
 

 

  
Abstract—Bio-inspired optimization algorithms are widely-used-

subset of computational intelligence. The algorithms have adopted 
their working principles from different natural phenomena. Artificial 
Bee Colony (ABC) is formulated from honey bees foraging 
phenomenon. ABC optimization algorithm is a potent member of the 
algorithm-family. However, ABC suffers from slow convergence and 
poor exploitation. Researchers have evolved many ABC variants to 
overcome the demerits of ABC. Nevertheless, the variants are 
proposed either at the cost of additional control variables or required 
to evaluate the objective function numerous times for a food-source. 
The search of optimal values of the control variables to yield optimal 
performance of the ABC variants is exhaustive. Hence the variants 
are computationally intensive. This research proposes an enhanced 
ABC algorithm without adding any control-variable to the standard-
ABC. Furthermore the proposed variant evaluates the objective 
function only once like the standard-ABC. The proposed algorithm 
has been compared with four efficient variants of ABC algorithm on 
a number of benchmark functions and a real-world application i.e. 
automatic-voltage-regulator performance enhancement. The two 
different statistical tests have been performed to assess significance 
of the proposed algorithm. The results suggest that not only the 
proposed algorithm has better capability to fend off local optima but 
it also possesses better convergence rate. 
 

Keywords—Artificial bee colony, ABC variant, foraging 
optimization algorithms, real parameter optimization  

I. INTRODUCTION 
s various real-world optimization problems are becoming 
severely difficult, global optimization using traditional 

techniques is becoming a profoundly challenging assignment 
[1]. Computational intelligence (CI), a driven branch of 
artificial intelligence (AI), is an area which solves most real-
world problems efficiently and has yielded better results [2]. 
CI has been successfully applied in various disciplines [3]-[7]. 
Mainly, CI includes neural networks, bio-inspired optimization 
algorithms and fuzzy systems. Fuzzy systems are mostly 
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confined to control applications. Nevertheless, bio-inspired 
optimization algorithms and neural networks cover very 
diverse engineering applications [8], [9]. Furthermore, the 
analysis carried out in reference [8] clearly claims that 
independent position of bio-inspired optimization algorithms 
in CI paradigms is increasing even more with time passage. 
The working principle of bio-inspired optimization algorithms 
is inspired by various natural phenomena. The algorithms are 
also known as population-based algorithms. There are 
different factors influencing the performance of the algorithms.  

Bio-inspired optimization algorithms rely heavily on 
feedback for convergence and self-regulation [10]. Feedback is 
nothing but to induce self-influence or influence of any 
particular pattern available in the population. There are two 
types of feedbacks; one is called positive feedback and the 
other is known as negative feedback [11]. Positive feedback 
increases the occurrence tendency of any particular pattern. 
This accelerates convergence rate, but it could lead to 
instability [10], [12]. Negative feedback regulates impact of 
positive feedback as to maintain the equilibrium [10], [13].  

The prime goal of honey bees during foraging is to optimize 
time spent on foraging and foraged energy. Artificial Bee 
Colony (ABC) algorithm uses foraging strategy of honey bees 
for evolving new possible-solutions from existing possible-
solutions. It has been developed in 2007 [14]. Standard-ABC 
optimization algorithm is a popular and an efficient element of 
swarm-intelligence-based bio-inspired optimization algorithms 
[15], [16]. Standard-ABC has not only been able to yield 
better performance but it also has fewer parameters to tune 
[15], [17]. ABC optimization algorithm has been applied in a 
number of engineering applications [18]-[22]. Nonetheless, 
standard-ABC possesses few demerits like poor exploitation 
capability [23], slow convergence on unimodal problems [11], 
[24] and can easily be trapped local optima while handling 
multimodal problems [25]. The faster convergence and the 
ability to fend-off local optima are the motives in ABC 
algorithm research area. However, no research work has been 
proposed to achieve the motives simultaneously [25]. 
Moreover, the previously proposed solutions either require 
evaluation of objective function many times or need 
initialization of additional control variables. Hence, the 
solutions are computationally intensive. 

The additional control variables serve to regulate the impact 
of positive feedback and hence, the induction of negative 
feedback. This research proposes a simple yet effective 
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solution to avert the demerits of standard-ABC without adding 
any additional control variable. The proposed technique relies 
on top-three global-best possible-solutions rather than only the 
global-best possible-solution. Therefore, the algorithm 
capitalizes on the global best possible-solutions for faster 
convergence and concurrently the swarm does not accumulate 
at one location of search space. Hence, the search-space is 
properly explored in the search of global optimum. The 
proposed algorithm has been compared with other existing 
variants of ABC algorithm on nineteen commonly used 
benchmark functions. The results show better performance of 
the proposed variant of ABC algorithm in comparison to 
existing variants of the algorithm.  

This paper is divided into eight sections. The immediate 
section demonstrates the working principle of standard-ABC 
algorithm. The third section is related to literature survey 
followed by the section presenting the proposed modifications. 
The fifth section presents parameter settings of the compared 
algorithms. Then results are compared and discussed in the 
following section. Finally application of the proposed 
algorithm to a real world application has been presented in the 
seventh section. The conclusion is then presented in eighth 
section. 

II. ARTIFICIAL BEE COLONY ALGORITHM  
There are three classes of bees associated to foraging task 

[11], [14]. One is called Employed-Bees (EBs), which are 
actually assigned food-sources around the hive. The food-
sources represent the possible-solutions and hive is the search-
space. The second type of bees is called Onlooker-Bees (OBs). 
Onlooker-bees wait in dancing area of the hive for seeking 
information from EBs of the food-sources having higher 
nectar-amount [16]. The nectar-amount of food-source 
corresponds to the quality or fitness of possible-solution. The 
third type of bees is known as Scout-Bees (SBs). If any 
possible-solution does not show any improvement over a 
preset number of iterations, the possible-solution is 
abandoned. The preset number of iteration is controlled by 
user-defined control variable named limit [25]. The EB 
associated with the abandoned food-source becomes SB. Then 
the SB flies around the hive for picking a new food-source 
[17].  

The standard-ABC algorithm starts with random 
initialization of the food-sources around the hive. Each EB is 
assigned a food-source. Hence, the number of EBs and the 
food-sources is equal. Moreover in standard-ABC, the number 
of EBs and OBs is same. The function of EBs is to explore 
neighborhood of the associated food-sources using the 
following equation: 

 
( )kjijijijij yyyz −+= ϕ              (1) 

 
where yij represents jth index-magnitude of ith food-source, 

ykj represents jth index-magnitude of kth food-source, i and k 

are mutually exclusive food-sources, j Є [1,2,…. D], D is the 
dimension of search space and φ is a uniformly distributed 
random number within [-1, 1]. 

Each food-source has the number of indices equal to the 
dimension of a problem. The standard-ABC algorithm updates 
only one index of every food-source during EBs as well as 
OBs stage of the algorithm. Hence, for a food source objective 
function is evaluated only once in an iteration. The fitness of 
the modified food-source, also called candidate food-source, is 
calculated using the following equation: 
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where fi represents objective function value of ith food-

source and fiti is the corresponding fitness value after 
transformation. 

The fitness value of the candidate and the old food-source 
is compared. The food-source having higher fitness value is 
retained [14]. This is known as greedy selection. As mentioned 
earlier, OBs wait in the dancing area of the hive for seeking 
information of the explored food-sources. OBs probably select 
the food-sources having higher fitness values [16]. In standard-
ABC, the probability of the food-source having higher fitness 
value is calculated by the following equation: 
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where NS represents the number of food-sources and i is the 

selected food-source. 
If an abandoned food-source exists then the SB is assigned a 

randomly-initialized food-source to replace the abandoned 
food-source. In standard-ABC algorithm the number of SB is 
one. In standard-ABC, EBs and OBs exploit search space 
whereas SB adds exploration capability in the algorithm [16]. 
The SB is assigned a food-source by the equation given below: 
 

( )( )minmaxmin 1,0 jjjij yyrandyy −+=         (4) 

 
j
min

 is lower limit of search space and j
max is upper bound of 

search space. 
Block diagram representation of standard-ABC algorithm is 

given in Fig. 1. 
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Fig. 1 ABC algorithm flowchart 

III. PREVIOUS WORK AND LIMITATIONS 
For enhancing the performance of standard-ABC, a number 

of researches have been carried out. References [26], [27] 
have modified standard-ABC for discrete parameter 
optimization. Researchers [24], [25], [28], [29] have 
incorporated chaotic maps in the standard-ABC and [1] has 
hybridized the standard-ABC and rosenbrock method for 
finding optimal solutions efficiently. Whenever chaotic-maps 
or rosenbrock methods have been incorporated into any 
optimization algorithm, the hybridized algorithm has 
performed better than the standard optimization algorithm [1], 
[24], [25], [28]-[30]. Therefore, it can be prophesized that 
incorporation of the techniques into the algorithm, proposed in 
this research work, will yield better results too. However, the 

incorporation for performance enhancement of the 
optimization algorithms, adds computational cost [1], [24]. 

Akay has proposed two modifications in the standard-ABC 
[11] at the cost of additional user-defined control variables. 
The proposed algorithm is computationally very intensive. 
Since it has to evaluate objective function numerous times for 
a food-source, in each iteration, on contrary to standard-ABC 
algorithm where objective function is evaluated only once in 
every iteration for a food-source. In modified-ABC algorithm, 
the number of objective function evaluations is proportional to 
the problem-dimension. Moreover results depict the standard-
ABC has performed better than modified-ABC on various 
functions. 

The proposals presented in [24], [25], [31]-[33] have 
inducted influence of the best possible-solution for enhancing 
the fitness of other possible-solutions. Another component has 
been added in the search equation of the standard-ABC [30]. 
The added component contains the influence of best possible-
solution and a user-defined control-variable. The modified 
ABC has been named gbest-guided ABC (GABC) and has the 
following search equation. 
 

( ) ( )bestijkjijijijij xyyyyz −+−+= ψϕ        (5) 

 
where yi and yk represent mutually exclusive food-sources, x 

best is the globally-best food-source, j Є [1,2,…. D], D is the 
dimension of search space, φ is a uniformly distributed random 
number within [-1, 1], ψij is the positive random integer within 
[0-C] and C is a user defined constant. 

The performance of GABC has been compared with the 
standard-ABC. The results have shown better performance of 
GABC. GABC has been taken for the comparative analysis 
carried out in this research work. 

The enhancement of each possible-solution using three 
different search-equations, in every generation, makes the 
algorithm proposed in [32] computationally very intensive. 
The proposed algorithm has been named Prediction-Selection-
ABC (PS-ABC). Out of the three equations, two equations are 
of standard-ABC and GABC algorithms and the third 
equation, proposed in the research, is given below: 
 

( )( ) ( ) 215.02 φψφϕ kjbestkjijijijijij yxyywyz −+−−+= (6) 

 
where yi and yk are mutually exclusive food-sources, x best is 

the global-best food-source, wij  = Ф1 = 1/(1+exp(-
fitness(yi)/fitness(x best)), Ф2 = 1 (for employed bees), Ф2 = 1/ 
(1+exp (-fitness (i) / fitness (best)) (for onlooker bees) and, Фij 
and Ψij are random number with [0, 1]. 

Equation (6) is highly prone to local optima traps, as stated 
in [32]. Equation (6) generates candidate possible-solution 
around a percentage of existing possible-solution, as value of 
“w” is always less than 1. Hence, the equation may only work 
for the functions having optimum solution at zero. On 
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contrary, real world applications do not have optimal solutions 
at zero value. 

PS-ABC algorithm has been run on a real-world application, 
presented in Section-7, to assess its dependence on GABC 
search-equation, i.e. (5). PS-ABC algorithm has been run on 
four different C-values. Fig. 2 presents the convergence rate 
plots of PS-ABC algorithm at four different C-values of 
GABC search equation. The convergence rate plots are 
averaged over 30 runs. The figure clearly depicts huge 
dependence of PS-ABC algorithm on GABC search equation. 
The change in the C-value of GABC search equation has 
brought change in convergence rate of PS-ABC algorithm. 
Therefore, it can be concluded that the PS-ABC algorithm 
heavily rely on GABC search equation. GABC has been taken 
for the comparative analysis carried out in this research work. 

 
 

Fig. 2 Convergence rate plot of PS-ABC 
 
The research work presented in [24] has proposed two 

different equations inspired by the mutation-equation of 
differential evolution. The algorithm has been named 
Improved-ABC (IABC). Following are the two proposed 
equations: 
 

( )tmtlijtbestij yyxz ,,, −+= ϕ             (7) 

 
( )tntiijtmij yyyz ,,, −+= ϕ             (8) 

 
where yi, ym and yn are mutually exclusive food-sources and 

x best is the globally best food-source, t Є [1,2,….T], T is a 
selected-integer from [1,2,….D], D is the dimension of search 
space and φ is a uniformly distributed random number within 
[-1, 1]. 

IABC is required to solve (7) or (8) systematically, at the 
cost of a user-defined control-variable called Probability (P). 
It is suggested that if the randomly generated number is greater 
than the P-value (i.e. rand > P-value) then solve (7) otherwise 
solve (8). The results demonstrate significantly better 
performance of IABC among all compared algorithms. 

Best-so-far ABC (BSO) algorithm proposed in [33] has 
enhanced Onlooker-Bees (OBs) and Scout-Bee (SB) stages 

than the standard-ABC. In BSO, the number of objective 
function evaluations is equal to the number of problem-
dimension for a food-source in an iteration i.e. BSO evaluates 
one hundred times the objective function for a food-source, in 
every iteration, if the problem has one hundred dimensions. On 
contrary, the standard-ABC evaluates the objective function 
only once for a food-source, in an iteration, irrespective of 
problem dimension. Therefore, BSO is also computationally 
very intensive. Furthermore, it is stated that the proposed 
equation has the tendency of local optima traps. Whereas the 
modification proposed for SB may only work for the functions 
having optimal solution at zero. Since BSO generates possible-
solution for SB by reducing the abandoned possible-solution to 
almost 80% or lesser of the original value. Nevertheless the 
reduction depends upon user-defined control variables. 
Certainly more reduction will result in better convergence. 

Globally best ABC, proposed in [25], has search-equations 
inspired by the mutation-equations of the differential evolution 
algorithm. The proposed equations are given below: 

 
( )njmjijjbestij yyxz −+= ϕ,             (9) 

 
( ) ( )rjkjijnjmjijjbestij yyyyxz −+−+= ϕϕ,      (10) 

 
where ym, yn and yk are mutually exclusive food-sources 

and x best is the globally best food-source, j Є [1,2,…. D], D is 
the dimension of search space and φ is a uniformly distributed 
random number within [-1, 1]. 

The algorithm based on (9) has been named ABC/best/1 
(BABC1) and the algorithm based on (10) has been called 
ABC/best/2 (BABC2). Both algorithms have been considered 
to compare with the algorithm proposed in this research work. 

IV. PROPOSED ENHANCED ABC 
The literature suggests that incorporation of the best 

possible-solution in the search equation of the standard-ABC 
has increased convergence rate. However, it also inducts the 
tendency for premature convergence. The premature 
convergence tendency has been tackled by introducing 
different control variables. As stated earlier, these control 
variables have performance-deciding-impact on the 
performance of algorithms. Moreover, there is no systematic 
way to decide upon the optimal values of the variables. This 
research work proposes Enhanced-ABC algorithm (EABC). 
The proposed algorithm does not require any extra control 
variable. The search equation of the proposed algorithm is 
given below:  
 

( )jbestthirdbestondbestijijijij yyyz ,/sec/, −−−+= ϕ      (11) 

 
where y best/second-best/third-best, j is jth index of one of top-three 

food sources. 
In EABC algorithm, the possible-solutions have been 

Number of generations 
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divided into three groups irrespective of fitness value of each 
possible-solution. Possible-solutions are also called food-
sources. Each one of the top-three global best possible-
solutions has been exploited to enhance possible-solutions 
present in each group, regardless of the presence of global-best 
possible-solution in the group. Whereas top-three possible-
solutions have been updated by randomly chosen possible-
solution, if top-three solutions are present in their respective 
groups. 

Reliance on the single global-best possible-solution may 
accumulate the swarm in one location of the search space. 
However, the application of the top-three possible-solutions 
drives to avoid the accumulation of the swarm at any single 
location of the search space. Thus, the algorithm capitalizes on 
the best possible-solutions for accelerating convergence rate. 
Simultaneously the algorithm has the capability to avert local 
optima. Utilization of the best possible-solution can be seen as 
induction of positive feedback because it increases the 
occurrence tendency of the pattern. Whereas relying on the 
multiple best possible-solutions rather than the single best 
possible-solution can be seen as the induction of negative 
feedback. Since the technique regulates the impact of positive 
feedback.  

Different combinations have also been tried to optimize the 
structure of the proposed algorithm. For example, four or more 
groups capitalizing on the top-four or more global-best 
possible-solutions have also been tried, but the results had 
been worse. Since as go down to fourth-best, fifth-best and so 
on, the fitness of possible-solutions deteriorates, hence curtails 
convergence rate and make the algorithm prone to local optima 
traps. Fig. 3 shows flow chart of the proposed ABC algorithm. 
As far as computational complexity of the proposed algorithm 
is concerned, the proposed algorithm performs the same 
number of fitness function evaluation as performed by the 
standard algorithm in each iteration. However, the proposed 
algorithm sorts out the best food-source in each iteration which 
is not done in the standard ABC algorithm. Moreover, 
computational complexity of the proposed algorithm is either 
lesser or similar to the compared algorithms e.g. it is similar to 
BABC1, GABC and lesser than IABC and BABC2. 

V. EXPERIMENTAL SET-UP AND PARAMETER SETTINGS 
In this research work standard-ABC (ABC), Gbest-guided-

ABC (GABC), Improved-ABC (IABC), ABC/best/1 and 
ABC/best/2 have been taken to compare the performance of 
the proposed variant of ABC named Enhanced-ABC (EBAC). 
GABC has been run at C equals to 0.5, 1.0, 1.5 and 2.0, to get 
optimal performance of GABC. Similarly, IABC has been run 
on P equals to 0.15, 0.25 and 0.35 and T has been fixed to one. 
Values of the algorithm specific control variables have been 
tried and set as instructed in their respective research works. 
The performance of all the considered algorithms has been 
analyzed using eighteen commonly used complex benchmark 
functions listed in Table 1 in Appendix 1 [1], [11], [14], [31], 
[33], [34]. Optimization algorithm needs to have balanced 

search strategy in terms of exploration and exploitation for 
optimizing complex multimodal functions like Griewank, 
Ackley and Schwefel functions [11], [16]. Rosenbrock and 
Colville have a narrow and very deep curving valley. 
Therefore, the algorithm is required to explore search-space 
properly and keep on changing directions continuously [1]. 

The last four functions are four-dimensional and rests are 
thirty-dimensional functions. The colony size of all algorithms 
has been fixed to 100 for thirty and 30 for ten dimensional 
functions. limit (i.e. the control variable) has been set to 100 
and 30 for thirty and four dimensional functions respectively. 
The number of generations has been limited to 1500 and 200 
for thirty and four dimensional functions respectively. Each 
algorithm has been run 30 times on each function to observe 
the variability of the algorithms. Random initialization has 
been used for all compared algorithms to make the comparison 
even. The performance analysis of the algorithms has been 
carried out on the basis of maximum, minimum, average over 
30 runs and standard deviation among 30 outputs. The 
standard deviation predicts the robustness, the average value 
prophecies the convergence of the algorithms. The maximum 
and the minimum value give the worst and the best 
convergence of the algorithms. For obtaining statistical 
significance of the results, Wilcoxon-test and t-test have been 
performed. Moreover, data for error obtained by running all 
compared algorithms have been plotted using boxplot methods 
on a few functions as suggested in [49]. 

VI. RESULTS AND DISCUSSION 
Table 2 in Appendix 1 gives the performance-analysis 

results of GABC at the four different values of C. The results 
vividly depict the influence of C-value on the performance of 
GABC. The results do not show any systematic variation of 
GABC output in relation to the C-value. Therefore, GABC has 
to be run on different C-values for producing the optimal 
performance of GABC. The process is very exhaustive. GABC 
yielding the best convergence rate have been considered for 
further comparison and have been highlighted for clarity. 

Table 3 in Appendix 2 presents the performance-analysis 
results of IABC at the three different values of P control 
variable. The results clearly depict the influence of P on the 
performance of IABC. The results do not show any systematic 
variation of IABC output in relation to P value. Hence 
different P values have to be tried for producing the optimal 
performance of IABC. The process is very exhaustive. IABC 
yielding the best convergence rate have been considered for 
further comparison and have been highlighted for clarity. 

Figs. 4 to 21 show the convergence rate comparison plots of 
standard-ABC and its variants, on various benchmarks 
functions. The performance of every considered algorithm 
varies from the best to the worst depending upon benchmark 
function nature.  

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017 

ISSN: 1998-0159 184



 

 

 

Random assignment of  
food source to each 

Employed-Bee

Start

Termination criterion 
satisfied

Calculate fitness of each food-
source using equation (2) 

Searching of new location for 
abandoned food source by 

Scout Bee using equation (4)

Memorize the best 
food position

Terminate

Yes

No

Select food-source 
having higher fitness 

value using equation (3)

Calculate fitness value 
of all food-sources 
using equation (2) 

Search for neighborhood of (food-
sources/3< food-sources<food-

sources*(2/3)) by employed bees using 

zij = yij + φij (yij-y second-best, j)

Search for neighborhood of (food-
sources<food-sources/3) by 

employed bees using 

zij = yij + φij (yij-y best, j) 

Search for neighborhood of food-
sources>food-sources*(2/3) by 

employed bees using 

zij = yij + φij (yij-y third-best, j)

Search for neighborhood of (food-
sources/3< food-sources<food-

sources*(2/3)) by onlooker bees using 

zij = yij + φij (yij-y second-best, j)

Search for neighborhood of (food-
sources<food-sources/3) by 

onlooker bees using 

zij = yij + φij (yij-y best, j) 

Search for neighborhood of food-
sources>food-sources*(2/3) by 

onlooker bees using 

zij = yij + φij (yij-y third-best, j)

Fig. 3 Flowchart of the proposed ABC optimization algorithm 
 
 

Table 1 Benchmark functions used to assess performance of optimization functions
 

No Function 
Name Equation Initialization 

Range 

f1 Griewank (MN) 
1 2( ) ( ( )) - ( cos( ) 1

4,000 1 1

xDD if x xi ii i
= +∑ ∏

= =

 
[-600 600] 

f2 
Rosenbrock 

(UN) 
2 2 2( ) 100( ) (1 )11

D
f x x x xi iii

= − + −∑ +=
 [-15 15] 

f3 Ackley (MN) 
1 12( 0.2 ) cos(2 )

1 1( ) 20 20 )

D D
x xiiD Di if x e e e

π− ∑ ∑
= == + − −  

[-32 32] 

f4 Schwefel (MN) ( ) 418.9829 - sin( | |)
1

f x
D

D x xi ii
= × + ∑

=
 [-500 500] 

f5 
Himmelblau 

(MS) 
1 4 2( ) ( 16 5 )

1

D
f x x x xi i iD i

= − +∑
=  

[-600 600] 

f6 Step (US) ( )2( ) 0.5
1

D
f x xii

= +∑
=

  
 

[-100 100] 

f7 
Bohachevsky 

(MN) 

1 2 2( ) 2 0.3cos(3 ) cos(3 ) 0.31 11

D
f x x x x xi ii ii

π π
−

= + − +∑ + +=
 [-100 100] 

f8 
Schwefel2 

(UN) 
2 2( )

1 1

DD
f x x xi ii i

= +∑ ∏
= =

 
[-100 100] 

f9 
Zakharov1 

(UN) 

2 4
2( ) 0.5 0.5

1 1 1

D D D
f x x x xi i ii i i

= + +∑ ∑ ∑
= = =

   
   
   

 [-20 20] 

f10 
Schwefel 

Ridges (UN) 

2
( )

1 1

D i
f x x ji j
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= =

 
 
   

[-100 100] 
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f11 
Schwefel 
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Noise (UN) 

2
( ) * (1 0.4 (0,1) )

1 1

D i
f x x Nji j
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f12 
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1
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1

iD Df x xii

−
−= − −∑

=
 

[-100 100] 

f13 
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1

D
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= −∑
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f15 Schaffer (MN)  

2
4 2sin 0.5
1
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f17 
Zakharov2 

(UN) 

2 44 4 42( ) 0.5 0.5
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= = =
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f18 Quartic (US) ( )
4 4( ) 0,1
1

f x ix Nii
= +∑

=
 

[-1.28  1.28] 

 
However the results analysis shows that the proposed  

 
algorithm has either performed the best or second-

best among the considered algorithms. Wherever the proposed 
algorithm has performed second-best, the difference between 
the best and the proposed algorithm is marginal. 

The standard-ABC algorithm has performed worst on all the 
functions than all the algorithms except on Rosenbrock, 
Schafer, Zakharov and Schwefel's Ridges functions. On all 
these functions, the standard-ABC has produced third-best 
response. However, standard-ABC has produced the worst 
response on all multimodal functions, except Schafer function, 
than the other compared algorithm. GABC has produced the 
best convergence rate on Noisy Schwefel's Ridges function 
among all the compared algorithms. However, the response of 
GABC on the multimodal functions is the poorer in 
comparison to its response on the unimodal functions. This is 
because of the excessive self-reinforcement in GABC search 
equation. Nevertheless, on all the considered functions, GABC 
has performed better than the standard-ABC. 

IABC algorithm has produced the worst response on 
Colvile, Schafer, Zakharov, Quartic and Rosenbrock functions, 
in comparison to all the other algorithms. Nonetheless, IABC 
has produced the best response on Schwefel function than all 
the algorithms. IABC has yielded better response on the 
multimodal functions than on the unimodal functions. 
Therefore, it can be concluded that IABC has the tendency to 
produce better response on the multimodal functions in 
comparison to the unimodal functions. 

BABC2 has produced poorer response on all the functions 
in comparison to BABC1, except Schwefel function. The 
convergence rate plots of BABC1 and the proposed algorithm 
have overlapping regions on Ackley and Quartic functions. 
However on Rosenbrock, both Schwefel's Ridges, both 
Zakharov, and on Schaffer functions BABC1 has shown very 
little convergence. BABC1 and BABC2 have produced better 

response on the multimodal functions in comparison to the 
unimodal functions. Therefore, it can be deduced from this 
comparative analysis that both BABC algorithms have the 
tendency to produce better response only on the multimodal 
functions than on the unimodal functions. The BABC 
algorithms produce response around best possible-solution 
only. Therefore, the algorithms are highly prone to the local 
optima trappings, specifically, when the global optimum lies in 
the deep and curving valley. 

The proposed algorithm, EABC, has produced the best 
convergence rate on all functions except Schwefel and Noisy 
Schwefel's Ridges functions. On Schwefel function, EABC has 
produced better response only in comparison to GABC and 
ABC algorithms. EABC has yielded the best response second 
to GABC, on Noisy Schwefel's Ridges function. EABC is joint 
winner on Ackley (Fig. 6) and Quartic (Fig. 21) functions 
along with BABC1. Therefore it can be concluded that the 
proposed algorithm has equal tendency to produce the best 
response on the multimodal and the unimodal functions. 

Table 4 in Appendix 3 gives the comparative performance 
analysis results of all the considered algorithms on all the 
functions. The table replicates the aforementioned discussion. 
The algorithms producing the best and second-best results 
have been highlighted for clarity. Furthermore, the table 
presents the statistical tests results obtained using performance 
data of all compared algorithms. The tests results show that the 
performance of the proposed algorithm is significantly better 
than the compared algorithms. This is also evident from 
boxplot results depicted in Figs. 22 to 25.  
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Fig. 4 Convergence rates of the algorithms, tested on Griewank 

function 
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Fig. 5 Convergence rates of the algorithms, tested on Rosenbrock 

function 
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Fig. 6 Convergence rates of the algorithms, tested on Ackley 

function 
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Fig. 7 Convergence rates of the algorithms, tested on Schwefel 

function 
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Fig. 8 Convergence rates of the algorithms, tested on Himmelblau 

function 
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Fig. 9 Convergence rates of the algorithms, tested on Step function 
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Fig. 10 Convergence rates of the algorithms, tested on 

Bohachevsky function 
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Fig. 11 Convergence rates of the algorithms, tested on Schwefel2 

function 
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Fig. 12 Convergence rates of the algorithms, tested on Zakharov1 

function 
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Fig. 13 Convergence rates of the algorithms, tested on Schwefel’s 

Ridges function 
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Fig. 14 Convergence rates of the algorithms, tested on Noisy 

Schwefel’s Ridges function 
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Fig. 15 Convergence rates of the algorithms, tested on Shifted 

Rotated Elliptic function 
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Fig. 16 Convergence rates of the algorithms, tested on Random 

Shifted Sphere function 
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Fig. 17 Convergence rates of the algorithms, tested on Random 

Shiftted Griewank function 
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Fig. 18 Convergence rates of the algorithms, tested on Schafer 

function 
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Fig. 19 Convergence rates of the algorithms, tested on Colvile 

function 
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Fig. 20 Convergence rates of the algorithms, tested on Zakharov 

function 
 

0 50 100 150 200
10-3

10-2

10-1

100

Number of generations

lo
g 

(A
ve

ra
ge

 o
f m

in
im

um
 o

ut
pu

ts
)

 

 
EABC
GABC
BABC2
BABC1
IABC
ABC

 
Fig. 21 Convergence rates of the algorithms, tested on Quartic 
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Fig. 22 Box-plotting of error of the compared algorithms over 

function 1 
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 Fig. 23 Box-plotting of error of the compared algorithms over 
function 3 
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Fig. 24 Box-plotting of error of the compared algorithms over 
function 10 
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 Fig. 25 Box-plotting of error of the compared algorithms over 
function 16 

VII. APPLICATION OF PROPOSED ALGORITHM 

A. Introduction  
It is very difficult to classify the real world problems in 

terms of separable and non-separable, and unimodal and 
multimodal problems. Moreover the setting of control 
variables requires expertise as in case of Bacterial Foraging 
Optimization Algorithm (BFOA) or exhaustive as in case of 
GABC or IABC. On contrary, the algorithm requiring lesser 
expertise and easy implementation suits application engineers 
the most. In this research work Automatic Voltage Regulator 
(AVR) performance enhancement is taken as a real-world 
problem for the comparative analysis. 

Currently, bio-inspired optimization algorithms are very 
popular among application engineers from various disciplines 
[35]-[38]. The algorithms have resulted in better solutions of 
real-world problems, with reasonable computational effort, 
where analytical methods have failed [36]. However, the 
application of bio-inspired optimization algorithms is still 
limited in the field of online tuning of controller parameters 
[39]. On the other hand, Neural Networks (NNs) have been 
successfully applied in the field though NN with gradient-
based learning algorithms are highly prone to local optima 
trappings [40], [41]. Since NN offers lesser processing time 
than the optimization algorithms. The higher processing time 
of the optimization algorithms can be curtailed by reducing the 
number of generations and the population size. Nonetheless, 
the steps may lead to improper exploration of search-space.  

Micro-genetic algorithm also uses small population size. 
Nevertheless, the performance of genetic algorithm 
deteriorates if the parameters to be optimized are correlated 
[39]. Moreover, swarm-intelligence-based algorithms perform 
better than evolution-based optimization algorithms [15]-[17]. 
Bees Algorithm (BA), BFOA and ABC, elements of swarm-
intelligence-based optimization algorithms, have the ability to 
induct completely new and random solutions into the swarm 
[15]. Therefore, these algorithms have the capability to 
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properly explore search-space even with the smaller 
population size. BFA and BA have many control variables and 
there is no any systemic way to decided upon control variables 
values. Moreover, ABC performs better than BFA and BA 
[15]. 

B. Automatic Voltage Regulator 
Power system is the most complex, vulnerable, highly 

interconnected and widely distributed system in today’s world 
[41]. The restructuring of electric industry, ever increasing 
need of the energy, and the recent blackouts have increased the 
necessity to install the optimally tuned power systems 
controllers [42], [43]. AVR is used to keep the terminal 
voltage constant [44]. Deviation of the terminal voltage from 
rated value deteriorates the life and efficiency of all associated 
equipments [44], [45]. Moreover AVR enhances power system 
stability [42], [46]. Thus, the controller plays a major role in 
power system operation during the steady-state and the 
transient periods. 

Many PID controller tuning methods can be found in the 
literature, since PID is the most commonly used controller in 
the industries [47]. Ziegler-Nichols (ZN) is the most 
commonly used classical method for PID controller tuning 
[47], [48]. However, it is often difficult to get optimal or near 
optimal PID gains using ZN method [49]. On the other hand, 
bio-inspired optimization algorithms are the well proven 
algorithms for producing the optimal solutions of numerous 
engineering problems [48]. PID controller is used to regulate 
gain of AVR [46]. Hence the performance enhancement of 
AVR is basically the optimization of PID controller gains. 

Fig. 26 shows the model of power system used in this 
analysis. The same model has been used by [47]-[49]. Fig. 26 
illustrates that PID-controller generates the control-signal on 
the basis of error-signal magnitude (∆Ve). The error-signal is 
the deviation of generator output voltage from the reference 
voltage. The proportional controller minimizes magnitude of 
the error signal. The integral component of the controller 
reduces the steady-state error whereas the derivative element 
of the controller damps out oscillations.  

Table 5 gives the transfer functions and gain-values of the 
power system components. The values are well within limits 
suggested in [47]-[49]. 

 
 
 
 
 
 
 
 

Fig. 26 Block diagram of power system model 
 
 
 
 

Table 5 Transfer functions of power-system-model 

components and their values 

Components Transfer 
Function 

Parameter 
Values 

Amplifier TF Amplifier = 
Ka/1+τas 

Ka = 12       
τa = 0.1 

Exciter TF Exciter   = 
Ke/1+τes 

Ke =  1        
τe = 0.4 

Generator TF Generator = 
Kg/1+τgs 

Kg =  1        
τg =  1 

Sensor TF Sensor  = 
Ks/1+τss 

Ks =  1         
τs =  0.01 

Controller TF Controller = (kps+ki+kds2)/s 
 

C. Performance assessment and variable setting 
The fitness function used in this research work to optimize 

PID-AVR is given in (12). The fitness function has been taken 
from [49]. 
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  (12) 

 
where Osh is an overshoot, Ess represents a steady-state 

error, ts is the settling time, tr shows the rise-time, β=1.5 and 
max(t)=1sec. 

As BABC2 has produced inferior response than BABC1 on 
all benchmark functions, the algorithm has been omitted from 
further comparison. IABC has been run on 0.15, 0.25 and 0.35 
values of P. GABC has been run on 0.5, 1.0 and 1.5 values of 
C. The colony size of all the algorithms has been fixed to 08. 
limit (i.e. the control variable) has been set to 08. The number 
of generations has been limited to 30. The initialization range 
has been fixed from 0.1 to 1.5. Each algorithm has been run 30 
times to observe the variability of the algorithms. Performance 
analysis of the algorithms has been carried out on basis of 
maximum, minimum, average over thirty runs and standard 
deviation among thirty outputs. 

D. Results and Discussion 
GABC has performed best on C value equals to 0.5 and 

IABC on P value equals to 0.25. Table 6 gives output results 
of all the considered optimization algorithms, tested on (12) 
fitness function for optimizing PID-AVR. The results show 
that EABC, the proposed algorithm, has produced least 
maximum, minimum, average and standard-deviation values 
among all considered algorithms. 

Fig. 27 clearly shows superiority of EABC. EABC has 
yielded the best convergence rate in comparison to all the 
compared algorithms. Keeping in view the robust performance 
and considerably higher convergence rate of the proposed 
algorithm, this research work can be taken as first step towards 
online tuning of PID-AVR parameters using the optimization 
algorithms.  

Table 6 Output results of the compared algorithms for PID-AVR 
optimization 

PID 
Control
ler 

    Amplifier     Exciter    Generator 

     Sensor 

  ∑ 

∆Vref 
  ∆Ve 

   ∆Vt 

        ∆Vt 
Terminal                                                               
Voltage 
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Algorith
m Maximum Minimum Average  Standard 

Deviation 
ABC 24.5678 16.7150 20.1924 2.3981 

GABC-0.5 8.1913 0.2899 1.2499 1.6372 
IABC-0.25 15.7360 0.4058 3.4096 3.3025 

BABC1 29.3804 0.2951 5.5139 7.7941 
EABC 4.9467 0.2786 0.6935 0.8775 
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Fig. 27 Convergence rates of the algorithms on PID-AVR 

optimization objective function 

VIII. CONCLUSION 
In this research work, the performance of ABC, gbest-

guided ABC (GABC), Improved-ABC (IABC), best/ABC/1 
(BABC1), best/ABC/2 (BABC2) and proposed derivative of 
ABC named Enhanced-ABC (EABC) have been compared. 
The analysis has been carried out on eighteen commonly used 
high dimensional complex benchmark functions. Besides, 
performance of the algorithms has also been assessed on a real 
world application i.e. PID-AVR optimization. Performance 
assessment suggests decisive-impact of C-value and P-value 
on convergence of GABC and IABC respectively. 
Furthermore, there is no systematic way to decide upon the 
variable value. GABC has performed better on unimodal 
functions than multimodal functions. IABC has yielded better 
performance on multimodal functions than unimodal functions. 
BABC1 has performed better than BABC2 on all functions. 
BABC1 and BABC2 are highly prone to local optima traps, 
specifically, when the global optimum lies in very deep and 
curving valley. BABC1 and BABC2 have performed 
comparably better on the multi-dimensional functions than the 
unimodal functions. The analysis portrays that EABC has 
outperformed GABC and IABC on all functions. EABC has 
performed better than BABC1 on almost all functions. EABC 
has performed equally better on unimodal and multimodal 
functions. It reflects that the proposed algorithm, EABC, has 
the best capability to avert local optima than the other 
compared algorithms. Moreover, the proposed algorithm does 
not require any extra control variable unlike other variants of 
ABC algorithm.  

 

APPENDIX 
 

Appendix 1 

Table 2 Performance results of GABC algorithms at four 
different values of C. 

Functions  Algorithms  Max Min Avg Std Dev 

Griewank 

GABC  0.5 9.99E-16 4.44E-16 6.11E-16 1.30E-16 
GABC  1.0 6.66E-16 4.44E-16 5.55E-16 5.05E-17 
GABC  1.5 9.99E-16 4.44E-16 5.22E-16 1.29E-16 
GABC  2.0 9.99E-16 4.44E-16 6.00E-16 1.29E-16 

Rosenbrock 

GABC  0.5 3.1612 3.11E-02 5.63E-01 6.85E-01 
GABC  1.0 4.4526 1.14E-02 7.43E-01 1.15E+00 
GABC  1.5 6.4158 8.44E-02 1.59E+00 1.76E+00 
GABC  2.0 20.0640 2.02E-01 2.23E+00 3.72E+00 

Ackley 

GABC  0.5 1.38E-13 5.60E-14 1.01E-13 1.92E-14 
GABC  1.0 4.17E-14 3.11E-14 3.75E-14 3.54E-15 
GABC  1.5 4.17E-14 2.75E-14 3.50E-14 4.31E-15 
GABC  2.0 4.53E-14 3.11E-14 3.87E-14 3.70E-15 

Schwefel 

GABC  0.5 2.86E-02 3.82E-04 1.32E-03 5.15E-03 
GABC  1.0 4.72E-04 3.82E-04 3.85E-04 1.65E-05 
GABC  1.5 3.86E-04 3.82E-04 3.82E-04 6.92E-07 
GABC  2.0 118.4387 3.82E-04 3.95E+00 2.16E+01 

Himmelblau 

GABC  0.5 -78.3323 -78.3323 -78.3323 00 
GABC  1.0 -78.3323 -78.3323 -78.3323 00 
GABC  1.5 -78.3323 -78.3323 -78.3323 00 
GABC  2.0 -78.3323 -78.3323 -78.3323 00 

Step  

GABC  0.5 8.71E-16 3.97E-16 6.46E-16 1.22E-16 
GABC  1.0 7.35E-16 3.93E-16 5.80E-16 8.97E-17 
GABC  1.5 7.29E-16 4.70E-16 5.92E-16 8.35E-17 
GABC  2.0 7.52E-16 4.37E-16 6.09E-16 1.08E-16 

Bohachevsky 

GABC  0.5 8.33E-16 2.22E-16 4.74E-16 1.25E-16 
GABC  1.0 5.55E-16 1.11E-16 4.22E-16 1.22E-16 
GABC  1.5 5.55E-16 5.55E-17 3.74E-16 1.31E-16 
GABC  2.0 5.55E-16 2.22E-16 4.46E-16 8.93E-17 

Schwefel2 

GABC  0.5 1.92E-14 6.09E-15 1.12E-14 3.28E-15 
GABC  1.0 1.80E-15 1.19E-15 1.51E-15 1.33E-16 
GABC  1.5 1.65E-15 1.13E-15 1.42E-15 1.41E-16 
GABC  2.0 2.26E-15 1.44E-15 1.84E-15 1.50E-16 

Zakharov1 

GABC  0.5 1.74E-12 3.16E-14 5.80E-13 3.82E-13 
GABC  1.0 4.68E-14 2.26E-15 1.41E-14 1.12E-14 
GABC  1.5 1.07E-13 5.83E-15 4.30E-14 3.00E-14 
GABC  2.0 3.26E-11 1.56E-12 9.47E-12 7.16E-12 

Schwefel's  
Ridges 

GABC  0.5 384.9901 60.7910 255.1922 70.4696 
GABC  1.0 472.0192 117.6052 282.9421 86.6242 
GABC  1.5 517.0625 133.9984 320.6369 99.9001 
GABC  2.0 472.4032 151.5902 359.0110 85.6502 

Noisy 
Schwefel's 

 Ridges  

GABC  0.5 80.2247 42.9922 60.9401 8.9862 
GABC  1.0 75.0952 33.7006 62.7242 9.2184 
GABC  1.5 90.1739 55.5391 70.8466 8.6593 
GABC  2.0 90.8686 51.7526 73.9504 10.3576 

Shifted 
Rotated  
Elliptic 

GABC  0.5 -450 -450 -450 0 
GABC  1.0 -450 -450 -450 0 
GABC  1.5 -450 -450 -450 0 
GABC  2.0 -450 -450 -450 0 

Random 
Shifted 
 Sphere 

GABC  0.5 7.69E-16 4.02E-16 6.14E-16 1.15E-16 
GABC  1.0 7.35E-16 4.00E-16 5.95E-16 9.77E-17 
GABC  1.5 7.45E-16 4.33E-16 5.65E-16 9.16E-17 
GABC  2.0 7.49E-16 4.02E-16 5.83E-16 9.10E-17 

Random 
Shiftted 

 Griewank  

GABC  0.5 5.55E-16 4.44E-16 4.74E-16 4.99E-17 
GABC  1.0 5.55E-16 3.33E-16 4.63E-16 6.57E-17 
GABC  1.5 5.55E-16 2.22E-16 4.51E-16 7.68E-17 
GABC  2.0 5.55E-16 3.33E-16 4.63E-16 6.57E-17 

Schafer 

GABC  0.5 2.75E-01 0.00E+00 1.89E-02 6.07E-02 
GABC  1.0 1.07E-02 3.16E-15 1.00E-03 2.17E-03 
GABC  1.5 4.84E-01 1.67E-16 3.75E-02 1.22E-01 
GABC  2.0 4.67E-01 1.57E-13 4.24E-02 1.15E-01 

Colvile 

GABC  0.5 2.1277 6.38E-02 8.52E-01 5.75E-01 
GABC  1.0 1.5924 2.64E-02 4.53E-01 3.92E-01 
GABC  1.5 1.4699 2.25E-02 5.64E-01 3.62E-01 
GABC  2.0 1.5640 6.47E-02 5.28E-01 4.44E-01 

Zakharov 
GABC  0.5 2.97E-02 7.72E-09 1.37E-03 5.40E-03 
GABC  1.0 4.07E-03 6.58E-07 6.52E-04 1.15E-03 
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GABC  1.5 1.12E-02 2.10E-05 1.16E-03 2.26E-03 
GABC  2.0 9.97E-02 2.58E-05 1.14E-02 2.03E-02 

Quartic  

GABC  0.5 1.18E-02 6.92E-04 4.35E-03 2.69E-03 
GABC  1.0 6.59E-03 8.06E-04 3.39E-03 1.79E-03 
GABC  1.5 7.23E-03 4.89E-04 2.77E-03 1.60E-03 
GABC  2.0 9.59E-03 8.19E-04 4.33E-03 2.48E-03 

 
Appendix 2 

Table3 Performance results of IABC algorithms at three 
different values of Probability (P). 

Functions  Algorithm Max Min Avg Std Dev 

Griewank 
IABC  0.15 8.88E-16 4.44E-16 5.77E-16 1.14E-16 
IABC  0.25 9.99E-16 4.44E-16 5.77E-16 1.18E-16 
IABC  0.35 8.88E-16 4.44E-16 5.96E-16 1.07E-16 

Rosenbrock 
IABC  0.15 7.4408 0.5550 2.5837 1.7811 
IABC  0.25 7.0467 0.3711 2.6007 1.8262 
IABC  0.35 10.3054 0.4061 2.6268 2.0762 

Ackley 
IABC  0.15 4.17E-14 2.75E-14 3.50E-14 4.00E-15 
IABC  0.25 3.82E-14 2.75E-14 3.39E-14 4.00E-15 
IABC  0.35 3.82E-14 2.75E-14 3.51E-14 3.58E-15 

Schwefel 
IABC  0.15 3.82E-04 3.82E-04 3.82E-04 8.18E-13 
IABC  0.25 3.82E-04 3.82E-04 3.82E-04 3.12E-10 
IABC  0.35 3.82E-04 3.82E-04 3.82E-04 7.82E-13 

Himmelblau 
IABC  0.15 -78.3323 -78.3323 -78.3323 0.0000 
IABC  0.25 -78.3323 -78.3323 -78.3323 0.0000 
IABC  0.35 -78.3323 -78.3323 -78.3323 0.0000 

Step  
IABC  0.15 7.50E-16 3.28E-16 5.55E-16 1.01E-16 
IABC  0.25 7.26E-16 2.89E-16 5.52E-16 1.21E-16 
IABC  0.35 7.38E-16 4.19E-16 6.11E-16 8.35E-17 

Bohachevsky 
IABC  0.15 5.55E-16 2.22E-16 4.02E-16 1.17E-16 
IABC  0.25 5.55E-16 2.78E-16 4.35E-16 9.90E-17 
IABC  0.35 5.55E-16 1.11E-16 4.11E-16 1.29E-16 

Schwefel2 
IABC  0.15 1.65E-15 1.08E-15 1.42E-15 1.42E-16 
IABC  0.25 1.82E-15 1.17E-15 1.41E-15 1.55E-16 
IABC  0.35 1.65E-15 1.18E-15 1.46E-15 1.20E-16 

Zakharov1 
IABC  0.15 2.58E-10 3.46E-13 4.07E-11 5.66E-11 
IABC  0.25 3.12E-11 5.42E-13 8.07E-12 8.32E-12 
IABC  0.35 2.67E-11 5.55E-14 4.17E-12 5.91E-12 

Schwefel's  
Ridges 

IABC  0.15 807.9164 500.1765 669.7189 73.9467 
IABC  0.25 885.8818 494.6965 704.0401 96.5522 
IABC  0.35 859.9889 421.4624 670.6579 100.7596 

Noisy 
Schwefel's 

Ridges  

IABC  0.15 87.7583 58.8921 76.5929 7.4268 
IABC  0.25 93.4944 57.1121 74.7421 8.4245 
IABC  0.35 91.9252 58.8699 75.5614 9.4278 

Shifted 
Rotated Elliptic 

IABC  0.15 -450 -450 -450 0 
IABC  0.25 -450 -450 -450 0 
IABC  0.35 -450 -450 -450 0 

Random 
Shifted 
Sphere 

IABC  0.15 9.12E-16 4.76E-16 5.89E-16 9.45E-17 
IABC  0.25 7.40E-16 4.73E-16 5.98E-16 8.58E-17 
IABC  0.35 7.46E-16 4.12E-16 5.98E-16 1.04E-16 

Random 
Shiftted 

Griewank  

IABC  0.15 5.55E-16 3.33E-16 4.51E-16 5.78E-17 
IABC  0.25 5.55E-16 3.33E-16 4.85E-16 6.83E-17 
IABC  0.35 5.55E-16 2.22E-16 4.55E-16 6.74E-17 

Schafer 
IABC  0.15 0.4041 0.0025 0.1105 0.1092 
IABC  0.25 0.3521 0.0026 0.1070 0.1113 
IABC  0.35 0.4843 0.0028 0.1100 0.1378 

Colvile 
IABC  0.15 9.7536 0.6855 2.7620 1.9363 
IABC  0.25 9.4860 0.1740 2.5284 2.3077 
IABC  0.35 4.2606 0.1855 1.8564 1.0155 

Zakharov 
IABC  0.15 2.1533 0.0296 0.6175 0.6139 
IABC  0.25 1.7082 0.0258 0.3933 0.4239 
IABC  0.35 1.4740 0.0107 0.3195 0.3749 

Quartic  
IABC  0.15 9.02E-03 1.04E-03 4.43E-03 2.23E-03 
IABC  0.25 8.69E-03 1.61E-03 3.87E-03 1.82E-03 
IABC  0.35 8.91E-03 6.89E-04 3.70E-03 2.09E-03 

 
 
 
 
 

 
 

Appendix 3 

Table 4 Performance results of the compared optimization 
algorithms on all considered benchmark functions. 

Functions Algorithms Max Min Avg Std Dev 

T
e
s
t 

Griewank 

ABC 9.99E-16 5.55E-16 7.44E-16 1.70E-16 1 
BABC2 8.88E-16 4.44E-16 5.59E-16 7.98E-17 1 
BABC1 3.33E-16 1.11E-16 2.26E-16 6.83E-17 0 

GABC-1.5 9.99E-16 4.44E-16 5.22E-16 1.29E-16 1 
IABC-0.15 8.88E-16 4.44E-16 5.77E-16 1.14E-16 1 

EABC 3.33E-16 1.11E-16 2.21E-16 5.93E-17 - 

Rosenbrock 

ABC 2.1034 0.0779 0.5480 0.4930 1 
BABC2 19.3961 0.1756 5.0233 5.2076 1 
BABC1 14.6555 0.1419 3.8966 3.3735 1 

GABC-0.5 3.1612 0.0311 0.5627 0.6848 1 
IABC-0.15 7.4408 0.5550 2.5837 1.7811 1 

EABC 0.9331 0.0069 0.2622 0.2499 - 

Ackley 

ABC 2.33E-09 3.93E-10 9.78E-10 4.19E-10 1 
BABC2 4.17E-14 2.75E-14 3.48E-14 3.90E-15 1 
BABC1 3.11E-14 2.04E-14 2.39E-14 3.55E-15 0 

GABC-1.5 4.17E-14 2.75E-14 3.50E-14 4.31E-15 1 
IABC-0.25 3.82E-14 2.75E-14 3.39E-14 4.00E-15 1 

EABC 3.05E-14 1.96E-14 2.30E-14 3.09E-15 - 

Schwefel 

ABC 118.4388 3.82E-04 18.8873 43.1578 1 
BABC2 3.82E-04 3.82E-04 3.82E-04 4.78E-13 0 
BABC1 3.82E-04 3.82E-04 3.82E-04 8.92E-13 0 

GABC-1.5 3.86E-04 3.82E-04 3.82E-04 6.92E-07 0 
IABC-0.35 3.82E-04 3.82E-04 3.82E-04 7.82E-13 0 

EABC 3.82E-04 3.82E-04 3.82E-04 1.94E-13 0 

Himmelblau 

ABC -78.3323 -78.3323 -78.3323 0.00 0 
BABC2 -78.3323 -78.3323 -78.3323 0.00 0 
BABC1 -78.3323 -78.3323 -78.3323 0.00 0 

GABC-1.0 -78.3323 -78.3323 -78.3323 0.00 0 
IABC-0.35 -78.3323 -78.3323 -78.3323 0.00 0 

EABC -78.3323 -78.3323 -78.3323 0.00 0 

Step  

ABC 9.66E-16 4.77E-16 6.79E-16 1.48E-16 1 
BABC2 9.42E-16 3.24E-16 6.86E-16 1.09E-16 1 
BABC1 3.12E-16 1.44E-16 2.52E-16 4.43E-17 0 

GABC-1.0 7.35E-16 3.93E-16 5.80E-16 8.97E-17 1 
IABC-0.25 7.26E-16 2.89E-16 5.52E-16 1.21E-16 1 

EABC 2.95E-16 1.40E-16 2.41E-16 8.62E-17 0 

Bohachevsky 

ABC 6.77E-15 7.77E-16 1.45E-15 1.05E-15 1 
BABC2 7.22E-16 1.11E-16 4.79E-16 1.22E-16 1 
BABC1 2.78E-16 0.00E+00 5.74E-17 6.60E-17 0 

GABC-1.5 5.55E-16 5.55E-17 3.74E-16 1.31E-16 1 
IABC-0.15 5.55E-16 2.22E-16 4.02E-16 1.17E-16 1 

EABC 1.94E-16 0.00E+00 5.61E-17 1.19E-17 - 

Schwefel2 

ABC 5.99E-10 1.63E-10 3.61E-10 1.10E-10 1 
BABC2 1.87E-15 1.35E-15 1.52E-15 1.32E-15 1 
BABC1 1.64E-15 6.48E-16 1.16E-15 2.51E-16 0 

GABC-1.5 1.65E-15 1.13E-15 1.42E-15 1.41E-15 1 
IABC-0.25 1.82E-15 1.17E-15 1.41E-15 1.55E-16 1 

EABC 1.85E-15 9.90E-16 1.17E-15 2.00E-16 - 

Zakharov1 

ABC 1.08E-08 3.16E-10 2.95E-09 2.21E-09 1 
BABC2 2.69E-02 3.97E-03 1.19E-02 5.94E-03 1 
BABC1 2.16E-03 1.43E-04 7.23E-04 5.94E-04 1 

GABC-1.0 4.68E-14 2.26E-15 1.41E-14 1.12E-14 1 
IABC-0.35 2.67E-11 5.55E-14 4.17E-12 5.91E-12 1 

EABC 1.22E-15 6.53E-16 1.01E-15 1.78E-16 - 

Schwefel's 
Ridges 

ABC 4.38E+02 1.15E+02 3.05E+02 6.97E+01 1 
BABC2 9.76E+02 5.06E+02 7.39E+02 1.14E+02 1 
BABC1 8.39E+02 4.53E+02 6.26E+02 9.26E+01 1 

GABC-0.5 3.85E+02 6.08E+01 2.55E+02 7.05E+01 1 
IABC-0.15 8.08E+02 5.00E+02 6.70E+02 7.39E+01 1 

EABC 3.03E+02 8.21E+01 2.06E+02 5.22E+01 - 

Noisy  
Schwefel's  

Ridges  

ABC 97.3855 50.9731 77.5277 11.1642 1 
BABC2 99.7449 66.8569 80.6434 8.8235 1 
BABC1 90.5750 59.8665 74.8630 8.2968 1 

GABC-0.5 80.2247 42.9922 60.9401 8.9862 1 
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IABC-0.25 93.4944 57.1121 74.7421 8.4245 1 
EABC 78.2952 40.4345 57.2374 8.8122 - 

Shifted  
Rotated 
Elliptic 

ABC -450 -450 -450 0.00 0 
BABC2 -450 -450 -450 0.00 0 
BABC1 -450 -450 -450 0.00 0 

GABC-1.5 -450 -450 -450 0.00 0 
IABC-0.35 -450 -450 -450 0.00 0 

EABC -450 -450 -450 0.00 - 

Random  
Shifted 
Sphere 

ABC 9.18E-16 4.57E-16 7.02E-16 1.22E-16 1 
BABC2 7.53E-16 4.45E-16 6.53E-16 9.69E-17 1 
BABC1 4.23E-16 1.57E-16 2.69E-16 5.25E-17 0 

GABC-1.5 7.45E-16 4.33E-16 5.65E-16 9.16E-17 1 
IABC-0.35 7.46E-16 4.12E-16 5.98E-16 1.04E-16 1 

EABC 3.93E-16 1.38E-16 2.65E-16 4.83E-17 0 

Random  
Shiftted 

Griewank  

ABC 6.66E-16 3.33E-16 5.33E-16 7.38E-17 1 
BABC2 5.55E-16 3.33E-16 4.18E-16 6.31E-17 1 
BABC1 3.33E-16 1.11E-16 1.85E-16 7.34E-17 0 

GABC-1.5 5.55E-16 2.22E-16 4.51E-16 7.68E-17 1 
IABC-0.35 5.55E-16 2.22E-16 4.55E-16 6.74E-17 1 

EABC 3.33E-16 1.11E-16 1.82E-16 7.30E-17 - 

Schafer 

ABC 2.86E-02 3.56E-05 5.15E-03 6.43E-03 1 
BABC2 4.84E-01 3.44E-04 8.22E-02 1.29E-01 1 
BABC1 4.84E-01 0.00E+00 5.91E-02 1.30E-01 1 

GABC-1.0 1.07E-02 3.16E-15 1.00E-03 2.17E-03 1 
IABC-0.25 3.52E-01 2.65E-03 1.07E-01 1.11E-01 1 

EABC 4.05E-03 0 1.41E-04 7.39E-04 - 

Colvile 

ABC 7.00E+00 1.88E-01 2.03E+00 1.83E+00 1 
BABC2 4.29E+00 2.52E-01 1.02E+00 8.46E-01 1 
BABC1 1.24E+00 5.64E-03 3.05E-01 2.64E-01 0 

GABC-1.0 1.59E+00 2.64E-02 4.53E-01 3.92E-01 1 
IABC-0.35 4.26E+00 1.85E-01 1.86E+00 1.02E+00 1 

EABC 1.25E+00 4.43E-03 2.66E-01 2.94E-01 - 

Zakharov 

ABC 2.42E-02 1.70E-05 4.80E-03 6.16E-03 1 
BABC2 1.66E+00 8.96E-02 6.15E-01 4.29E-01 1 
BABC1 4.41E-01 5.50E-04 6.22E-02 8.64E-02 1 

GABC-1.0 4.07E-03 6.58E-07 6.52E-04 1.15E-03 1 
IABC-0.35 1.47E+00 1.07E-02 3.20E-01 3.75E-01 1 

EABC 2.18E-05 4.28E-15 1.20E-06 4.67E-06 - 

Quartic  

ABC 1.58E-02 1.45E-03 6.48E-03 3.34E-03 1 
BABC2 7.47E-03 4.03E-04 3.48E-03 2.27E-03 1 
BABC1 3.64E-03 2.90E-04 1.63E-03 1.05E-03 0 

GABC-1.5 7.23E-03 4.89E-04 2.77E-03 1.60E-03 1 
IABC-0.35 8.91E-03 6.89E-04 3.70E-03 2.09E-03 1 

EABC 3.42E-03 3.01E-04 1.64E-03 1.07E-03 - 
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