
 

 

  
Abstract— The Adomian decomposition method (ADM) for 

Burgers-Fisher equation was introduced in. The generalized Burgers-
Fisher equation is nonlinear partial differential equation which 
appears in fluid dynamics and other fields of applied physics. 
Burgers-Fisher equation describes different physical phenomena as 
convection effect, diffusion transport or interaction between the 
reaction mechanisms. The purpose of this paper is to improve 
numerical solution of the problems given in according the note given 
in and formulation given in. The calculated numerical results with 
just first few (two, three or four) terms in series decomposition show 
the improvement in efficiency and accuracy with presented 
algorithm. More terms used for numerical approximation of 
analytical solution result with significantly improved approximation. 
The proposed procedure and algorithm are expressed on wide number 
of examples. The comparison of numerical results according the 
given approach by using Adomian decomposition method with exact 
solution, with numerical results by decomposition method explained 
in and with numerical results obtained by exp-function method with 
heuristic computation presented in is provided.. 
 

Keywords— Burgers-Fisher equation, nonlinear partial 
differential equation, Adomian decomposition method.  
 

I. INTRODUCTION 
E consider the nonlinear partial differential equation 
known as generalized Burgers-Fisher equation. This 

nonlinear partial differential equation appears in many fields 
of applied physics. Some of widely used applications are in 
fluid dynamics, turbulence and shock wave formation but also 
in financial mathematics. Burgers-Fisher equation is nonlinear 
partial differential equation that describes different physical 
phenomena as convection effect, diffusion transport or 
interaction between the reaction mechanisms. The equation 
has properties of convection from known Burgers differential 
equation and properties of diffusion transport from Fisher 
differential equation. This nonlinear partial differential 
equation was uncovered by J.M. Burgers and R.A. Fisher. 
Large number of numerical procedure have been proposed to 
solve different nonlinear partial differential equations. The 
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nonlinear partial differential equations are solved easily and 
efficient by using Adomian decomposition method (ADM). 
ADM is numerical method for solving nonlinear partial 
differential equations without transforming the equation and 
avoiding linearization and perturbation. The ADM for 
Burgers-Fisher was introduced in papers [1] and [2]. The 
generalized Burgers-Huxley equation was solved by using 
ADM in [1], but numerical results are improved in [3]. In this 
paper, the ADM approach shown in [3,4] was implemented for 
solving the generalized Burgers-Fisher equation. Wide number 
of numerical examples in this paper are taken from [1] and 
from [5] to show the improvement of numerical results 
calculated by decomposition method presented in [1] and exp-
function method with heuristic computation presented in [5]. 
Numerical results show efficiency and accuracy of presented 
algorithm. By using more terms approximation of analytical 
solution could be significantly improved, what would be 
shown in examples. The convergence of sequence of 
numerical solutions calculating by ADM for Burgers-Fisher 
equation was demonstrated in [2].  
 

II. DESCRIPTION OF GENERALIZED BURGERS-FISHER 
EQUATION 

Consider the nonlinear partial differential equation known as 
the generalized Burgers-Fisher equation given in following 
form 
 
𝑢𝑢𝑡𝑡 + 𝛼𝛼𝑢𝑢𝛿𝛿𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥𝑥𝑥 = 𝛽𝛽𝑢𝑢�1 − 𝑢𝑢𝛿𝛿�    0 ≤ 𝑥𝑥 ≤ 1, 𝑡𝑡 ≥ 0 , (1) 
 
with its initial condition 
 
𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢0(𝑥𝑥).  (2) 
 
With simple supstitutions, = 𝛼𝛼𝛿𝛿

2(1+𝛿𝛿)
 , 𝑐𝑐 = 𝛼𝛼2+𝛽𝛽(1+𝛿𝛿)2

𝛼𝛼(1+𝛿𝛿)
 , and 

given initial condition, 
 

𝑢𝑢0(𝑥𝑥) = �1
2

(1 − tanh(𝑘𝑘𝑥𝑥))�
1
𝛿𝛿�  . (3) 

 
follows the exact (analytical) solution of governing nonlinear 
partial differential equation (1), 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �1
2

(1 − tanh 𝑘𝑘(𝑥𝑥 − 𝑐𝑐𝑡𝑡))�
1
𝛿𝛿�  . (4) 

 

A note on the Adomian decomposition method 
for generalized Burgers-Fisher equation 

M. Meštrović, E. Ocvirk and D. Kunštek 

W 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017

ISSN: 1998-0159 211



 

 

The governing nonlinear partial differential equation, (1), can 
be expressed in following different forms 
 

𝑢𝑢𝑡𝑡 = 𝑢𝑢𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑢𝑢𝛿𝛿𝑢𝑢𝑥𝑥 + 𝛽𝛽𝑢𝑢�1 − 𝑢𝑢𝛿𝛿�                         
 
                    = 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑢𝑢 − 𝛽𝛽𝑢𝑢1+𝛿𝛿 − 𝛼𝛼 � 1

1+𝛿𝛿
𝑢𝑢1+𝛿𝛿�

𝑥𝑥
 . (5) 

 
 
In an operator form, equation (5) can be written as 
 
𝐿𝐿𝑢𝑢 = 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑢𝑢 − 𝛽𝛽𝑢𝑢1+𝛿𝛿 − 𝛼𝛼 � 1

1+𝛿𝛿
𝑢𝑢1+𝛿𝛿�

𝑥𝑥
 , (6) 

 
where the differential operator L is given as time derivative, 
 
𝐿𝐿 = 𝑑𝑑

𝑑𝑑𝑡𝑡
  . (7) 

 
The inverse operator L-1 is an integral operator defined as 
𝐿𝐿−1(∙) = ∫ (∙)𝑑𝑑𝑥𝑥𝑡𝑡

0 . Operating with inverse operator L-1 on (6) 
and using the initial condition (2) yields 
 
 𝑢𝑢(𝑥𝑥, 𝑡𝑡)  = 𝑢𝑢0(𝑥𝑥)                                                                                   

          +𝐿𝐿−1 �𝑢𝑢𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑢𝑢 − 𝛽𝛽𝑢𝑢1+𝛿𝛿 − 𝛼𝛼 �
1

1 + 𝛿𝛿
𝑢𝑢1+𝛿𝛿�

𝑥𝑥
� 

    = 𝑢𝑢0(𝑥𝑥)                                                                          

         +𝐿𝐿−1 �𝑢𝑢𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑢𝑢 − 𝛽𝛽𝑢𝑢1+𝛿𝛿 − 𝛼𝛼 �
1

1 + 𝛿𝛿
𝑢𝑢1+𝛿𝛿�

𝑥𝑥
� . 

 (8) 
 

III. ADOMIAN DECOMPOSITION METHOD 
 
The Adomian decomposition method defines the numerical 
solution u(x, t) as the decomposition series 
 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = ∑ 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡)∞

𝑛𝑛=0 ,  (9) 
 
where the components un(x,t) will be determined reccurently. 
Finite part if infinite series is taken as numerical solution, 
numerical approximation of analytical solution, 
 
 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = ∑ 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡)𝑁𝑁

𝑛𝑛=0    ,                                                     (10) 
 
Using the given initial condition (2), the reccurence relation 
for the components 𝑢𝑢𝑘𝑘(𝑥𝑥, 𝑡𝑡) is admitted by modified Adomian 
decomposition method in the form 
 
𝑢𝑢0(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢0(𝑡𝑡)  ,                                                                       (11) 
 
𝑢𝑢𝑘𝑘(𝑥𝑥, 𝑡𝑡) = 𝐿𝐿−1(𝐷𝐷(𝑢𝑢𝑘𝑘−1(𝑥𝑥))), 𝑘𝑘 ≥ 1  .                               (12)                                                              
                                                                                          
where 𝐷𝐷(𝑢𝑢(𝑥𝑥)) is governing nonlinear differential equation 
expressed in an operator form. 
The nonlinear term in nonlinear partial differential equation 
can be expressed in operator form as 𝐹𝐹(𝑢𝑢(𝑥𝑥)) and further in 
the form of infinite series 
 

𝐹𝐹(𝑢𝑢(𝑥𝑥))  = ∑ 𝐴𝐴𝑛𝑛∞
𝑛𝑛=0  , (13) 

 
where An are Adomian polynomials that can be constructed by 
algorithm derived in [4], as 
 
𝐴𝐴𝑛𝑛 = 1

𝑛𝑛 !
𝑑𝑑𝑛𝑛

𝑑𝑑𝜆𝜆𝑛𝑛
[𝐹𝐹(∑ 𝜆𝜆𝑘𝑘𝑢𝑢𝑘𝑘∞

𝑘𝑘=0 )]𝜆𝜆=0   .    (14) 
 
The first few terms for Adomian polynomials, An, are 
expressed in generalized closed form as 
 
𝐴𝐴0 = 𝐹𝐹(𝑢𝑢0)  , (15) 
 
𝐴𝐴1 = 𝑢𝑢1𝐹𝐹′(𝑢𝑢0)  , (16) 
 
𝐴𝐴2 = 𝑢𝑢2𝐹𝐹′(𝑢𝑢0) + 1

2!
𝑢𝑢1

2𝐹𝐹′′ (𝑢𝑢0) , (17) 
 
𝐴𝐴3 = 𝑢𝑢3𝐹𝐹′(𝑢𝑢0) + 𝑢𝑢1𝑢𝑢2𝐹𝐹′′(𝑢𝑢0)  + 1

3!
𝑢𝑢1

3𝐹𝐹′′′ (𝑢𝑢0)  ,  
 

𝐴𝐴4 = 𝑢𝑢4𝐹𝐹′(𝑢𝑢0) + � 
1
2!
𝑢𝑢2

3+𝑢𝑢1𝑢𝑢3�   𝐹𝐹′′(𝑢𝑢0)                                      
 
          + 1

2!
𝑢𝑢1

2𝑢𝑢2𝐹𝐹′′′ (𝑢𝑢0)    + 1
4!
𝑢𝑢1

4𝐹𝐹(𝑖𝑖𝑖𝑖)(𝑢𝑢0)      .                     (18) 
 
Other polynomials can be generated similar. First polynomial, 
𝐴𝐴0 , depends only on initial condition, 𝑢𝑢0. Second polynomial, 
𝐴𝐴1, depends on 𝑢𝑢0 and 𝑢𝑢1. Generally, 𝑛𝑛 + 1-st polynomial 
depends on 𝑢𝑢0 ,𝑢𝑢1, … ,𝑢𝑢𝑛𝑛 . Introduced Adomian polynomials 
show that sum of subscripts of the components of 𝑢𝑢 of each 
term 𝐴𝐴𝑘𝑘  is equal to 𝑘𝑘. 
According the given algorithm, 𝐴𝐴0 = 𝐹𝐹(𝑢𝑢0)  is identified and 
separated from the other terms. Remaining terms of 𝐹𝐹(𝑢𝑢)can 
be expressed by using appropriate algebraic operation. 
 

IV. ANALYSIS OF GENERALIZED BURGERS-FISHER 
EQUATION WITH ADOMIAN DECOMPOSITION 

METHOD 
 
The nonlinear terms of governing nonlinear partial differential 
equation under integral operator, u1+δ and (u1+δ)z, are expressed 
as an infinite series of polynomials 
 
𝑢𝑢1+𝛿𝛿 = ∑ 𝐴𝐴𝑛𝑛∞

𝑛𝑛=0  , (19) 
 
�𝑢𝑢1+𝛿𝛿�

𝑥𝑥
= ∑ 𝐴𝐴𝑛𝑛 ,𝑥𝑥   ,∞

𝑛𝑛=0  (20) 
 
where An are Adomian polynomials that can be constructed by 
algorithm derived in [4], as 
 
𝐴𝐴𝑛𝑛 = 1

𝑛𝑛 !
𝑑𝑑𝑛𝑛

𝑑𝑑𝜆𝜆𝑛𝑛
[𝐹𝐹(∑ 𝜆𝜆𝑘𝑘𝑢𝑢𝑘𝑘∞

𝑘𝑘=0 )]𝜆𝜆=0   .                                         (21) 
 
For the nonlinear term expressed in given nonlinear partial 
differential equation, A(u) = u1+δ, the first four terms for 
Adomian polynomials, An, are expressed in generalized closed 
form as 
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𝐴𝐴0 = 𝑢𝑢0
1+𝛿𝛿   , (22) 

 
𝐴𝐴1 = (1 + 𝛿𝛿)𝑢𝑢0

𝛿𝛿𝑢𝑢1  , (23) 
 
𝐴𝐴2 = (1 + 𝛿𝛿)𝑢𝑢0

𝛿𝛿𝑢𝑢2 + 1
2

(1 + 𝛿𝛿)𝛿𝛿𝑢𝑢0
𝛿𝛿−1𝑢𝑢1  ,

2  (24) 
 
𝐴𝐴3 = (1 + 𝛿𝛿)𝑢𝑢0

𝛿𝛿𝑢𝑢3 + (1 + 𝛿𝛿)𝛿𝛿𝑢𝑢0
𝛿𝛿−1𝑢𝑢1𝑢𝑢2  

 
            + 1

6
(1 + 𝛿𝛿)𝛿𝛿(𝛿𝛿 − 1)𝑢𝑢0

𝛿𝛿−2𝑢𝑢1
3  . (25) 

 

𝐴𝐴4 = (1 + 𝛿𝛿)𝑢𝑢0
𝛿𝛿𝑢𝑢4 + (1 + 𝛿𝛿)𝛿𝛿𝑢𝑢0

𝛿𝛿−1 � 
1
2
𝑢𝑢2

3+𝑢𝑢1𝑢𝑢3� 
 

               +
1
2

(1 + 𝛿𝛿)𝛿𝛿(𝛿𝛿 − 1)𝑢𝑢0
𝛿𝛿−2𝑢𝑢1

2𝑢𝑢2                              
 
                     + 1

24
(1 + 𝛿𝛿)𝛿𝛿(𝛿𝛿 − 1)(𝛿𝛿 − 2)𝑢𝑢0

𝛿𝛿−3𝑢𝑢1
4      .         (26) 

 
The needed further derivatives over x of Adomian 
polynomials, An,x, are then also expressed for the first four 
terms 
 
𝐴𝐴0,𝑥𝑥 = (1 + 𝛿𝛿)𝑢𝑢0

𝛿𝛿𝑢𝑢0,𝑥𝑥  , (27) 
 
𝐴𝐴1,𝑥𝑥 = (1 + 𝛿𝛿)�𝛿𝛿𝑢𝑢0

𝛿𝛿−1𝑢𝑢1𝑢𝑢0,𝑥𝑥 + 𝑢𝑢0
𝛿𝛿𝑢𝑢1,𝑥𝑥�  , (28) 

 
𝐴𝐴2,𝑥𝑥 = (1 + 𝛿𝛿)�𝛿𝛿𝑢𝑢0

𝛿𝛿−1𝑢𝑢0,𝑥𝑥𝑢𝑢2 + 𝑢𝑢0
𝛿𝛿𝑢𝑢2,𝑥𝑥�                                          

  
         + 1

2!
(1 + 𝛿𝛿)𝛿𝛿�(𝛿𝛿 − 1)𝑢𝑢0

𝛿𝛿−2𝑢𝑢0,𝑥𝑥𝑢𝑢1
2+2𝑢𝑢0

𝛿𝛿−1𝑢𝑢1𝑢𝑢1,𝑥𝑥�   ,  (29) 
 
𝐴𝐴3,𝑥𝑥 = (1 + 𝛿𝛿)�𝛿𝛿𝑢𝑢0

𝛿𝛿−2𝑢𝑢0,𝑥𝑥𝑢𝑢3 + 𝑢𝑢0
𝛿𝛿𝑢𝑢3,𝑥𝑥� +    

 
            (1 + 𝛿𝛿)𝛿𝛿�(𝛿𝛿 − 1)𝑢𝑢0

𝛿𝛿−2𝑢𝑢0,𝑥𝑥𝑢𝑢1𝑢𝑢2 + 𝑢𝑢0
𝛿𝛿−1𝑢𝑢1,𝑥𝑥𝑢𝑢2

+ 𝑢𝑢0
𝛿𝛿−1𝑢𝑢1𝑢𝑢2,𝑥𝑥� 

 
             + 1

3!
(1 + 𝛿𝛿)𝛿𝛿(𝛿𝛿 − 1)�(𝛿𝛿 − 2)𝑢𝑢0

𝛿𝛿−3𝑢𝑢0,𝑥𝑥𝑢𝑢1
3 +

                                                             3𝑢𝑢0
𝛿𝛿−2𝑢𝑢1

2𝑢𝑢1
2𝑢𝑢1,𝑥𝑥�   .  (30) 

 
Using the given initial condition (2), the reccurence relation 
for the components 𝑢𝑢𝑘𝑘(𝑥𝑥, 𝑡𝑡) admitted by modified Adomian 
decomposition method in the form 
 
𝑢𝑢0(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢0(𝑡𝑡)  ,                                                                       (31) 
 

𝑢𝑢𝑘𝑘(𝑥𝑥, 𝑡𝑡) = 𝐿𝐿−1 �𝑢𝑢𝑘𝑘−1,𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑢𝑢𝑘𝑘−1 − 𝛽𝛽𝐴𝐴𝑘𝑘−1 − 𝛼𝛼
1

1 + 𝛿𝛿
𝐴𝐴𝑘𝑘−1,𝑥𝑥�, 

 𝑘𝑘 ≥ 1  . 
                                                                                             (32) 
 
After determination of specific finite number of the 
components 𝑢𝑢𝑘𝑘 , the approximation 
 
∅𝑛𝑛 = ∑ 𝑢𝑢𝑘𝑘𝑛𝑛

𝑘𝑘=0      ,  
 

can be used to approximate solution of governing nonlinear 
partial differential equation. 
 

V. NUMERICAL EXAMPLES 
Now, we shall show the efficiency and accuracy of presented 
numerical scheme and improved numerical solutions 
compared to the algorithm and results given in [1] and [5]. We 
consider the same parameter values for coefficients of the 
generalized Burger's-Fisher equation (1) with given initial 
condition (3) as considered specifically in [1] and [5]. 
 
Example 1  
In the first presented example, we take coefficients of 
governing ewuation δ = 1, α = 0.001 and ẞ = 0.001. We 
consider nonlinear partial differential equation (1) with initial 
condition 
 
𝑢𝑢0(𝑥𝑥) = �1

2
(1 − tanh(𝑥𝑥/4000))�     ,                                  (34)  

 
what leads to analytical solution 
 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �1

2
(1 − tanh(𝑥𝑥 − 2.0005𝑡𝑡)/4000)�     .              (36) 

 
The numerical results are calculated and approximated with 
only first two series members, ∅1(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) +
 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) and results are shown in Table I. 
 
Table I 
Numerical results with δ = 1, α = 0.001 and ẞ = 0.001, Ex. 1 
 
x t exact ∅1 error error 

in [1] 
error 
in [5] 

0.5 0.01 0.499940 0.499940 2·10-15 2·10-6 4·10-9 

0.9 0.01 0.499888 0.499888 3·10-15 2·10-6 2·10-8 

0.5 0.1 0.499963 0.499963 1·10-13   

0.5 1.0 0.500188 0.500188 5·10-12   

 
Numerical results calculated with only first two terms 
improved numerical solutions evaluated in [1] and [5]. 
 
Example 2  
In the second example, we take values δ = 2, α = 1 and ẞ = 1. 
We consider nonlinear partial differential equation (1) with 
initial condition 
 

𝑢𝑢0(𝑥𝑥) = �1
2

(1 − tanh(𝑥𝑥/3))�
1

2�      ,                                   (36) 
 
what leads to analytical solution 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �1
2

(1 − tanh(𝑥𝑥 − 10𝑡𝑡/3)/3)�
1

3�  .     ,                 (37) 
 
The numerical results in this example are calculated and 
approximated again with only first three series members,  
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∅2(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) +  𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  and results are 
shown in Table II 
 
Table II 
Numerical results with δ = 2, α = 1 and ẞ = 1, Ex. 2 
 

x t exact ∅2 error error 
in [1] 

error 
in [5] 

0.1 0.001 0.695625 0.695625 1·10-10 3·10-3 1·10-6 

0.5 0.001 0.646506 0.646506 1·10-10 3·10-3 1·10-6 

0.9 0.001 0.595695 0.595695 1·10-10 3·10-3 4·10-6 

0.5 0.01 0.650264 0.650264 1·10-7   

0.5 0.1 0.687205 0.687323 1·10-4   

 
 
Numerical results calculated with only first three terms 
improved numerical solutions evaluated in [1] and [5]. We can 
also show that series with more terms gives better solution. 
Compared results for ∅2(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) +
 𝑢𝑢2(𝑥𝑥, 𝑡𝑡)   and ∅3(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) +  𝑢𝑢1(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  +
 𝑢𝑢3(𝑥𝑥, 𝑡𝑡)  are shown in Table III. 
 
Table III 
Numerical results with δ = 2, α = 1 and ẞ = 1, Ex. 2 
 

x t ∅2 error ∅3 error 
0.5 0.01 0.650264 1.2·10-7 0.650264 1.5·10-10 

0.5 0.1 0.687323 1.2·10-4 0.687205 1.9·10-6 

 
Table III shows that by using more terms we get better 
approximation of analytical solution. With just one more term 
we get much better numerical solution. 
 
Example 3  
In the third example, we take values δ = 3, α = 1 and ẞ = 0. 
We consider nonlinear partial differential equation (1) with 
initial condition 
 

𝑢𝑢0(𝑥𝑥) = �1
2

(1 − tanh(3𝑥𝑥/8))�
3

     ,                                   (38) 
 
what leads to analytical solution 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �1
2

(1 − tanh 3(𝑥𝑥 − 𝑡𝑡/4)/8)�
1

3�  .                         (39) 
 
The numerical results in this example are calculated and 
approximated again with first three series members,  
∅2(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) +  𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  and results are 
shown in Table IV. 
 
 
 
 
 
 

Table IV 
Numerical results with δ = 3, α = 1 and ẞ = 0, Ex. 3 
 
x t exact ∅2 error error 

in [1] 
error 
in [5] 

0.1 0.001 0.783683 0.783683 3.5·10-13 4·10-4 5·10-7 

0.5 0.001 0.741309 0.741309 4.5·10-14 2·10-3 6·10-7 

0.9 0.001 0.696183 0.696183 4.6·10-14 9·10-4 7·10-7 

0.5 0.01 0.741566 0.741566 4.5·10-11   

0.5 0.1 0.741022 0.741022 4.5·10-8   

 
Numerical results calculated with only first three terms 
improved numerical solutions evaluated in [1] and [5]. We can 
also in this example show that series with more terms gives 
better solution. Compared results for ∅3(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) +
 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  + 𝑢𝑢3(𝑥𝑥, 𝑡𝑡)    and ∅4(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) +
 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  + 𝑢𝑢3(𝑥𝑥, 𝑡𝑡)   +  𝑢𝑢4(𝑥𝑥, 𝑡𝑡)  are shown in 
Table V. 
 
Table V 
Numerical results with δ = 3, α = 1 and ẞ = 0, Ex. 3 
 

x t ∅3 error ∅3error ∅4 error 
0.5 0.1 4.5·10-8 1.0·10-10 1.2·10-12 

0.5 0.5 5.5·10-6 6.7·10-8 3.7·10-9 

0.5 1.0 4.7·10-5 1.7·10-8 1.2·10-7 

 
Table V shows that by using more terms we get better 
approximation of analytical solution. In this example we take 
even five terms to show quality of approximation for larger 
value of time variable. 
. 
Example 4  
In the fourth example, we take values as in example presented  
in [5]  δ = 1, α = 0.5 and ẞ = 0.5. We consider nonlinear 
partial differential equation (1) with initial condition 
 
𝑢𝑢0(𝑥𝑥) = �1

2
(1 − tanh(𝑥𝑥/4))�     ,                                        (40) 

 
what leads to analytical solution 
 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �1

2
(1 − tanh(𝑥𝑥 − 2.25𝑡𝑡)/8)�     .                         (41) 

 
The numerical results in this example are calculated and 
approximated again with only first three series members,  
∅2(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) +  𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  and results are 
shown in Table VI.  
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Table VI 
Numerical results with δ = 1, α = 0.5 and ẞ = 0.5, Ex. 4 
 

x t exact ∅2 error error in 
[5] 

0.4 0.1 0489064 0489064 3.7·10-6 1.6·10-5 

0.8 0.1 0.464124 0.464128 3.6·10-6 3.5·10-5 

0.4 0.8 0586618 0588501 1.9·10-3 6.2·10-4 

0.8 0.8 0.562177 0.564046 1.9·10-3 6.3·10-4 

 
We can also show that series with more series members gives 
better solution. Compared numerical results calculated with 
three ∅2(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢2(𝑥𝑥, 𝑡𝑡)   and 
∅3(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) +  𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  +  𝑢𝑢3(𝑥𝑥, 𝑡𝑡)  with 
four terms are shown in Table VII. 
 
Table VII 
Numerical results with δ = 1, α = 0.5 and ẞ = 0.5, Ex. 4 
 

x t ∅2 error ∅3 error 
0.4 0.1 0489064 3.7·10-6 0489064 9.2·10-9 

0.8 0.1 0.464128 3.6·10-6 0.464124 6.3·10-9 

0.4 0.8 0588501 1.9·10-3 0586618 4.3·10-6 

0.8 0.8 0.564046 1.9·10-3 0.52223 4.6·10-5 

 
Table VII shows that by using more terms we get better 
approximation of analytical solution. By using four terms we 
get significantly better approximation of analytical solution. 
 
Example 5 
In the fifth example, we take values as in example presented in 
[5], δ = 1, α = 0.1 and ẞ = 0.1. We consider nonlinear partial 
differential equation (1) with initial condition 
 
𝑢𝑢0(𝑥𝑥) = �1

2
(1 − tanh(𝑥𝑥/40))�     ,                                      (42) 

 
what leads to analytical solution 
 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �1

2
(1 − tanh(𝑥𝑥 − 2.05𝑡𝑡)/40)�     .                       (43)                       

 
The numerical results in this example are calculated and 
approximated again with only first three series members,  
∅2(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) +  𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  and results are 
shown in Table VIII.  
 
 
 
 
 
 
 
 
 
 

Table VIII 
Numerical results with δ = 1, α = 0.1 and ẞ = 0.1, Ex. 5 
 

x t exact ∅2 error error in 
[5] 

0.4 0.1 0.497563 0.497563 2.2·10-8 4.1·10-7 

0.8 0.1 0.492563 0.492563 2.2·10-8 2.4·10-7 

0.4 0.8 0.515495 0.515507 1.1·10-5 3.1·10-6 

0.8 0.8 0.510498 0.510510 1.1·10-5 5.3·10-6 

 
 
We can also show that series with more terms gives in this 
example significantly improved numerical solution. Compared 
results for ∅2(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢2(𝑥𝑥, 𝑡𝑡)   and 
∅3(x, t) =  𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝑢𝑢1(𝑥𝑥, 𝑡𝑡) +  𝑢𝑢2(𝑥𝑥, 𝑡𝑡)  +  𝑢𝑢3(𝑥𝑥, 𝑡𝑡)  are 
shown in Table IX. 
 
Table IX 
Numerical results with δ = 1, α = 0.1 and ẞ = 0.1, Ex. 5 
 

x t ∅2 error ∅3 error 
0.4 0.1 0.497563 2.2·10-8 0-497563 2.1·10-12 

0.8 0.1 0.492563 2.2·10-8 0.492563 4.4·10-12 

0.4 0.8 0.515507 1.1·10-5 0.515495 1.7·10-9 

0.8 0.8 0.510510 1.1·10-5 0.510498 1.7·10-8 

 
Table IX shows that by using more terms we get better 
approximation of analytical solution. By using four terms we 
get significantly better approximation of analytical solution. 
 

VI. CONCLUSION 
In this paper, we have improved numerical solutions of a 
generalized Burgers-Fisher equation given in [1] through an 
accurate, efficient and more convenient form of the Adomian 
recursive scheme according the note given in [3] and recursive 
scheme given in [4]. The proposed improved decomposition 
algorithm resulted with reliable and efficient computational 
method for governing nonlinear partial differential equation 
known as Burgers-Fisher equation. We have also presented 
that more series members used in decomposition leads to 
improved numerical approximation of analytical solution. The 
numerical solutions are very close to the analytical with only 
first few (two, three or four) terms in the series decomposition. 
Wide number of numerical examples are presented and used to 
describe proposed procedure and algorithm. Numerical 
examples show improvement of numerical solution calculated 
with proposed numerical procedure and algorithm in 
comparison with numerical solution presented in papers [1] 
and ]5] 
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