿𝐿 − 𝑀𝑀 − 𝑁𝑁) network of ℍ-RPMN where first layer 
possesses 𝐿𝐿(𝑙𝑙 = 1, … , 𝐿𝐿) inputs, and second and third layer 
contain 𝑀𝑀(𝑙𝑙 = 1, … , 𝑀𝑀) and 𝑁𝑁(𝑙𝑙 = 1, … , 𝑁𝑁) neurons 
respectively. All weights, biases, and input-output signals are 
quaternionic numbers. Let 𝑄𝑄 = [𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝐿𝐿] be the vector of 
quaternionic input 𝑞𝑞 = ℜ(𝑞𝑞) + ℑ1(𝑞𝑞)𝒊𝒊 + ℑ2(𝑞𝑞)𝒋𝒋 + ℑ3(𝑞𝑞)𝒌𝒌 
and 𝑞𝑞� = ℜ(𝑞𝑞) − ℑ1(𝑞𝑞)𝒊𝒊 − ℑ2(𝑞𝑞)𝒋𝒋 − ℑ3(𝑞𝑞)𝒌𝒌 be the conjugate. 
Let 𝑓𝑓 be the real-valued activation function and 𝑓𝑓′  be its 
derivative and 𝜂𝜂 ∈ [0,1] be the learning rate. Let weight 𝑤𝑤𝑙𝑙𝑙𝑙  
be from lth input to mth hidden neuron and 𝑤𝑤𝑚𝑚𝑚𝑚  be from mth  
hidden neuron to nth output neuron of the network. Let 𝑤𝑤0 be 
the bias weight and 𝑞𝑞0 be the bias input. Let 𝑉𝑉 be net internal 
potential of a neuron and output can be computed through the 
split-quaternion activation function 𝑓𝑓ℍ. For mth hidden neuron 
𝑉𝑉𝑚𝑚 = ℜ(𝑉𝑉𝑚𝑚 ) + ℑ1(𝑉𝑉𝑚𝑚 )𝒊𝒊 + ℑ2(𝑉𝑉𝑚𝑚 )𝒋𝒋 + ℑ3(𝑉𝑉𝑚𝑚 )𝒌𝒌, then output : 

𝑌𝑌𝑚𝑚 = 𝑓𝑓ℍ(𝑉𝑉𝑚𝑚 ) = 𝑓𝑓ℍ �(∑ 𝑤𝑤𝑙𝑙𝑙𝑙⊗ 𝑞𝑞𝑙𝑙
α𝐿𝐿

𝑙𝑙=0 )
1
𝛼𝛼 �         (11) 

Let 𝑢𝑢𝑚𝑚 = ∑ 𝑤𝑤𝑙𝑙𝑙𝑙⊗ 𝑞𝑞𝑙𝑙
α𝐿𝐿

𝑙𝑙=0  and 𝑉𝑉𝑚𝑚  is expressed as power of 
quaternionic variable 𝑢𝑢𝑚𝑚 = ℜ(𝑢𝑢𝑚𝑚 ) + ℑ1(𝑢𝑢𝑚𝑚 )𝒊𝒊 + ℑ2(𝑢𝑢𝑚𝑚 )𝒋𝒋 +
ℑ3(𝑢𝑢𝑚𝑚 )𝒌𝒌. Let 𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚 ) = ℑ1(𝑢𝑢𝑚𝑚 )𝒊𝒊 + ℑ2(𝑢𝑢𝑚𝑚 )𝒋𝒋 + ℑ3(𝑢𝑢𝑚𝑚 )𝒌𝒌 is the 
vector component of 𝑢𝑢𝑚𝑚  then 𝑢𝑢𝑚𝑚  can be expressed as a real 
and its vector part together as ℜ(𝑢𝑢𝑚𝑚 ) + 𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚 ) and it can be 
represented in the polar form [41] as : 

‖𝑢𝑢𝑚𝑚 ‖ �𝐶𝐶𝐶𝐶𝐶𝐶�𝜃𝜃(𝑢𝑢𝑚𝑚 )� +
𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚 )

�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚 )�
𝑆𝑆𝑆𝑆𝑆𝑆�𝜃𝜃(𝑢𝑢𝑚𝑚 )��, 

where, 

𝜃𝜃(𝑢𝑢𝑚𝑚 ) = tan−1��𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚 )� ℜ(𝑢𝑢𝑚𝑚 )� �, 

the norm of quaternionic variable 𝑢𝑢𝑚𝑚 is ‖𝑢𝑢𝑚𝑚 ‖ = ��ℜ(𝑢𝑢𝑚𝑚 )�2 +
ℑ1𝑢𝑢𝑚𝑚2+ℑ2𝑢𝑢𝑚𝑚2+ℑ3𝑢𝑢𝑚𝑚212,  and 

�𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚 )� = ��ℑ1(𝑢𝑢𝑚𝑚 )�2 + �ℑ2(𝑢𝑢𝑚𝑚 )�2 + �ℑ3(𝑢𝑢𝑚𝑚 )�2�
1
2, which 

denotes the magnitude of the vector component (𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚 )) of 𝑢𝑢𝑚𝑚 . 
The net internal potential 𝑉𝑉𝑚𝑚  of mth hidden neuron can be 
obtained by applying De Moivre’s theorem on 𝑢𝑢𝑚𝑚  [42] as : 
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𝑉𝑉𝑚𝑚 = ‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼 �𝐶𝐶𝐶𝐶𝐶𝐶 �

𝜃𝜃(𝑢𝑢 𝑚𝑚 )

𝛼𝛼
� +

𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚 )

�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚 )�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑚𝑚 )

𝛼𝛼
��        (12) 

The output of the nth neuron in output layer can be 
expressed as similar to (11) as :  

𝑌𝑌𝑛𝑛 = 𝑓𝑓ℍ(𝑉𝑉𝑛𝑛 ) = 𝑓𝑓ℍ �(∑ 𝑤𝑤𝑚𝑚𝑚𝑚 ⊗ 𝑌𝑌𝑚𝑚
α𝑀𝑀

𝑚𝑚 =0 )
1
𝛼𝛼 �                              (13) 

Let 𝑢𝑢𝑛𝑛 = ∑ 𝑤𝑤𝑚𝑚𝑚𝑚 ⊗ 𝑌𝑌𝑚𝑚
α𝑀𝑀

𝑚𝑚 =0  and 𝑉𝑉𝑛𝑛  be the net internal 
potential of nth  neuron which can be derived as similar to (12) 

𝑉𝑉𝑛𝑛 = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼 �𝐶𝐶𝐶𝐶𝐶𝐶 �

𝜃𝜃(𝑢𝑢 𝑛𝑛 )

𝛼𝛼
� +

𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛 )

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛 )�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛 )

𝛼𝛼
��                  (14) 

The gradient-descent-based error back-propagation learning 
scheme for feed-forward neural network has been extended in 
quaternionic domain. Let error 𝑒𝑒𝑛𝑛 = 𝐷𝐷𝑛𝑛 − 𝑌𝑌𝑛𝑛 = ℜ(𝑒𝑒𝑛𝑛 ) +
ℑ1(𝑒𝑒𝑛𝑛 )𝒊𝒊 + ℑ2(𝑒𝑒𝑛𝑛 )𝒋𝒋 + ℑ3(𝑒𝑒𝑛𝑛 )𝒌𝒌 be the difference between 
desired (𝐷𝐷𝑛𝑛 ) and actual (𝑌𝑌𝑛𝑛 ) output of nth neuron at output 
layer. The weight update formula can be derived by 
minimizing the real-valued error function (𝐸𝐸) as follows : 

𝐸𝐸 = 1
2𝑁𝑁

∑ ‖𝑒𝑒𝑛𝑛 ‖2𝑁𝑁
𝑛𝑛=1 = 1

2𝑁𝑁
∑ ��ℜ(𝑒𝑒𝑛𝑛 )�2 + �ℑ1(𝑒𝑒𝑛𝑛 )�2 +𝑁𝑁

𝑛𝑛=1

ℑ2𝑒𝑒𝑛𝑛2+ ℑ3𝑒𝑒𝑛𝑛2                                                      (15) 

The real-valued error function (𝐸𝐸) does not follow the 
Cauchy-Riemann condition, therefore it is not holomorphic. 
The error function is minimized by recursively altering the 
weight coefficients as : 

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜂𝜂 𝛻𝛻𝑤𝑤 (𝐸𝐸)                                       (16) 

where, 𝛻𝛻𝑤𝑤 (𝐸𝐸) presents the gradient of the error function (𝐸𝐸) 
which is derived with respect to real and other three imaginary 
components of quaternionic weights. The weight update (∆𝑤𝑤) 
is proportional to the negative gradient of the error function 
with respect to quaternionic weight as : 

∆𝑤𝑤 = −𝜂𝜂 𝛻𝛻𝑤𝑤 (𝐸𝐸) =  −𝜂𝜂 � 𝜕𝜕𝜕𝜕
𝜕𝜕ℜ(𝑤𝑤)

+ 𝜕𝜕𝜕𝜕
𝜕𝜕ℑ1(𝑤𝑤)

𝒊𝒊 + 𝜕𝜕𝜕𝜕
𝜕𝜕ℑ2(𝑤𝑤)

𝒋𝒋 +
𝜕𝜕𝐸𝐸𝜕𝜕ℑ3𝑤𝑤𝒌𝒌                         
(17) 

For the weight (𝑤𝑤 = 𝑤𝑤𝑚𝑚𝑚𝑚 ) that connects mth hidden neuron 
to nth output neuron, the weight update is obtained using chain 
rule of derivation as : 

∆𝑤𝑤𝑚𝑚𝑚𝑚 = −𝜂𝜂 𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 (𝐸𝐸) = 𝜂𝜂
𝑁𝑁

�ℜ(𝑒𝑒𝑛𝑛 )𝑓𝑓′ �ℜ(𝑉𝑉𝑛𝑛 )� 𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑉𝑉𝑛𝑛 )� +
𝑖𝑖=13ℑ𝑖𝑖𝑒𝑒𝑛𝑛𝑓𝑓′ℑ𝑖𝑖𝑉𝑉𝑛𝑛 𝛻𝛻𝑤𝑤𝑚𝑚𝑛𝑛ℑ𝑖𝑖𝑉𝑉𝑛𝑛                                (18) 

The weight update (∆𝑤𝑤𝑚𝑚𝑛𝑛 ) depends on gradients of each 
component of the net potential (𝑉𝑉𝑛𝑛 ) of nth output neuron with 
respect to weight (𝑤𝑤𝑚𝑚𝑚𝑚 ). The gradient of the real component of 
the net potential can be obtained using real part of (14) e.g. 
‖𝑢𝑢𝑛𝑛 ‖

1
𝛼𝛼 𝐶𝐶𝐶𝐶𝐶𝐶 �

𝜃𝜃(𝑢𝑢 𝑛𝑛 )

𝛼𝛼
� as : 

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑉𝑉𝑛𝑛 )� = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼   − 2

𝛼𝛼
�𝐴𝐴1ℜ(𝑢𝑢𝑛𝑛 )𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑢𝑢𝑛𝑛 )� +

𝐵𝐵1𝑗𝑗=13ℑ𝑗𝑗𝑢𝑢𝑛𝑛 𝛻𝛻𝑤𝑤𝑚𝑚𝑛𝑛ℑ𝑗𝑗𝑢𝑢𝑛𝑛                                          (19) 

and the gradients of three imaginary components of the net 
potential (ℑ𝑖𝑖(𝑉𝑉𝑛𝑛 ), 𝑖𝑖 = 1, 2, 3) can be obtained as : 

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑖𝑖(𝑉𝑉𝑛𝑛 )� = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼   − 2

𝛼𝛼�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛 )�
ℑ𝑖𝑖(𝑢𝑢𝑛𝑛 ) �𝐴𝐴2ℜ(𝑢𝑢𝑛𝑛 )𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑢𝑢𝑛𝑛 )� +

𝐵𝐵2 ∑ ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛 ) 𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛 )�3
𝑗𝑗 =1 � +

‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛 )�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛 )

𝛼𝛼
�  𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑖𝑖(𝑢𝑢𝑛𝑛 )� −

‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛 )�
3 ℑ𝑖𝑖(𝑢𝑢𝑛𝑛 )𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛 )

𝛼𝛼
� �∑ ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛 )𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛 )�3

𝑗𝑗 =1 �   (20) 

where, 

‖𝑢𝑢𝑛𝑛 ‖ = ��ℜ(𝑢𝑢𝑛𝑛 )�2 + �ℑ1(𝑢𝑢𝑛𝑛 )�2 + �ℑ2(𝑢𝑢𝑛𝑛 )�2 +
ℑ3𝑢𝑢𝑛𝑛212, 

�𝑉𝑉�⃗ (𝑢𝑢𝑛𝑛 )� = ��ℑ1(𝑢𝑢𝑛𝑛 )�2 + �ℑ2(𝑢𝑢𝑛𝑛 )�2 + �ℑ3(𝑢𝑢𝑛𝑛 )�2�
1
2, 

𝐴𝐴1 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑛𝑛 ))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑢𝑢𝑛𝑛 )), 

𝐵𝐵1 = 𝑆𝑆𝑆𝑆𝑆𝑆((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑛𝑛 ))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑢𝑢𝑛𝑛 )),  

𝐴𝐴2 = −𝑆𝑆𝑆𝑆𝑆𝑆((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑛𝑛 ))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑢𝑢𝑛𝑛 )), 

𝐵𝐵2 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑛𝑛 ))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑢𝑢𝑛𝑛 )), and  

𝜃𝜃(𝑢𝑢𝑛𝑛 ) = tan−1��𝑉𝑉�⃗ (𝑢𝑢𝑛𝑛 )� ℜ(𝑢𝑢𝑛𝑛 )� �. 

The gradients of real and three imaginary components of 𝑢𝑢𝑛𝑛  
with respect to the weight (𝑤𝑤𝑚𝑚𝑚𝑚 ) can be obtained as : 

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℜ(𝑢𝑢𝑛𝑛 )� = �𝑌𝑌𝑚𝑚 �
𝛼𝛼

,                                                       (21) 

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ1(𝑢𝑢𝑛𝑛 )� = 𝒊𝒊 ⊗�𝑌𝑌𝑚𝑚 �
𝛼𝛼

,                                                 
(22) 

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ2(𝑢𝑢𝑛𝑛 )� = 𝒋𝒋 ⊗�𝑌𝑌𝑚𝑚 �
𝛼𝛼

,                                      (23) 

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ3(𝑢𝑢𝑛𝑛 )� = 𝒌𝒌 ⊗�𝑌𝑌𝑚𝑚 �
𝛼𝛼

.                                                
(24) 

For the weight (𝑤𝑤 = 𝑤𝑤𝑙𝑙𝑙𝑙 ) that connects lth input to mth 
hidden neuron 

∆𝑤𝑤𝑙𝑙𝑙𝑙 = −𝜂𝜂 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 (𝐸𝐸) =
𝜂𝜂
𝑁𝑁

∑ �ℜ(𝑒𝑒𝑛𝑛 )𝑓𝑓′ �ℜ(𝑉𝑉𝑛𝑛 )�𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑛𝑛 )� +𝑁𝑁
𝑛𝑛=1

𝑖𝑖=13ℑ𝑖𝑖𝑒𝑒𝑛𝑛𝑓𝑓′ℑ𝑖𝑖𝑉𝑉𝑛𝑛𝛻𝛻𝑤𝑤𝑙𝑙𝑚𝑚ℑ𝑖𝑖𝑉𝑉𝑛𝑛                                  (25) 

The weight update (∆𝑤𝑤𝑙𝑙𝑙𝑙 ) between lth input and mth hidden 
neuron depends on gradients of each component of the net 
potential (𝑉𝑉𝑛𝑛 ) of nth output neuron with respect to weight (𝑤𝑤𝑙𝑙𝑙𝑙 ). 
The gradient of the real component of the net potential can be 
obtained as : 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑛𝑛 )� = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼   − 2

𝛼𝛼
�𝐴𝐴1ℜ(𝑢𝑢𝑛𝑛 )𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑛𝑛 )� +

𝐵𝐵1𝑗𝑗=13ℑ𝑗𝑗𝑢𝑢𝑛𝑛 𝛻𝛻𝑤𝑤𝑙𝑙𝑚𝑚ℑ𝑗𝑗𝑢𝑢𝑛𝑛                                           (26) 

and the gradients of three imaginary components of the net 
potential (ℑ𝑖𝑖(𝑉𝑉𝑛𝑛 ), 𝑖𝑖 = 1, 2, 3) can be obtained as : 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑉𝑉𝑛𝑛 )� = ‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼   − 2

𝛼𝛼�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛 )�
ℑ𝑖𝑖(𝑢𝑢𝑛𝑛 ) �𝐴𝐴2ℜ(𝑢𝑢𝑛𝑛 )𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑛𝑛 )� +

𝐵𝐵2 ∑ ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛 )�3
𝑗𝑗 =1 � +

‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛 )�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛 )

𝛼𝛼
� 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑢𝑢𝑛𝑛 )� −

‖𝑢𝑢𝑛𝑛 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑛𝑛 )�
3 ℑ𝑖𝑖(𝑢𝑢𝑛𝑛 )𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑛𝑛 )

𝛼𝛼
� �∑ ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛 )𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑢𝑢𝑛𝑛 )�3

𝑗𝑗 =1 �   (27) 

The gradients of real and three imaginary components of 𝑢𝑢𝑛𝑛  
with respect to the weight (𝑤𝑤𝑙𝑙𝑙𝑙 ) can be obtained as : 
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𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑛𝑛 )� =
 ℜ(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚

𝛼𝛼 )� − ℑ1(𝑤𝑤𝑚𝑚𝑚𝑚 )𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑌𝑌𝑚𝑚
𝛼𝛼 )� −

ℑ2(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑌𝑌𝑚𝑚
𝛼𝛼 )� − ℑ3(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑌𝑌𝑚𝑚

𝛼𝛼 )�          (28) 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑢𝑢𝑛𝑛 )� =
 ℜ(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑌𝑌𝑚𝑚

𝛼𝛼 )� + ℑ1(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚
𝛼𝛼 )� +

ℑ2(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑌𝑌𝑚𝑚
𝛼𝛼 )� − ℑ3(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑌𝑌𝑚𝑚

𝛼𝛼 )�          (29) 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑢𝑢𝑛𝑛 )� =
 ℜ(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑌𝑌𝑚𝑚

𝛼𝛼 )� − ℑ1(𝑤𝑤𝑚𝑚𝑚𝑚 )𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑌𝑌𝑚𝑚
𝛼𝛼 )� +

ℑ2(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚
𝛼𝛼 )� + ℑ3(𝑤𝑤𝑚𝑚𝑚𝑚 )𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑌𝑌𝑚𝑚

𝛼𝛼 )�            (30) 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑢𝑢𝑛𝑛 )� =
 ℜ(𝑤𝑤𝑚𝑚𝑚𝑚 )𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑌𝑌𝑚𝑚

𝛼𝛼 )� + ℑ1(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑌𝑌𝑚𝑚
𝛼𝛼 )� −

ℑ2(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑌𝑌𝑚𝑚
𝛼𝛼 )� + ℑ3(𝑤𝑤𝑚𝑚𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚

𝛼𝛼 )�            (31) 

The gradient of real component of 𝑌𝑌𝑚𝑚
𝛼𝛼  can be obtained as : 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑌𝑌𝑚𝑚
𝛼𝛼 )� =

𝛼𝛼‖𝑌𝑌𝑚𝑚 ‖𝛼𝛼  − 2 �𝐴𝐴3ℜ(𝑌𝑌𝑚𝑚 )𝑓𝑓′ �ℜ(𝑉𝑉𝑚𝑚 )�𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑚𝑚 )� +
𝐵𝐵3𝑗𝑗=13ℑ𝑗𝑗𝑌𝑌𝑚𝑚𝑓𝑓′ℑ𝑗𝑗𝑉𝑉𝑚𝑚𝛻𝛻𝑤𝑤𝑙𝑙𝑚𝑚ℑ𝑗𝑗𝑉𝑉𝑚𝑚                      (32) 

and the gradients of three imaginary components of the net 
potential (ℑ𝑖𝑖(𝑌𝑌𝑚𝑚

𝛼𝛼 ), 𝑖𝑖 = 1, 2, 3) can be obtained as : 

𝛻𝛻𝑤𝑤𝑚𝑚𝑚𝑚 �ℑ𝑖𝑖(𝑌𝑌𝑚𝑚
𝛼𝛼 )� =

𝛼𝛼‖𝑌𝑌𝑚𝑚 ‖𝛼𝛼  – 2

�𝑉𝑉��⃗ (𝑌𝑌𝑚𝑚 )�
ℑ𝑖𝑖(𝑌𝑌𝑚𝑚 ) �𝐴𝐴4ℜ(𝑌𝑌𝑚𝑚 )𝑓𝑓′ �ℜ(𝑉𝑉𝑚𝑚 )�𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑚𝑚 )� +

𝐵𝐵4 ∑ ℑ𝑗𝑗 (𝑌𝑌𝑚𝑚 )𝑓𝑓′ �ℑ𝑗𝑗 (𝑉𝑉𝑚𝑚 )�  𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑉𝑉𝑚𝑚 )�3
𝑗𝑗 =1 � +

‖𝑌𝑌𝑚𝑚 ‖𝛼𝛼  

�𝑉𝑉��⃗ (𝑌𝑌𝑚𝑚 )�
𝑆𝑆𝑆𝑆𝑆𝑆�𝛼𝛼𝛼𝛼(𝑌𝑌𝑚𝑚 )�𝑓𝑓′ �ℑ𝑖𝑖(𝑉𝑉𝑚𝑚 )� 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑉𝑉𝑚𝑚 )� −

‖𝑌𝑌𝑚𝑚 ‖𝛼𝛼  

�𝑉𝑉��⃗ (𝑌𝑌𝑚𝑚 )�
3 ℑ𝑖𝑖(𝑌𝑌𝑚𝑚 )𝑆𝑆𝑆𝑆𝑆𝑆�𝛼𝛼𝛼𝛼(𝑌𝑌𝑚𝑚 )� ×

�∑ ℑ𝑗𝑗 (𝑌𝑌𝑚𝑚 )𝑓𝑓′ �ℑ𝑗𝑗 (𝑉𝑉𝑚𝑚 )�  𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑉𝑉𝑚𝑚 )�3
𝑗𝑗 =1 �                        (33) 

where,  

‖𝑌𝑌𝑚𝑚 ‖ = ��ℜ(𝑌𝑌𝑚𝑚 )�2 + �ℑ1(𝑌𝑌𝑚𝑚 )�2 + �ℑ2(𝑌𝑌𝑚𝑚 )�2 +
ℑ3𝑌𝑌𝑚𝑚212, 

�𝑉𝑉�⃗ (𝑌𝑌𝑚𝑚 )� = ��ℑ1(𝑌𝑌𝑚𝑚 )�2 + �ℑ2(𝑌𝑌𝑚𝑚 )�2 + �ℑ3(𝑌𝑌𝑚𝑚 )�2�
1
2, 

𝐴𝐴3 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 𝛼𝛼)𝜃𝜃(𝑌𝑌𝑚𝑚 ))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑌𝑌𝑚𝑚 )), 

𝐵𝐵3 = 𝑆𝑆𝑆𝑆𝑆𝑆((1 − 𝛼𝛼)𝜃𝜃(𝑌𝑌𝑚𝑚 ))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑌𝑌𝑚𝑚 )),  

𝐴𝐴4 = −𝑆𝑆𝑆𝑆𝑆𝑆((1 − 𝛼𝛼)𝜃𝜃(𝑌𝑌𝑚𝑚 ))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑌𝑌𝑚𝑚 )), 

𝐵𝐵4 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 𝛼𝛼)𝜃𝜃(𝑌𝑌𝑚𝑚 ))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑌𝑌𝑚𝑚 )), and  

𝜃𝜃(𝑌𝑌𝑚𝑚 ) = tan−1��𝑉𝑉�⃗ (𝑌𝑌𝑚𝑚 )� ℜ(𝑌𝑌𝑚𝑚 )� �. 

The gradient of real component of the net potential (𝑉𝑉𝑚𝑚 ) can 
be obtained as : 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑉𝑉𝑚𝑚 )� = ‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼   − 2

𝛼𝛼
�𝐴𝐴5ℜ(𝑢𝑢𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑚𝑚 )� +

𝐵𝐵5𝑗𝑗=13ℑ𝑗𝑗𝑢𝑢𝑚𝑚 𝛻𝛻𝑙𝑙𝑚𝑚ℑ𝑗𝑗𝑢𝑢𝑚𝑚                                           (34) 

and the gradients of three imaginary components of the net 
potential (ℑ𝑖𝑖(𝑉𝑉𝑚𝑚 ), 𝑖𝑖 = 1, 2, 3) can be obtained as : 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑉𝑉𝑚𝑚 )� = ‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼   − 2

𝛼𝛼�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚 )�
ℑ𝑖𝑖(𝑢𝑢𝑚𝑚 ) �𝐴𝐴6ℜ(𝑢𝑢𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑚𝑚 )� +

𝐵𝐵6 ∑ ℑ𝑗𝑗 (𝑢𝑢𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑢𝑢𝑚𝑚 )�3
𝑗𝑗 =1 � +

‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚 )�
𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑚𝑚 )

𝛼𝛼
�  𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑖𝑖(𝑢𝑢𝑚𝑚 )� −

‖𝑢𝑢𝑚𝑚 ‖
1
𝛼𝛼

�𝑉𝑉��⃗ (𝑢𝑢 𝑚𝑚 )�
3 ℑ𝑖𝑖(𝑢𝑢𝑚𝑚 )𝑆𝑆𝑆𝑆𝑆𝑆 �

𝜃𝜃(𝑢𝑢 𝑚𝑚 )

𝛼𝛼
� �∑ ℑ𝑗𝑗 (𝑢𝑢𝑚𝑚 ) 𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ𝑗𝑗 (𝑢𝑢𝑚𝑚 )�3

𝑗𝑗 =1 � 

              (35) 

where, 

‖𝑢𝑢𝑚𝑚 ‖ = ��ℜ(𝑢𝑢𝑚𝑚 )�2 + �ℑ1(𝑢𝑢𝑚𝑚 )�2 + �ℑ2(𝑢𝑢𝑚𝑚 )�2 +
ℑ3𝑢𝑢𝑚𝑚212, 

�𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚 )� = ��ℑ1(𝑢𝑢𝑚𝑚 )�2 + �ℑ2(𝑢𝑢𝑚𝑚 )�2 + �ℑ3(𝑢𝑢𝑚𝑚 )�2�
1
2, 

𝐴𝐴5 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑚𝑚 ))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑢𝑢𝑚𝑚 )), 

𝐵𝐵5 = 𝑆𝑆𝑆𝑆𝑆𝑆((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑚𝑚 ))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑢𝑢𝑚𝑚 )),  

𝐴𝐴6 = −𝑆𝑆𝑆𝑆𝑆𝑆((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑚𝑚 ))/𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃(𝑢𝑢𝑚𝑚 )), 

𝐵𝐵6 = 𝐶𝐶𝐶𝐶𝐶𝐶((1 − 1/𝛼𝛼)𝜃𝜃(𝑢𝑢𝑚𝑚 ))/𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃(𝑢𝑢𝑚𝑚 )), and  

𝜃𝜃(𝑢𝑢𝑚𝑚 ) = tan−1��𝑉𝑉�⃗ (𝑢𝑢𝑚𝑚 )� ℜ(𝑢𝑢𝑚𝑚 )� �. 

The gradients of real and three imaginary components of 
𝑢𝑢𝑚𝑚  with respect to the weight (𝑤𝑤𝑙𝑙𝑙𝑙 ) can be obtained as : 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℜ(𝑢𝑢𝑚𝑚 )� = �𝑞𝑞𝑙𝑙�
𝛼𝛼

.                                                         (36) 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ1(𝑢𝑢𝑚𝑚 )� = 𝒊𝒊 ⊗�𝑞𝑞𝑙𝑙�
𝛼𝛼

.                                                   
(37) 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ2(𝑢𝑢𝑚𝑚 )� = 𝒋𝒋 ⊗�𝑞𝑞𝑙𝑙�
𝛼𝛼

.                                                   
(38) 

𝛻𝛻𝑤𝑤𝑙𝑙𝑙𝑙 �ℑ3(𝑢𝑢𝑚𝑚 )� = 𝒌𝒌 ⊗�𝑞𝑞𝑙𝑙�
𝛼𝛼

.                                                  
(39) 

III. PERFORMANCE EVALUATION THROUGH 
BENCHMARK PROBLEMS 

In this paper, we present the effectiveness of proposed 
neuron ℍ-RPMN and algorithm ℍ-RPMN through wide 
spectrum of benchmark problems. Comparative evaluation is 
done by networks designed by conventional neurons (MLP) 
and root-power-mean neurons with ℍ-BP learning algorithms 
in quaternionic domain. Four components of all quaternionic 
weights and biases for both networks are randomly initialized 
in the range -1 to 1. The quaternionic varaiable 𝒒𝒒0 = 1 + 𝒊𝒊 +
𝒋𝒋 + 𝒌𝒌  is assumed as bias input and the hyperbolic tangent 
function is used as activation function. The comparison of 
training and testing performance through function 
approximation is thoroughly evaluated by statistical 
parameters like error variance, correlation, and AIC [43]. 
Another class of benchmark problem is the learning of linear 
transformations (rotation, scaling, and translation and their 
combinations) through a set of points lying on line whose 
generalization abilities are tested over complicated 3D 
geometric structure. In last subsection, two primary 
experiments are presented for 3D face recognition which 
surely it will be stepping stone for prospective researchers. 

A. Function Approximations 
1) Approximation of Model for Spread of Tuberculosis: 

The spread of tuberculosis model [44] is the system of four 
differential equations with respect to time along with four 
variables that can be denoted together as a quaternion number 
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instead of four real numbers. This model needs the intelligent 
behavior and automated analysis of bacterial effect to reach 
equilibrium from different initial conditions. A mathematical 
model aims to analyze the effect of accumulation of bacteria 
which survive due to conducive ecological factors such as 
flower pots, plants, grasses, human clothes, etc. in the habitat, 
acting as reservoir, on the spread of tuberculosis (TB) in 
human population. The total population (𝑁𝑁(𝑡𝑡)) is categorized 
into classes, susceptible (𝑆𝑆(𝑡𝑡)) and infective (𝑇𝑇(𝑡𝑡)). 𝐵𝐵(𝑡𝑡) 
governs the bacteria density in the environment and 𝐸𝐸(𝑡𝑡) is 
cumulative density of ecological factors which is conducive to 
the accumulation of bacteria population. All these factors of 
this model are treated as quaternion number (𝑆𝑆(𝑡𝑡) + 𝑇𝑇(𝑡𝑡)𝒊𝒊 +
𝐵𝐵(𝑡𝑡)𝒋𝒋 + 𝐸𝐸(𝑡𝑡)𝒌𝒌) with respect to time. In this model, it is 
assumed that TB is spread by direct contacts with infective in 
the population and indirect contacts with bacteria which is 
emitted by infective in the habitat. The dynamics of the spread 
of TB is governed by the system of nonlinear differential 
equations as : 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝐴𝐴 − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑑𝑑𝑑𝑑 + 𝜈𝜈𝜈𝜈, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜆𝜆𝜆𝜆𝜆𝜆 − (𝜈𝜈 + 𝛼𝛼 + 𝑑𝑑)𝑇𝑇, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑠𝑠𝑠𝑠 − 𝑠𝑠0𝐵𝐵 + 𝑠𝑠1𝐵𝐵𝐵𝐵, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾 − 𝛾𝛾0𝐸𝐸2 + 𝛾𝛾1(𝑆𝑆 + 𝑇𝑇)𝐸𝐸, 
𝑆𝑆(0) > 0, 𝑇𝑇(0) ≥ 0, 𝐵𝐵(0) ≥ 0, 𝐸𝐸(0) ≥ 0                       (40) 

where, 𝐴𝐴 is the immigration rate of susceptibles. 𝛽𝛽 and 𝜆𝜆 are 
the transmission coefficients of TB by contact of susceptibles 
with infectives and by inhalation of bacteria from 
environment; 𝑑𝑑 is the natural death rate, 𝜈𝜈 is the therapeutic 
treatment rate of infected individuals and 𝛼𝛼 is the death rate 
due to TB infection. The parameter 𝑠𝑠 is the release rate of 
bacteria from the TB infected individuals, 𝑠𝑠0 is the decrease 
coefficient due to natural factors and 𝑠𝑠1 is the rate of survival 
and accumulation of bacteria population due to conducive 
ecological factors in the habitat. 𝛾𝛾 is the growth rate, 𝛾𝛾/𝛾𝛾0 is 
the carrying capacity in the habitat and 𝛾𝛾1 is the increase 
coefficient due to total human population. All these 
parameters in this model are assumed only for positive values. 
The TB model presented in (40) with parameters 𝐴𝐴 = 500, 
𝛽𝛽 = 0.0003, 𝜆𝜆 = 0.0001, 𝑑𝑑 = 0.15,𝜈𝜈 = 0.01,𝛼𝛼 = 0.2, 
𝑠𝑠 = 0.1, 𝑠𝑠0 = 0.3, 𝑠𝑠1 = 0.0001, 𝛾𝛾 = 25, 𝛾𝛾0 = 0.1, and 
𝛾𝛾1 = 0.002 generates four dataset containing 200 data points 
in 100 hours with time interval ∆𝑡𝑡 = 0.5 and four initial 
conditions are given as : 

(i) 𝑆𝑆(0) = 1400, 𝑇𝑇(0) = 1600, 𝐵𝐵(0) = 358,𝐸𝐸(0) = 290 
(ii) 𝑆𝑆(0) = 200, 𝑇𝑇(0) = 1300, 𝐵𝐵(0) = 358, 𝐸𝐸(0) = 290 
(iii) 𝑆𝑆(0) = 2600, 𝑇𝑇(0) = 400, 𝐵𝐵(0) = 358, 𝐸𝐸(0) = 290 
(iv) 𝑆𝑆(0) = 600, 𝑇𝑇(0) = 400, 𝐵𝐵(0) = 358, 𝐸𝐸(0) = 290 

The system presented in (40) reaches an equilibrium point 
𝑆𝑆(100) = 1068.5313355,𝑇𝑇(100) = 970.6294275, 
𝐵𝐵(100) = 358.2693836, and 𝐸𝐸(100) = 290.7832153 from 
given four different initial conditions given (i), (ii), (iii) and 
(iv). With the help of each equilibrium point with its 
parameters as given above, the system generates four datasets 
containing four components (𝑆𝑆(𝑡𝑡), 𝑇𝑇(𝑡𝑡), 𝐵𝐵(𝑡𝑡), and 𝐸𝐸(𝑡𝑡)). All 
four datasets are further normalized between -0.9 to 0.9 and its 
80 data points are used for training by ℍ-BP (learning rate η 
=0.001). The normalized datasets containing 200 points are 
used for testing of networks trained by both algorithms.  

 
Fig. 1. Comparison of testing result of ℍ-RPMN based network trained by ℍ-
BP algorithm with normalized desired. 
 

TABLE I 
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR THE SPREAD OF 

TB MODEL 
 ℍ-MLP ℍ-RPMN (𝛼𝛼 =0.94) 

Learning Algorithm ℍ-BP(η=0.001) ℍ-BP(η=0.001) 
Network 4-8-4 4-8-4 

Parameters 76 76 
MSETraining 0.0005 0.0004 

Learning Cycles 6000 4000 
MSETesting 3.4615e-04 2.9362e-04 

Error Variance 5.8870e-04 5.0581e-04 
Correlation 0.9965 0.9970 

AIC -6.6409 -7.0640 

The comparative analysis for training and testing data 
through conventional and proposed neuron based networks 
performed by ℍ-BP algorithm are presented in Table I. It 
clearly shows that ℍ-BP with ℍ-RPMN has significantly 
faster convergence and has better testing results in terms of 
error, variance, correlation, and AIC. Fig. 1 demonstrates the 
testing results by ℍ-BP with ℍ-RPMN and compares with 
desired result in 3D for different initial conditions, where 
normalized total human population (𝑆𝑆(𝑡𝑡) + 𝑇𝑇(𝑡𝑡)), bacterial 
population density (𝐵𝐵(𝑡𝑡)) and cumulative population density 
(𝐸𝐸(𝑡𝑡)) are in x, y and z direction respectively. The overall 
training and testing performance infer the superiority of ℍ-BP 
algorithm with ℍ-RPMN over quaternionic-valued 
conventional neuron. 

2) Approximation of Vector Operations: A quaternion 
number correspond to radius vector from origin to the point in 
space. The interpretation of vectors and operations over them 
has the important and valuable impact on the analysis of 
various geometrical relationships in space. The quaternion 
addition (QADD), subtraction (QSUB), multiplication 
(QMULT) and normalized division (N-QDIV) as basic 
algebraic operations facilitate to define different vector 
operations in the four dimensional space. The learning and 
generalization capability of a single network for the above 
four operations is evaluated in this experiment.  

TABLE II 
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR QUATERNION 

OPERATIONS 
 ℍ-MLP ℍ-RPMN (𝛼𝛼 =0.9) 

Algorithm ℍ-BP(η=0.001) ℍ-BP(η=0.001) 
Network 2-20-4 2-20-4 

Parameters 144 144 
MSE training 0.0009 0.0008 
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Average Learning Cycles 25000 15000 
MSE(Testing) QADD 0.0008 0.0006 

QSUB 0.0008 0.0007 
QMULT 0.0035 0.0028 
N-QDIV 0.0064 0.0040 

Error Variance QADD 0.0008 0.0008 
QSUB 0.0009 0.0007 

QMULT 0.0046 0.0027 
N-QDIV 0.0072 0.0041 

Correlation QADD 0.9985 0.9981 
QSUB 0.9987 0.9972 

QMULT 0.2836 0.6178 
N-QDIV 0.1794 0.5381 

AIC  -6.12 -6.28 

Let 𝑞𝑞1 = ‖𝑞𝑞1‖𝑒𝑒𝑛𝑛�1𝜃𝜃1  and 𝑞𝑞2 = ‖𝑞𝑞2‖𝑒𝑒𝑛𝑛�2𝜃𝜃2  be the two 
quaternion numbers presented in polar form, where – 𝜋𝜋 ≤
𝜃𝜃1, 𝜃𝜃2 ≤ 𝜋𝜋, 0.1 ≤ ‖𝑞𝑞1‖, ‖𝑞𝑞2‖ ≤ 0.4, and three components of 
both unit vectors (𝑛𝑛�1 and  𝑛𝑛�2) lie between 0 to 1. A set of 200 
samples was randomly chosen for training and a set containing 
5000 samples was used for testing of trained network. Table II 
analyses the performance with ℍ-BP (𝜂𝜂 = 0.001) algorithm 
for conventional and RPMN neurons in quaternionic domain. 
Results demonstrate that ℍ-RPMN based network requires 
reasonably smaller network topology with comparatively 
better accuracy in terms of statistical parameters like error 
variance, correlation, and AIC. The performance for QADD 
and QSUB operations do not change on increasing the number 
of neurons at hidden layer, but slow improvement is observed 
in case of QMULT and N-QDIV operations. ℍ-RPMN based 
network with ℍ-BP performs better, especially in QMULT 
and N-QDIV operations with fewer numbers of learning 
cycles and learning parameters.    

B. Linear Transformations 
This experiment presents the capability to learn 3D motion 

patterns through a training set containing points on a line and 
motion or transformation generalization over complicated 
geometrical structures in space. As a benchmark problem, this 
section presents the learning and generalization of linear 
transformations (rotation, scaling, and translation and their 
combinations) through ℍ-BP algorithm for the network based 
on ℍ-RPMN and ℍ-MLP. This facilitates the viewing of 3D 
objects from different orientations as well as the interpretation 
of their motion in space. 

We have considered a three layer network (2-4-2), as 
defined in II.B, in learning process for input-output mapping 
over a straight line containing a reference point (like mid of 
the line) in 3D space for all experiments. First input receives 
set of point that lies on a straight line and second input passes 
the reference point. The simulation results show that the ℍ-BP 
algorithm with ℍ-RPMN drastically reduces the number of 
training epochs and also able to generalize more accurately as 
compare to conventional. 

 
Fig. 2.Training with input-output mapping of straight line with scaling factor 
½. 

The learning of a three layer network is performed for 
different class of transformations, which are as follows : The 
input-output mapping for scaling with factor ½ is shown in 
Fig. 2; scaling with factor ½ followed by 0.3 unit translation 
along the positive z-direction is shown in Fig. 4; and scaling 
with factor ½ followed by 0.3 unit translation along the 
positive z-direction and π/2 radian rotation around the unit 
vector (𝒊𝒊) is shown in Fig. 6. This mapping is defined over 
straight line containing 21 points and referenced at (0, 0, 0), as 
shown in Fig. 2, 4 and 6. The training through ℍ-BP with 
conventional neural network requires comparatively larger 
average epochs then ℍ-BP with ℍ-RPMN neuron to achieve 
similar MSE, as shown in Fig. 2, Fig. 4 and Fig. 6, and 
presented in Table III, IV and V respectively. Thus, the 
convergence of proposed algorithm is faster over conventional 
ℍ-BP. 

The generalization of trained networks has been performed 
over complicated 3D objects like sphere (4141 data points), 
cylinder (2929 data points) and torus (10201 data points). The 
ℍ-BP with ℍ-RPMN (Fig. (3), Fig. (5) and Fig. (7)) show 
excellent generalization for all three cases of transformations 
over rest of the algorithms. Tables III, IV and V clearly 
demonstrate the superiority of ℍ-BP with RPMN in all 
experiments. 

 
(a) 
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(b) 

 
(c) 

Fig. 3.The generalization through ℍ-BP algorithm with ℍ-RPMN: 
Transformations with scaling factor ½; over (a) Sphere (b) Cylinder and (c) 
Torus. 
 

TABLE III 
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR SCALING 

 ℍ-RPMN (𝛼𝛼 = 0.95) ℍ-MLP 
Algorithm ℍ-BP ℍ-BP 
Network 2-4-2 2-4-2 

Parameters 88 88 
MSE training through straight line 0.0007 0.0007 

Average Learning Cycles 12000 25000 
MSE 

testing 
through 

Sphere 0.0017 0.0052 
Cylinder 0.0014 0.0034 

Torus 0.0033 0.0098 
 

 
 
Fig. 4.Training with input-output mapping over straight line with scaling 
factor ½ and 0.3 unit translation in positive z-direction. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.The generalization through ℍ-BP algorithm : Transformations with 
scaling factor ½ and 0.3 unit translation in positive z-direction; over  (a) 
Sphere (b) Cylinder and (c) Torus. 
 

TABLE IV 
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR SCALING AND 

TRANSLATION 
 ℍ-RPMN (𝛼𝛼 = 0.95) ℍ-MLP 

Algorithm ℍ-BP ℍ-BP 
Network 2-4-2 2-4-2 

Parameters 88 88 
MSE training through straight line 0.0007 0.0007 

Average Learning Cycles 15040 28000 
MSE testing through Sphere 0.0021 0.0063 

Cylinder 0.0016 0.0054 
Torus 0.0041 0.0095 
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Fig. 6. Training with input-output mapping of straight line with scaling factor 
½, 0.3 unit translation in positive z-direction, and π/2 radian rotation around 
the unit vector (𝒊𝒊). 

 
(a) 

 
(b) 

 
(c) 

Figure 7. The generalization through ℍ-BP algorithm: Transformations with 
scaling factor ½, 0.3 unit translation in positive z-direction, and π/2 radian 
rotation around the unit vector (𝒊𝒊); over (a) Sphere (b) Cylinder and (c) Torus. 
 

TABLE V 
COMPARISON OF TRAINING AND TESTING PERFORMANCE FOR SCALING, 

TRANSLATION AND ROTATION 
 ℍ-RPMN (𝛼𝛼 = 0.95) ℍ-MLP 

Algorithm ℍ-BP ℍ-BP 

Network 2-4-2 2-4-2 
Parameters 88 88 

MSE training through straight line 0.0007 0.0007 
Average Learning Cycles 16500 30000 
MSE testing through Sphere 0.0025 0.0062 

Cylinder 0.0018 0.0035 
Torus 0.0047 0.0088 

 
C. 3D Face Recognition 

In this section, we have focused on 3D face identification 
as biometrics application through proposed methodology and 
compare it with related methods. The two human face datasets 
of 3D points cloud containing variable head position, 
orientation, and facial expressions, have been considered for 
training and testing. The first set consists of five faces of same 
person and other set have five faces of different persons. In 
both experiments, one face has been used for training of the 1-
2-1 network and the rest for testing. Thus, it is a basic and 
primitive experiment that learns the complex geometrical 
surface of one face and classify the rest of the faces through 
quaternionic signal based networks; surely it will put a leading 
direction to future researchers to work with large dataset using 
such a simple and small neural network. 

The first experiment is performed on first dataset 
containing 05 faces of same person with different orientation 
and poses; the learning of NN in quaternionic domain is done 
with one face (Fig. 8(a)) and testing with all faces where each 
3D face consists of 4654 points cloud data. Table VI presents 
the training and testing analysis of faces through learning 
algorithms of each face. The Table VI also presents the 
comparative analysis of threshold MSEs with respect to 
average epochs for all algorithms. The threshold MSE reaches 
significantly faster during training in case of RPMN model 
(power coefficient 𝛼𝛼 = 0.90) in ℍ-BP (learning rate 𝜂𝜂 = 
0.001). This table shows that the testing error of all five faces 
are less comparable to each other for all algorithms which 
demonstrate they are faces of same person irrespective of 
minor variations in face orientation and poses. These results 
infer the learning and generalization capability of neural 
network in quaternionic domain.  

Similarly, the second experiment is performed on another 
dataset containing 05 faces of different persons; the learning 
of NN in quaternionic domain is done with one face (Fig. 9(a)) 
and testing with all faces where each 3D face consists of 6397 
points cloud data. Table VII presents the training and testing 
analysis of faces through learning algorithms. The Table VII 
also presents the comparative analysis of threshold MSEs with 
respect to average epochs for all algorithms. The threshold 
MSE reaches significantly faster during training in case of 
RPMN model (power coefficient 𝛼𝛼 = 0.90) in ℍ-BP (learning 
rate 𝜂𝜂= 0.001). For all algorithms, the table shows the testing 
error of all five faces but MSE of other four faces are much 
higher in comparison to the face (Fig. 9(a)) which is used in 
training of the network. This demonstrates that the network 
classifies the faces of same or different person with different 
orientation and poses. These results also infer the learning and 
generalization capability of neural network. 
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(a) (b)  

(c) (d)  

(e)  
 
Fig. 8. Five 3D faces of same person with different orientation and poses. 
 

 
TABLE VI 

COMPARISON OF TESTING ERROR OF EACH FACE OF SAME PERSON WITH 
DIFFERENT ORIENTATION AND POSES 

 ℍ-RPMN (𝛼𝛼 = 0.90) ℍ-MLP 
Algorithm ℍ-BP ℍ-BP 
Network 1-2-1 1-2-1 

Parameters 28 28 
MSE training through Fig. 8(a) 0.0001 0.0001 

Average Learning Cycles 12000 28000 
MSE testing through Fig. 8(a) 2.4842e-04 2.7214e-04 

8(b) 3.8822e-04 3.5431e-03 
8(c) 3.13943-04 5.1153e-03 
8(d) 4.8824e-04 4.5212e-04 
8(e) 3.6904e-04 3.9148e-04 

 

(a) (b)  

(c) (d)  

(e)  
     
Fig. 9. Five 3D faces of different persons 
 

TABLE VII 
COMPARISON OF TESTING ERROR OF EACH FACE OF DIFFERENT PERSON 

 ℍ-RPMN (𝛼𝛼 = 0.90) ℍ-MLP 
Algorithm ℍ-BP ℍ-BP 
Network 1-2-1 1-2-1 

Parameters 28 28 
MSE training through Fig. 8(a) 0.0001 0.0001 

Average Learning Cycles 13000 29000 
MSE testing through Fig. 8(a) 1.7721e-04 1.8521e-04 

8(b) 8.2840e-01 8.7296e-01 
8(c) 3.3772e-00 3.5742e-00 
8(d) 5.5721e-02 6.2996e-02 
8(e) 3.7327e-01 3.9274e-01 

IV. CONCLUSION 
This paper presents an efficient neuron model with 

nonlinear aggregation function of quaternionic-valued signals 
and its evaluation is performed through error propagation (BP) 
learning algorithm in quaternionic domain. The proposed 
methodology is systematically evaluated and compared with 
convention neuron in quaternion domain through a wide 
spectrum of 3D and 4D problems. The root-power mean of 
quaternionic signal is conceptually used as an aggregation 
function of the proposed neuron which emulates better 
performance than conventional neuron. The quicker 
convergence with better performance is the significant 
advantage of algorithm with RPMN which always revealed.  Its 
computational power is also demonstrated through various 
benchmark problems (function approximation, prediction, 
linear transformation and 3D face recognition). The power 
coefficient (𝛼𝛼) is an important parameter in which exhibits the 
approximation capabilities of root-power mean neuron (ℍ-
RPMN). The development of an adaptive algorithm to define 
the power coefficient of ℍ-RPMN will be interesting work for 
future research. 
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