
 

 

  
Abstract—In this paper is presented one new approach for 

decorrelation of groups of color images (for example, multi-view, 
computer tomography, video sequences, etc.) in two directions: the 
color and the time domain. The correlation strength depends on the 
image kind (obtained by a video sensor with fixed or time-changing 
spatial position), and on their contents. To achieve correlation 
reduction, here is proposed new approach based on the sequential 
execution of two PCA-based algorithms: the Adaptive Color PCA for 
each color image in the group, and the Hierarchical Adaptive PCA - 
for each group or time-sequence, obtained after the execution of the 
first color space transform. Both algorithms were already presented in 
preceding publications of the authors, but their combined impact had 
not been analyzed yet. In the paper is given also the analysis of the 
information redundancy reduction as a result of the decorrelation got 
after the execution of both algorithms, and are indicated the future 
trends for their development.  
 

Keywords— Adaptive color PCA, Double PCA-based transform, 
Hierarchical adaptive PCA, Image decorrelation, Principal 
Component Analysis.  

I. INTRODUCTION 
As it is known, the non-compressed color image is represented 
through its primary color components - the matrices [R], [G] 
and [B], whose size is equal to that of the original image. In 
such case, a group of correlated images (for example, multi-
view images, computer tomography, video sequences, etc.) 
could be represented by three groups which comprise the 
corresponding matrices [Rр], [Gр], [Bр], for р=1,2,3,... The 
source, which could be with fixed, or time-changing spatial 
position, defines the mutual correlation between the images in 
the groups and is much higher in the first case.  

    The objective of this work is to propose new approach for 
image groups decorrelation both in time- and color domains. 
The main idea here is to apply sequentially two PCA-based 
transforms: 1) the Adaptive Color PCA (AС-PCA) for the 
RGB components of each image in the processed group, and 
2) the Hierarchical АPCA (HА-PCA) for each group of 
principal color components (eigen images), got after the 

 
Prof. D. Sc. PhD. R. K. Kountchev is with the Technical University of 

Sofia, Department of Radio Communications and Video Technologies, Bul. 
Kl. Ohridsky 8, Sofia 1000, Bulgaria (corresponding author, phone: 
+899924284) e-mail: rkountch@ tu-sofia.bg).  

Dr. R. A. Kountcheva is with TK Engineering, Sofia, Bulgaria (e-mail: 
kountcheva_r@yahoo.com). 

execution of AС-PCA. Algorithms AС-PCA and HА-PCA are 
presented in detail in earlier publications of the authors and 
here is investigated their combined impact. The choice of these 
two algorithms for decorrelation of the three groups of RGB 
components in the color and time domains is determined by 
their lower computational complexity compared to iterative 
PCA algorithms, retaining their most important properties 
(minimum mean square error of the restored images got after 
the reduction of their information redundancy, and maximum 
energy concentration in the first decomposition components).  

II. RELATED WORKS 

Various orthogonal transforms for image decorrelation in the 
pixel space are already investigated and used in practice: the 
Рrincipal Сomponent Аnalysis (PCA) or Karhunen-Loeve 
Transform (KLT) [1-6], and the related Independent 
Component Analysis (ICA) [7,8] and the Singular Value 
Decomposition (SVD) [9,10]. The image representation 
through ICA in whitened space is obtained by left 
multiplication with the matrix square root of the inverse 
covariance matrix [7]. There are also transforms used for 
processing of multi-channel images, based on the quaternion 
DFT [11], the KLT in the time domain [1], and the 
Hierarchical KLT (HKLT) [12] - in the spectrum domain. In 
[13] the algorithm ICA is used for feature extraction from 
color and stereo images.  

The approach for processing of groups of correlated images 
in their color and spatial domains, presented here, corresponds 
to some degree to the method offered in [13], but instead of 
processing one stereo couple only, it is developed for 
processing a sequence (group) of 2n color images. Besides, for 
the processing are used new PCA-based algorithms with low 
computational complexity. 

The paper comprises the following sections: Section 3: 
Adaptive Color PCA algorithm for decorrelation of the color 
image components; Section 4: Algorithm АPCA for 
decorrelation of a couple of images; Section 5: Hierarchical 
Adaptive PCA (HA-PCA) for decorrelation of a group of 2n 
images; Section 6:  Evaluation of the decorrelation got after 
the HA-PCA execution; Section 7: Decorrelation of a group of 
color images through double transform: AC-PCA and HA-
PCA; Section 8: Evaluation of the decorrelation efficiency; 
Section 9: Conclusions. 
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III. ADAPTIVE COLOR PCA ALGORITHM FOR DECORRELATION 
OF THE COLOR IMAGE COMPONENTS 

The Adaptive Color PCA (AС-PCA) transform for 
decorrelation of the three primary color components 
[R],[G],[B] of the image of size H×V, is illustrated on Fig. 1. 
Each component is a matrix of S=H×V elements (pixels). After 
the AС-PCA calculation are obtained the principal color 
components - the matrices of the eigen images [L1],[L2],[L3], 

also of size H×V. To execute the transform, the matrices 
[R],[G],[B] are represented as 3-component color vectors – 
one vector for each pixel. As an example, on Fig. 1 are shown 
the first four color vectors sC



 with elements Rs, Gs, Bs 

(s=1,2,3,4), and their corresponding transformed vectors sL


 
with elements L1s, L2s, L3s. 
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Fig. 1. Transformation of the image RGB components through AC-PCA into corresponding image,  

which comprises the principal color components L1,L2,L3. 

The forward/inverse AC-PCA of the vectors 
T

ssss ]B,G,R[C =


and T
s3s2s1s ]L,L,L[L =



 for s=1,2,..,S are 
defined by the relations [14]: 
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As a result of the transform, full decorrelation of the 
components of the processed vectors T

s3s2s1s ]L,L,L[L =


 is 
got. Their covariance matrix [KL] is diagonal: 
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Its elements λ1, λ2, λ3 are the eigen values of the covariance 
matrix [KС] of the color vectors T

ssss ]B,G,R[C =


. Hence, the 
corresponding transformed matrices of the eigen images 
[L1],[L2],[L3] are mutually decorrelated as well.  
The consecutive steps of the Direct AC-KLT algorithm in 
correspondence with (1), are shown on Fig. 2. The 
experiments with significant number of test images as given in 
[2] show, that as a result of the direct AC-KLT the power of 
the matrix [L1], which comprises the first components s1L  of 

the transformed vectors sL


, is maximum. The power of the 
next matrices [L2] and [L3], which comprise the elements s2L  

and s3L  correspondingly, decreases quickly and that of the 
last matrix [L3] is close to zero. 

        IV. ALGORITHM АPCA FOR DECORRELATION OF A COUPLE 
OF IMAGES 

    This transform is basic for the Hierarchical Adaptive PCA 
(HAPCA), aimed at the processing of a sequence of 2n images. 
The АPCA transform for a couple of images with 
corresponding matrices [C1], [C2] is noted here as АPCA2×2 
and is executed by using a transform matrix of size 2×2. Its 
elements are defined by one parameter only - the value of the 
rotation angle θ. 

Direct 
AC-
PCA 

Inverse 
AC-
PCA 
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    The forward/inverse APCA for a couple of matrix images 
[C1], [C2] each of size H×V and comprising S=H×V pixels, are 
calculated in accordance with the relations below [15]: 

 ,
CC

CC

cossin

sincos

L

L

2s2

1s1

s2

s1













−

−













θθ−

θθ
=












 












+

























θθ

θ−θ
=













2

1

s2

s1

s2

s1

C

C

L

L

cos   sin

sincos

C

C
  for s=1,2,..,S,      (3) 

where 












θθ−

θθ
=θΦ

cossin

sincos
)]([  is the transform rotation 

matrix; [ ]T
s2s1s C,CC =



 and T
s2s1s ]L,L[L =



 are the input and 
the transformed vectors.  
 

Fig. 2. Block diagram of Algorithm АC-PCA for processing of RGB 
components 

The components of vectors sC


 are defined by the couples of 
pixels of same spatial position in the matrices [C1] and [C2] 
(Fig. 3а), or with spatial displacement (Fig. 3b). In the first 
case, the couple of pixels is in the stationary area, and in the 
second - in the movement area. The displacement of the pixels 
in [C2] regarding their positions in [C1] is defined  by the 
corresponding movement vectors, colored in red on Fig. 3b. 
These vectors are usually calculated by using the well-known 
methods for movement block compensation [4]. 
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Fig. 3. Definition of vectors sC



 for the calculation of the matrix 

АPCA on the basis of [C1] and [C2]: a - components of vectors sC


 

without movement compensation; b - components of vectors sC


 
with block movement compensation.  

The algorithm for Forward АPCA of the matrices [C1], [C2] 
transform into matrices [L1], [L2] is shown on Fig. 4.     
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Fig. 4. АPCA Algorithm for processing a couple of images 

    In (2) the transform matrix [Φ(θ)] depends on the rotation 
angle θ, calculated in accordance with the relation below [3]: 
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V. HIERARCHICAL ADAPTIVE PCA (HA-PCA) FOR 
DECORRELATION OF A GROUP OF 2N IMAGES 

    The Hierarchical Adaptive PCA is an n-level PCA-based 
transform aimed at the decorrelation of a group of 2n images. 
The computational complexity of HA-PCA is lower than that 
of the well-known iterative algorithms (for example, for n=4 it 
is two times lower) [16]. 
     In the first level of HA-PCA the processed group of 2n 
images is divided into 2n-1 sub-groups (each comprising two 
images). For both images in each sub-group is calculated 
АPCA2×2. The principal components obtained from all sub-
groups are rearranged in accordance with the value of their 
power, P (for one component with elements xi,j it is defined by 
the relation ∑∑=

i j

2
j,ixP ). For each sub-group are calculated 

two principal components. The power of the first component is 
higher than that of the second and they follow as shown on 
Fig. 5. In the next row the components are rearranged in 
accordance with their values - the first group comprises the 
components with higher power, the second - these with lower 
power, etc. The components with minimum power are in the 
last group. In the second hierarchical level the rearranged 
couples of principal components are processed with АPCA2×2, 
and the so calculated new principal components are rearranged 
again in the way, used for the first level. Then the АPCA2×2 is 
calculated again for all couples, until the last HA-PCA level is 
processed.  
    One example for the full structure of the HA-PCA algorithm 
for a group of Т=8 images is shown on Fig. 5. The principal 
components calculated through АPCA2×2 for each sub-group in 
the consecutive hierarchical levels are tinted in two colors - 
yellow for the components with high power, and blue - for 
these with the low-power. The output components in the last 
(third) level are tinted in eight colors in correspondence with 
their power decrease - from orange (for the maximum 
component), to dark blue (for the component with minimum 
power). 

VI. EVALUATION OF THE DECORRELATION AFTER THE  
HA-PCA EXECUTION 

    For the Level 1 of НА-РСА, the corresponding covariance 
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L,L pp
 of size 2×2 for each sub-group of 

transformed vectors 1
s,pL



 for p=1,..,4 and s=1,2,...,S are: 

     .
)1(0

0)1(
]][K][[]K[

1,p
2

1,p
1T1

pC
1
p

1
L,L 1,ppp 












λ

λ
=ΦΦ=      (5) 

Here, T 1
p,c

1
p,c

S

1s

T 1
s,p

1
s,pC mmCC

S
1]K[

1,p





−= ∑
=

 for p=1,..,4 is the 

covariance matrix of the vectors 1
s,pC



 in the sub-group р from 

level; 1
p,cm



 - the mean vector for each sub-group p from level 

1; )1(),1( 1,p
2

1,p
1 λλ  - the corresponding eigen values of the 

covariance sub-matrices ]K[
1,pC ; ][ 1

pΦ  - the transform matrix 

for the vectors 1
s,pC



 for the sub-group р for level 1. 

T = 8 

Input  
Images

3 4 71 6 8 952

122 222 142112 232132 242212

12 22 32

Reordering for level 2 

121 221 141111 231131 241

211 221 231111 141131 241

211

121

11 21 41

Reordering for level 1  

212 222 232112 142132 242122

4=133 7=2436=2331=113 5=2232=213 Output 
Images

3=123 8=143

31

42

123 223 143113 233133 243213

13 23 33 43

0

Reordering for level 3 HA-PCA 

Principal 
Components

Level 2

Level 1

Level 3

Pmax Pmin

max

min

P1

P2

P3

P4

P5

P6

P7

P8

t

Power
Levels

APCA2×2 for
 each sub-

group 

APCA2×2 for
 each sub-

group 

APCA2×2 for
 each sub-

group 

 
Fig. 5. Hierarchical АPCA algorithm for a group of T=8 images, 
based on the use of АPCA2×2 for each image couple in all three 
decomposition levels 
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of the calculated eigen images, is represented as: 
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are in sub-groups with different power values (tinted in yellow 
and blue, respectively).  
     By analogy with the first level, in the decomposition Level 
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   In this case, only the cross-covariance matrices ]K[ 2
L,L 31

 and 

]K[ 2
L,L 42

 of size 2×2 are not equal to zero, while for the 
remaining matrices is satisfied the condition  

    0]K[]K[]K[]K[ 2
L,L

2
L,L

2
L,L

2
L,L 43324121

==== .                       (9)          

     For the Level 3 of НА-РСА are calculated the covariance 
sub-matrices of size 2×2 for each sub-group of the rearranged 
vectors, obtained after performing the НА-РСА Level 2. The 
covariance matrix of size 8×8 for the 8-component vectors 2

sL


 
in the group of the processed 8 input images for Level 2 is 
calculated by analogy with (7), but the upper index for all 
matrices and sub-matrices is 3. In this level, as a result of the 
principal components rearrangement, all cross-covariance sub-
matrices are equal to zero, including also the sub-matrices 

]K[ 3
L,L 31

 and ]K[ 3
L,L 42

. Then, the covariance matrix of size 

8×8 for the 8-component vectors 3
sL


 is: 
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     Using the already calculated matrix ]K[ r
L  for r=1,2,3 could 

be evaluated the decorrelation of the corresponding 8 eigen 
images in the processed group. When full decorrelation is 

obtained, the matrix ]K[ r
L  is diagonal, and the following 

condition should be satisfied: 

     0}L{E}L{E}L.L{E]K[ Tr
s,p

r
s,k

T r
s,p

r
s,k

r
L,L pk

=−=


                (11) 

     for k,p=1,..,4, r=1,2,3 and  k ≠ p.                                          

    In the general case this requirement is satisfied after the 
rearrangement of the vectors in the last level (r=3) of the 
algorithm. The calculation of HA-PCA could be stopped even 
without full decorrelation, if the condition below is satisfied: 

           ,|}L{E}L{E}L.L{E| Tr
p

r
k

T r
p

r
k δ≤−



                         (12) 

where δ is a pre-defined threshold. In this case the full 
structure of the algorithm shown on Fig. 5 is simplified 
through cutting-off the sub-groups containing the vectors r

pL


, 
which have sub-threshold cross-correlation in respect of the 
sub-groups of vectors, r

kL


.  

VII. DECORRELATION OF A GROUP OF COLOR IMAGES 
THROUGH DOUBLE TRANSFORM: AC-PCA AND HA-PCA 

    The principle of the double transform for a group of 2n color 
images is based on the consecutive execution of algorithms 
AC-PCA and HA-PCA. The first algorithm (АC-PCA) is used 
to transform the matrices of the primary colors [Rp],[Gp],[Bp] 
for p=1,2,..,2n into corresponding groups of principal color 
components, represented by the matrices [L1p],[L2p],[L3p]. On 
Fig. 6 a,b is shown an example for the transformation of the 
group of 8 color images represented by the sequences 
[Rp],[Gp],[Bp] for p=1,2,..,8 (n=3), through AC-PCA. The 
colors of the three groups of principal components' matrices 
from Fig. 6b is different, and is changing depending on their 
power. On Fig. 6c is shown the second transform, based on the 
execution of the algorithm HА-PCA for each group of 
principal color components, which comprise the matrices 
[L1p],[L2p],[L3p], respectively. The matrices [F1p],[F2p],[F3p], 
obtained after the second transform, represent the three groups 
of second principal components, colored in correspondence 
with their power distribution. On the basis of their power, it is 
possible to select and retain for further processing the 
components with over-threshold power. The PCA-based 
transforms AC-PCA and HA-PCA are reversible and this 
permits to restore the original group of RGB images with 
minimum mean-square error, when the retained principal 
components only were used. 
     On Fig. 6c are shown the 7 components (framed) selected 
from the total group of 24 components, i.e. 
[F11],[F12],[F13],[F14],[F21],[F22],[F31]. In these components is 
concentrated the main part of the energy from the three groups 
[F1p],[F2p],[F3p], for p=1,2,..,8. The concentration degree 
depends on the correlation in color- and time domains, existing 
between images in the original group. Higher concentration 
permits to reduce the number of the retained second principal 
components, and to get lower dimensionality of the new space 
got after the double transform of the original group of images. 
To achieve this, the number of images in the group (2n) should 
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be selected so that to ensure maximum mutual correlation in 
time- and color domains. 
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Fig. 6. Double PCA-based transform for a group of 8 RGB images.  
a - input group of 8 images, represented by their R,G,B components; 
b - first transform: the АC-PCA is applied on the R,G,B components 
of each image in the group, and as a result are got three groups of 
principal components;  
c - second transform: the HА-PCA is applied on each of the three 
groups of principal components, got after the АC-PCA transform. 

     On Fig. 6c are shown the 7 components (framed) selected 
from the total group of 24 components, i.e. 
[F11],[F12],[F13],[F14],[F21],[F22],[F31]. In these components is 
concentrated the main part of the energy from the three groups 
[F1p],[F2p],[F3p], for p=1,2,..,8. The concentration degree 
depends on the correlation in color- and time domains, existing 
between images in the original group. Higher concentration 
permits to reduce the number of the retained second principal 
components, and to get lower dimensionality of the new space 
got after the double transform of the original group of images. 
To achieve this, the number of images in the group (2n) should 
be selected so that to ensure maximum mutual correlation in 
time- and color domains. 

VIII. EVALUATION OF THE DECORRELATION EFFICIENCY 
    The decorrelation efficiency for the group of 2n color 
images could be evaluated as follows:  
1) through analysis of the group of covariance matrices ]K[

pL  

of the transformed color vectors T
s,p3s,p2s,p1s,p ]L,L,L[L =



 got 
after the AC-PCA, for p=1,2,..,8. These matrices, defined in 
accordance with (2), are diagonal and as a result, full color 
decorrelation is got. This is confirmed by the results obtained 
from the modeling of the algorithm AC-PCA for color space 
transform used for various RGB images [16]; 
2) through analysis of the group of covariance matrices ]K[ r

Lp
 

for r=1,2,3 of the 8-component vectors r
s,pL



, got after HA-
PCA for each group of 8 input images. Each matrix should 
also be diagonal, so that to guarantee the time decorrelation 
between all 8 eigen images in the group with sequential 
number r=1,2,3. 
      The decorrelation degree between the processed 2n images 
(n=1,2,..) could be evaluated on the basis of their covariance 
matrix with elements ki,j and of size H×V. To calculate this 
matrix, S=H×V vectors of dimension 2n are needed, each 
corresponding to one pixel of same spatial position in all 
images in the group.  The criterion for the correlation 
evaluation is defined by the relation: 

          ∑ ∑ ≠∑=
= ==

H

1i

V

1j

2
j.i

H

1i

2
i,i )ji(kkCovR                                  (13) 

      In case of full correlation is got CovR→∞, but to define 
the needed number of hierarchical levels n for HA-PCA is 
enough to satisfy the relation: 

            ,)]nr(CovR[ 1 ∆≤= −                                               (14) 

where ∆ is a pre-defined threshold with a small value, defined 
experimentally. One example, which illustrates the 
decorrelation for a group of 8 computer tomography (CT) 
images got through execution of АС-PCA and HA-PCA, is 
shown on Fig. 7a,b. On the upper part of Fig. 7a is shown a 
single color СТ image, and in the lower part - its first principal 
component, got after the AC-PCA execution. The first 
principal component is more than 100 times larger than next 
two components. The sequence from the upper part of Fig. 7b 
represents the first principal color components, got after the 

    Direct 
 AC-PCА 

   Inverse 
 AC-PCА 

  Direct 
HA-PCA 

 Inverse 
HA-PCA 
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execution of AC-PCA on the group of 8 CT images. The 
sequence in the lower part of Fig. 7 b shows the second 

principal components of these CT images, got after the 
execution of HA-PCA.  
 

                a.                                      b.  
    Fig. 7.  Example for the double transform of 8 computer tomography images through АС-PCA and HA-PCA 
                a. Single color CT image (up) and its first principal component (below), got after АС-PCA;  
                b. The first color principal components for a group of CT images (up) and the result of their decorrelation through HA-PCA (below). 
 
On Fig. 8 is shown the graphic power distribution of the 
second principal components from Fig. 7b got after the 
execution of HA-PCA and normalized towards the power 
value of the last component. This representation confirms the 
high power concentration in the first component, which 
corresponds to images shown on the lower part of Fig. 7b. 

    

0

50

100

150

200

250

300

P1/P8 P2/P8 P3/P9 P4/P8 P5/P8 P6/P8 P7/P8 P8/P8

290

14 5 4 3 3 1 1

 
Fig. 8. Power distribution of the second principal components got 
after HA-PCA execution for the investigated group of CT images. 

    The results got from the HA-PCA modeling for the example 
above, and also for other investigated groups of correlated 
images of various kind, confirm its high decorrelation 
efficiency for the components in the time domain.  
The analysis shows that the decorrelation of a group of images 
in the color- and time domains permits to achieve significant 
reduction of the existing information redundancy.  

IX. CONCLUSIONS 
    In this work is offered new approach for two-dimensional 
decorrelation of groups of images through double PCA-based 
transform in color- and time domains. To achieve this, two 
algorithms are used: the Adaptive Color PCA for each color 
image in the group and the Hierarchical Adaptive PCA - for 

each group, got after the execution of the first transform (in the 
color space). The analysis of the efficiency of the new 
approach for processing of groups of correlated images shows 
its ability to achieve high decorrelation in two directions: in 
the color, and in the time domains (in theory, full decorrelation 
is got in both directions). This quality of the double transform 
opens wide abilities for its use in the efficient processing of 
correlated groups of images aimed at various applications, as: 
    - compression of correlated groups of images, based on the 
information redundancy reduction both in time- and color 
domains; 
    - reduction of color- and time feature space domains in 
information systems for processing, analysis, and recognition 
of objects in image sequences; 
    - protection of video information, based on watermarking of 
the low-informative second principal components, etc. 
    The presented approach for processing of correlated groups 
of images has lower computational complexity than the well-
known iterative methods for calculation of PCA [16], and this 
opens new opportunities for large number of application areas.   

o  the future development of the new approach is related to: 
development of algorithms for optimization of the 
number of images in the processed group in respect of 
their contents, respectively - their mutual correlation;  

o  the choice of the retained principal components after 
both transforms;   

o  the formats used for image data representation, which to 
ensure the needed accuracy and execution speed, etc. 
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