
 

 

  
Abstract— In this research article, we proposed a mathematical 

model for HIV infection with an aim to control the disease using 
combined drugs namely reverse transcriptase inhibitors (RTIs) and 
protease inhibitors (PIs). We incorporate two control parameters into 
the model representing the two drugs and find the optimal treatment 
strategy using Pontryagin minimum principle that will produce 
maximum uninfected cells and minimum viral load with a minimum 
dose of drug therapies to prevent harmful effects associated with 
excessive use of drugs in the body. Numerical simulation of the 
nonlinear model has confirmed our analytical studies. 
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I. INTRODUCTION 
IDS has developed into a global pandemic since the first 
patients were identified in 1981. It is reported that 38.6 

million people currently live with HIV-1 infection, 4.1 million 
people have been newly infected and 2.8 million AIDS deaths 
occurred in 2005. Virus number in the blood is a major 
indicator of the disease stages. Sometimes these stages are 
meant to correspond to CD4C T-cell count ranges [1, 2]. 
 
Mathematical modeling and analysis of virus dynamics can be 
helpful to develop treatment strategies for infections and to 
provide insights on evaluating an effective antiviral drug 
therapy to clear viruses from the human body [3, 4, 5, 6]. 
Public awareness through media is equali important to prevent 
the disease [18]. Several authors have devoted their efforts in 
studying the dynamics of mathematical models which describe 
the dynamics of virus population in vivo, including human 
immunodeficiency virus (HIV) [7].  
 

Mathematical models involving optimal control 
therapies of HAART and IL-2, include those by Stengel [3]. 
Blower shows that incidence rates of HIV will fall as more 
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HIV-positive individuals gain access to treatment, but the 
underlying assumption is that treated individuals would change 
their behavior and the levels of risky behavior do not increase 
[9]. Bachar and Dorfmayr showed that treatment without 
reduction of risky behavior may even increase the proportion 
of infected individuals [8]. Treatment increases the expected 
available time for the transmission of HIV [11]. Although HIV 
is not yet curable, there are antiretroviral drugs that help in 
boosting the immune system against cell infections. These 
antiretroviral drugs are categorized into two groups which are 
reverse transcriptase inhibitors (RTIs) and protease inhibitors 
(PIs). RTIs disrupt the conversion of RNA of the virus to DNA 
so that new HIV infection of cells is prevented [10]. On the 
other hand, PIs hinder the production of the virus particles by 
the actively infected CD4+T cells [12, 17]. (RTIs), Protease 
inhibitors (PIs) as a combined therapy on HIV infection by 
proposing a mathematical model. Pontryagin minimum 
principle is adopted for the cost effectiveness and excess use 
of the drugs. We finally fulfil the analytical results with 
numerical simulations. 

 
It is well known now that HAART therapies can 

effectively control the HIV replication to undetectable levels, 
unless treatment is disrupted or drug resistance occurs. It is 
also well known that Reverse Transcriptase Inhibitors (RTI) 
could block new infection and as a result control HIV 
infection. Optimal control chemotherapy through RTI is very 
much needed and the present investigation will shed some light 
in this direction [13, 19]. 

 
In this research article, we have studied the effect of 

Reverse transcriptase inhibitors (RTIs), Protease inhibitors 
(PIs) as a combined therapy on HIV infection by proposing a 
mathematical model. Pontryagin minimum principle is adopted 
for the cost effectiveness and excess use of the drugs. We 
finally fulfil the analytical results with numerical simulations. 

II. THE MATHEMATICAL MODEL  
 
 In our model, where )(tT  represents the 

concentration of susceptible TCD +4  cells at time t , )(* tT  

represents the concentration of infected TCD +4  cells at time 
t , )(tV  represents the concentration of free HIV Virus at 
time t  and )(tZ  represents the concentration of immune 
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response )(CTLs  at time t . The following system is 
proposed for HIV infection: 
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 with 0>(0)0,>(0)0,>(0)0,>(0) * ZVTT . 
Here, λ  is denotes the body to believed to produce 

susceptible TCD +4  cells from precursors in the bone 
marrow and thymus at a constant rate, susceptible TCD +4  
cells have natural turn-over rate a , 1r  be the growth rate of 

TCD +4  cells, mT  is the carrying capacity of TCD +4  
cells. 

The parameter k  represents the rate of infection of 
TCD +4  cells with free virus, d  is the natural death rate of 

infected TCD +4  cells 2r  be the growth rate of infected T  
cells, the clearance rate of infected cells by CTLs is δ , each 
infected TCD +4  cell is assumed to produce N  virus 
particles during its life time, including any of its daughter 

cells. The term in the third equation 
Vb

V
+

α
 represents growth 

of virus from other infected cells such as macrophages and 
infected thymocytes. It should be noted here that the growth 
rate of external viral source other than T cells is α  and half 
saturation constant of external viral source is b . Clarence rate 
of virus is denoted by ε  and the rate of CTL proliferation in 
response to antigen due to presence of virus is given by 

*

*

1 T
ZT
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 from where β  is the proliferation rate and the natural 

death rate of CTLs is c . 
 

A. Equilibrium and stability analysis 
 
In this section, we only consider positive equilibriums 

of the system and there stability.  
1)  Equilibria 

The system (1)  with the initial condition possesses 
the following positive equilibrium: the disease free 
equilibrium, ,0,0,0)( 00 TE , and the endemic equilibrium, 

),,,( 22
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2) Local stability analysis 
 

 The Jacobian matrix of system (1) at 
,0,0,0)(= 00 TE  is given by:  
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All the roots of the characteristic equation at 0E  will be 
negative if 

 
0,<])/(1)[( 002 kNbdTdTTrb m −−−− εα   

    and   0.<)/2(1 01 aTTr m −−                (3) 
Thus we have the following theorem:  

Theorem 1 The disease free system is stable if the 
conditions given in (3) are satisfied.  

 
Again, the system (1)  is locally asymptotically 

stable around *E  if Routh-Hurwitz criterion is established. 
The Jacobian matrix at *E  is given by: 
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The characteristic equation of system (1) 
corresponding to *E  is given by 
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 According to Routh-Hurwitz criterion, *E  is stable if  
  0,>0,>0,> 32141 AAAAA −   

 and      0.>2
14

2
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The result can be summarised as below.  
Theorem 2 The endemic equilibrium *E  is stable if 

the conditions given in (4) are satisfied.  
  

Table 1: Variables and parameters used in the numerical 
simulations [14, 15]. 

  
Parameters           Definition  Values 

λ  Constant rate of production rate of 
CD4+Tcells  

12 

1r  Growth rate of healthy CD4+Tcells 0.05 

1r  Growth rate of infected TCD +4  Cells  0.02 

a   Death rate of Uninfected 
CD4+Tcells  

0.01 

k   Contact rate of Uninfected 
CD4+Tcells and virus  

0.00024 

d  Death rate of infected cells  0.1 

δ  Killing rate of infected cells  0.01 
N   Rate of simulation of virus  500 
c  Death rate of CTL  0.05 

α  Growth rate of virus from external 
source 

0.2 

b  Half saturation constant  15 

mT  Carrying capacity of CD4 + T cells  1200 

 
   

 
 

  
Figure 1: Time series solution of the system without drugs, taking the parameters values from Table 1. 
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III. OPTIMAL CONTROL PROBLEM 
 
Here we formulate the problem as an optimal control 

problem.considering 1u  and 2u  are the control parameter 
represent the drugs. The system with drug can be describe with 
the following equations:  
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 We want to maximize uninfected TCD +4  cells and 
minimize free virus. Thus together with the state system (5), 
we consider an optimal control problem with the objective 
function given by 
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The systematic cost of the drug treatment is 
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 Here Pontryagin Minimum Principle [16] has been used to 
find the optimal control pair ))( ),(( *

1
*
1 tutu . 

Note that The two control functions 1u  and 2u  are 

bounded Lebesgue integrable functions. The control 1u  
denotes the efficacy of drug therapy in blocking the infection 
of new cells, and the control 2u  denotes the efficacy of drug 
therapy in inhibiting the production of virus. If, for instance, 

1,2=1,= iui  the blockage is 100% effective and if 0=iu , 
then there is no blockage.  

We try to find out an optimal control pair 
),(= *

2
*
1

* uuu , such that  

})/({min=)( * UuuJuJ ∈   
 

We apply Pontryagin's Minimum Principle [16] to 
determine the specific optimal control *u  of our problem. To 
do this, we start by defining a Hamiltonian. The Hamiltonian 
for our problem consists of the integrand of the cost functional 
and the right hand side of the state equations through the 
adjoint variables 4321 ,,, ξξξξ , penalty multipliers QP, . 

The Hamiltonian is defined as follows:  
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 Using minimum principle, we have the following theorem.  
 

Theorem 3 Corresponding to the state system (5) 
and the optimal control pair ),(= *
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with the transversality condition 0=)( fi tω  for 

1,2,3=i . Further )(* tu  is represented by:  
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Proof. We differentiate the Hamiltonian H , with 

respect to VTT ,, *  and Z  respectively and then the adjoint 
system can be written as 
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      To find the optimal control we differentiate the 
Hamiltonian H , with respect to u , which gives  
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Solving (12), we get  
 

)}},
2

({1,min{0,max= 21*
1 P

kVTkVTu αξξ −
 

 )}}.
2

({1,min{0,max=
*

3*
2 Q

NdTu ξ
 

 
       Thus equation (5) together with (7) and (8) represent the 
optimally controlled system considering the drugs as control 
agents with the boundary conditions 0=)( fi tξ . Moreover, 
its a two point boundary value problem.

 

  
Figure 2: Solution of the system with drugs (blue lines) and without drugs (red lines), taking the parameters values from Table 1. 

  

III. NUMERICAL SIMULATION 
 
        In this section, we solve the model system (1) and the 
optimal control system, numerically in Matlab, in order to gain 
a better understanding of the previous analytical results. We 

have chosen the default values of the parameters from their 
reported range in various articles. The model parameters 
together with their default values are given in the Table 1.  

  
 
 

 
 

  
Figure 3: Optimal drugs profiles are plotted with time, taking the parameters values from Table 1. 

  
In Figure 1, is the time series solution of system (1) is 

presented as function of time without drugs. We have seen that 
the uninfected CD4 + T cell count decreases. It has also been 
observed that the level of infected CD4 +  T cell increases. We 
have also seen that the viral load increases drastically without 

treatments whereas with treatments there is no increase in the 
concentration of free virus. 

From Figure 2, it is clearly observed that as the drug 
efficacy increases, the uninfected cell population increases 
towards its maximum population density and the virus and 
infected cells move towards extinction. However, increasing 
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the efficacy of RTIs and PIs, do not produce any remarkable 
change in any of the cell populations being studied. Thus, 
selecting a highly efficacious drug during the condition. 

Figure 3, represents the control pair *u  for RTI and 
PI drugs for the parameter set as given in Table 1. Both the 
drugs are administered at nearly full level for 100  days 
approximately and after that it is reduced to zero at 100  days. 
In the Figure we see that during the treatment period, the 
infected T cells decreases, and the CTL responses also 
increases almost linearly. Thus, optimal drug doses are 
required with the change in time to block new infection of cells 
and prevent viral production with minimum side effects. 

IV. DISCUSSION AND CONCLUSIONS 
 

 In this paper, we have proposed and analyzed a 
mathematical model, with two control variables each for 
Reverse transcriptase inhibitors and Protease inhibitors, 
describing HIV infection of CD4+T cells. Stability analysis of 
the proposed model is studied. Also, Pontryagin minimum 
principle is adopted to solve the formulated optimal control 
problem. The numerical simulation results shows that the 
effectiveness of the model in maximizing the concentration of 
uninfected CD4+T cells, minimizing the free virions in the 
body with a minimum dose of combination of drug therapies. 
The aim was to advert the adverse effects associated with 
excessive use of drug, and also indirectly minimizing the cost 
of treatment. 
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