
  
Abstract—Fault detection is a major challenge for asynchronous 

motor maintenance. Bearing defects are the most important defects 
that can occur in theseIn this context, we propose a new approach 
using Hilbert Huang transform-based stator current analysis (HHT) 
and multi-class support vector (MSVM) machines for the diagnosis 
of these failures.Experimental data, obtained from the stator current 
of the asynchronous motor subjected to various loads in the healthy 
and faulty cases of the bearings, are analyzed and classified. The 
applied MSVM classifier is able to identify the type of faulty bearing 
and our experimental results demonstrate the effectiveness of the 
proposed method. 

 
Keywords—Fault diagnosis, induction motors, bearing fault, 

Hilbert-Huang transform, multi-class support vector machine.  

I. INTRODUCTION 
HE induction motor machine is already being widely used 
in industry sector for various technical and economic 

reasons [1].This is due to its high reliability, low cost, its 
mechanical robustness and low maintenance needs. However, 
faults can always occur regardless of the strength of this type 
of motor. These machines, depending on their application are 
facing a variety of constraints resulting by their operating 
conditions.  These constraints could lead to failures of stator or 
rotor. In fact, the occurrence of a fault often results irreversible 
shutdown of the induction machine also significant repair cost 
as well as production losses [2].There are different types of 
defects could be occurred in the induction motor such as: 
breaking of rotor bars, short-circuit of one or several stators, 
misalignment of the shaft, failure of bearings and gearboxes 
[3]. Classification of most occurred defects can be found in [4] 
and [5]. The bearing defects represent about 40% of the 
failures occurring on the machine [3].  
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Therefore, the reliability of asynchronous 
machines is becoming increasingly important subject 
in terms of scientific research, industry as well. Traditionally, 
the monitoring of motor condition was based on measurement 
analysis of the quantities such as noise, vibrations and 
temperature. Vibration analysis is one of the most widely used 
methods for monitoring fault bearing defects of electrical 
machines. This approach involved using signal processing 
techniques such as FFT to monitor characteristic. Frequencies 
of these defects in the vibration spectrum as mentioned by [7]-
[9]. However, the high cost of vibration sensors vibrations 
(such as piezoelectric accelerometers) makes these solutions 
often difficult to be implemented. In an effort to overcome this 
issue, the current analysis technique was used to get these 
defects monitored. Many scientific studies have 
demonstrated that he rolling defects signatures of electrical 
machines could be successfully extracted using the stator 
current measurements [10]- [13]. Generally, signal processing 
techniques are used by the methods based on current analysis.  

Among these methods used, we can cite the motor current 
signature analysis (MCSA). [14]-[16]. MCSA technique has 
many advantages. It is non-invasive, where stator current is 
measured simply by using current sensor and no other special 
equipment is needed. By simply processing the motor current 
signals, fault diagnostic information is extracted. Numerous 
faults can be diagnosed using MCSA: damaged rotor bar, such 
as, broken rotor bars, static or dynamic eccentricities, for 
example, due to unbalanced rotor, bearing defects, stator 
winding shorted 

Nevertheless, this method has limitations regarding 
detection of bearing defects. In fact, these defects have shown 
non-stationary behavior. Several researchers have looked to 
establish adapted methods to non-stationary signals for 
monitoring and detection of bearing defects in induction motor 
such as time-analysis frequency, spectrogram, 
wavelet decomposition, Wigner-Ville distribution and high-
resolution frequency estimation [15]-[21]. 

Hilbert-Huang transform (HHT) [22] was recently used for 
the analysis of non-stationary and non-linear signals. HHT is a 
composition of empirical mode decomposition (EMD) [22] 
and Hilbert Transform (HT) [23].  

HHT has been found to be powerful and successful in 
condition monitoring of electric machines using vibration data 
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[23] and in detection of rotor bar failures of induction 
machines using stator current data [24] and has recently been 
applied for rotating machinery diagnosis with notable success 
[25]-[26] and wind turbine [27] . 

When applying the HHT, first, the EMD will decompose the 
acquired signal into a collection of intrinsic mode functions 
(IMF).The original signal could be expressed as the sum of 
these functions. However, in case EMD is applied to non-
stationary signals, the original signal cannot be re-assembled 
due to mixing mode problem. In order to overcome this 
problem Wu and Huang suggested EEMD method (Ensemble 
Empirical Mode Decomposition) based on EMD algorithm de 
[28]-[29].The problem of mixing mode has been resolved 
through the addition of white Gaussian noise. 

In this work, we apply the modified version of the Hi [28]-
[29]. This method decomposes the original time series data in 
intrinsic mode function, using the EEMD. Subsequently, HT is 
applied to each intrinsic mode function. 

We propose in our work the application of the EEMD and 
HT to design the feature vector of bearing fault. In order to 
identify these failures a multi-class classifier is needed. Several 
classification techniques have been developed in recent years 
for the classification of defects mechanical induction motor 
such as Artificial Neural Networks (ANN) [30]-[31] and  
SVM [32]- [33].  SVM has recently been successfully applied 
in several fields and more particularly in faults diagnosis of 
asynchronous motor.  

In our work, we used multiclass SVM classifier for the 
classification of bearing defects in the induction motor. 

 

II. HHT AND SVM 
The Hilbert Huang transform, proposed in 1998 by Huang 

[22], is a technique for analysing data based on non-linear 
empirical data and non-stationary processes. HHT, considered 
as a time frequency analysis method, consists of adaptively 
decomposing a signal into a sum of oscillating components 
which has a single frequency for each sample. It then 
calculates the frequency and the instantaneous amplitude of 
each of these components using the Hilbert transform.HHT is 
the combination of  EMD and  HT. 

A. EMD ALGORITHM 
EMD is an adaptive spectral decomposition algorithm 

method (it is entirely data-driven) [22]. It is defined by a 
process called sifting for decomposing a signal in basic 
functions. These functions called 𝐼𝐼𝑀𝑀𝐹𝐹 (Intrinsic Mode 
Function) are zero mean signals. Two conditions must be met 
for obtaining these IMFs: 

a)  In a data set, the number of extreme values and zero 
crossings must be equal or different from one at most. 

b) At any time, the average value of the envelope defined by 
the local maxima and the envelope defined by the local 
minima is equal to zero. 

The IMFs of a signal x are obtained using the following 
steps: 

(1) Put    1 d = x      

(2) Identify the positions and the amplitudes of all the maxima 
and local minima in the 1d  

(3) Create a line maxu  of upper envelope and a lower 
envelope line minu by cubic spline interpolation of maxima 
and local minima. 

(4) Calculate the mean m  of upper and lower envelopes 

max min , (1)
2

u u
m

+
=

                                     

(5) Get 2d  between the signal 1d  and average m the 
difference as follows: 

2 1 , (2)d d m= −

 
(6) Repeat operations (2) to (5) until the difference 

between 1kd +  and  kd   satisfies the following condition: 

1
20.2 ( ) , (3)k k

k

d d
SD k

d
+ −

≤ =

                

(7) Put 1 kc d= as first IMF.      

(8) Calculate the residue 1 1r x c= −  .This residue is 
considered as the new signal 2c  and repeat steps (1) to (7) 
for the second IMF, rated 2c , and 2 1 1r r c= −  .Repeat steps 
(1) to (7) in order to finally get the Nth IMF. Thus, the 
input signal can be decomposed into N IMFs until the 
residue becomes a monotonic function so that no further 
extraction of an IMF is possible. The input x can be 
reconstructed from all IMFs so that: 

1
. (4)

j

N

j N
j

x c r
=

= +∑
                                     

B. EEMD algorithm 
The EMD algorithm may have drawbacks to its output such 

as mode mixing and aliasing caused by overlapping spectra of 
IMFs [25]. To overcome these problems, Wu and Huang 
suggested the algorithm of EEMD [25]-[26]. 

The principle of the EEMD is based on the addition of the 
white noise in the signal with many trials. The noise in each 
trial is different. The EEMD method defines the IMF 
components as the mean of an ensemble of trials. The steps of 
this algorithm are as follows: 

Calculate the signal  jx  
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0( ) ( ) ( ), (5)j jx t x t n tβ= +

 
 
Where ( )( 1,..., )jn t i N= is the white noise of unit variance 

and 0β its amplitude. 

Decompose the signal obtained previously using the EMD 
algorithm to get the IMFs: 

1
( ) , (6)

j

j

N

j ij N
i

x t c r
=

= +∑
 

      Where ijc  represents the 𝑖𝑖th  IMF of the 𝑗𝑗th trial, 

jNr represents the residue of 𝑗𝑗th trial, and   is the IMFs 
number of the 𝑗𝑗th trial. 

To repeat steps (1) and (2) until the predefined ensemble 
trial number (𝑀𝑀) (add different random noise signal each 
time). 

To calculate the ensemble means of the corresponding IMFs 
of the decompositions as the final result  ( )c i  : 

( )1
( ) 1, 2..., . (7)

M
ijc

c i i K
M

= =
∑

 

Where   K is the minimum number of IMFs among all the 
trials. 

In our work, we opted for the choice of EEMD instead of 
EMD. This choice is motivated by the benefits of EEMD 
relative to the latter. Indeed, EMD is a completely data-driven 
approach, but it includes a mixing mode problem, causing 
oscillations in the same mode or similar oscillations in 
different modes. Wu and Huang proposed the EEMD to 
overcome this disadvantage.  

C. Hilbert transform (HT) 
 The transformation of Hilbert is one of the most important 

operators used in the field of signal theory. Generally, the HT 
transform is used to determine the instantaneous amplitude, 
phase, and frequency.  

The Hilbert transformation is carried out at each IMF ( )c t  
obtained after the application of EEMD method at the signal 

( )x t  . The analytic signal ( )h t of ( )c t  is follows: 

( )ˆ( ) ( ) ( ) (8)( ) j th t c t jc t a t e θ= + =
 

Where is the amplitude function and the envelope 
signal of the IMF component  is: 

( ) [ ]ˆ 1 (9) )(( ) c st H c t ds
t s

c
π

+∞

−∞
= =

−∫  

The instantaneous amplitude of signal ( )c t  can be 
determined as: 

2ˆ( ) ( ) ( ) (10)a t c t c t= +
 

D.  SVM  
 SVM is a modern method of computer learning based on 

the theory of statistical learning presented by Vapnik [34]. The 
foundation of this method is to find a linear classifier between 
two classes of data, and arrange it so that the margin is 
maximal. This margin represents the distance between the 
border and the nearest data point in each class. These points, 
used to define the margins, are called support vectors (SV). 
The concept of this method that is presented in this article was 
conceived on the basis of the theory of statistical learning. The 
basic idea deals with two-class problems separating two 
classes by a hyperplane. This one is determined by a number 
of support vectors. In the separable linear case, there exists a 
separation hyperplane whose function is: 

 
0, (11)wx b+ =

 
 Where the vector  defines the boundary,  is the input 

vector of dimension d, and b is a scalar threshold. The optimal 
hyperplane can be obtained as follows: 

 

( )2 subject to ( ) 0 1, 1( , 21)
2 iy wx bminJ w w + = ≥=  

Where w  is the Euclidean norm of w , 1,...,i l=  is the 

number of training sets, and labels 1iy = and 1iy = − are for 
positive and negative classes, respectively. The solution can be 
obtained by: 

( )
1

, 13
l

i i i
i

w y xα
=

= ∑  

 Where 0iα ≥ are Lagrange multipliers and  ix are support 
vectors obtained from training. After training, the decision 
function for the linear SVM is obtained as follows: 

( )
1

( ) ( . ) . 14
l

i i i i
i

f x sign y x x x bα
=

 
= + 

 
∑  

 In a linear non-separable case, SVMs can create a 
hyperplane, which allows linear separation in the higher 
dimension, to perform a nonlinear mapping. The nonlinear 
mapping by the kernel function converts the input vector x  
from a d − dimensional space into a higher dimensional 
feature space. In nonlinear SVMs, kernel functions such as 
linear, polynomial, and Gaussian RBF may be selected to 
obtain the optimal classification results. The most widely used 
kernel functions are represented in Table I. 
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 Support vector machines are in their binary origin. 
However, real-world problems are in most cases multiclass 
such as rotating machines that are subject to more than two 
defects. In such cases, one does not attempt to assign a new 
example to one of two classes but to one of several, ie the 
decision is no longer binary and a single hyperplane is no 
longer sufficient. The methods of multi-class support vector 
machines reduce the multi-class problem to a composition of 
several two-cell hyperplanes for drawing the decision 
boundaries between the different classes. These methods 
decompose the set of examples into several subsets, each 
representing a problem of binary classification. For each 
problem a separation hyperplane is determined by the binary 
SVM method. These methods include strategies one against all 
(OAA) and one against one (OAO). 

The rest of the article is organized as follows. HHT and 
SVM algorithms are presented in Section II. The proposed 
method is described in section III. Section IV describes the 
experimental setup of the induction motor. Section V presents 
the detection process. The results and discussion are 
highlighted in Section VI. 

III. PROPOSED METHOD 
 The proposed method can be summarized as follow: 
 

(1)  Decompose current signal by applying the EEMD and 
generate a set of IMF according to the process described 
above.  

(2) Select the first four IMFs. 

(3)  Apply the Hilbert transform to selected IMFs. 

(4) Calculate the entropies of the envelopes of selected         
IMFs. The value of the entropy is calculated as follows:  

We define the energy of selected signals as total energy Ei 
and the total energy as E. They are expressed in equations (13) 
and (14) as shown below: 

2

1

( 14) , ( )
T

i i
n

E c n
=

= ∑
 

1
(15),N

ii
E E

=
= ∑

 

Where T is the number of samples of the signals and N is the 
total number of selected signals. 
Whereas the energy values are often large and to facilitate the 
calculation and analysis, we take the ratio of the energy as 
defined in equation (15).               

(16),i
Ei

E
P

E
=

Let us form the energy vector ratio: 

1 2 3
, , , , (17),

NE E E E EP P P P P = … 
 

The entropy of the energy vector ratio of the selected N 
IMFS is defined by the following equations: 

1

, (18)
i i

N

Entropy E E
i

E P logP
=

= −∑

 The value of the entropy calculated in equation (18) is 
considered as a bearing fault feature. 

 
(5) Create the feature vector  with the entropies of the IMFs 

selected for M fault signals: 
 

( )1 2 19entropy , entropy ,..., entropyMFV [ E E E ],=

 
 

(6) Calculate the Euclidean distance defined below: 
 

( )
1

20
i i

M

entropy entropy Healthy noload
i

D E E .− −
=

= −∑
 

The value of the entropy calculated in equation (20) is 
considered as a bearing fault feature. 

 
By applying the steps described above, the two-dimensional 

fault feature is constituted. The application of the SVM 
multiclass classification algorithm having as input   two-
dimensional fault feature   has demonstrated the effectiveness 
of the proposed method. 

 
IV. EXPERIMENTAL SYSTEM 

The scheme of the experimental system is illustrated in 
Figure (1). Figure (2) shows the experimental setup which 
consists of two parts. The mechanical part consists of a 
tachometer generator, a three-phase asynchronous motor and 
an alternator. The tachometer generator is a DC machine that 
generates 90 V at 3000 rpm. It generates a linear voltage 
between 2500 and 3000 rpm. The alternator is a three-phase 
synchronous machine with a regulator and a rectifier circuit 
that stabilizes the DC output voltage of 12 V. The electrical 
part of the experimental system consists of: three current 
transformers, lamps used as loads and a data acquisition card 
for PC. 

Table I. Formulation of kernel functions 

Kernel 
functions Representation  

Kernel ( , )jK x x  

Linear .T
jx x  

Polynomial ( ) , 0T d
jx x rγ γ ≥  

Gaussian 
RBF 

2 22jexp( x x / )γ− −
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The induction motor bearings are single-row ball bearings, 
type 6204 • 2ZR. Each bearing has 8 balls. Experiments were 
carried out on 5 bearings: one of them is intact, while the other 
four have been drilled with holes of diameters between 3 and 6 
mm, as illustrated in Figure 3. 

The parameters of the asynchronous machine and the 
rolling data are given respectively in the appendix and in Table 
II. 

 
Fig. 1. Experimental system scheme 

 

Fig. 2. Experimental setup  

 
 
 
 
 
 
 

Fig. 3. Artificially deteriorated bearings: (a) outer race deterioration, (b) 
inner race deterioration, (c) cage deterioration, (d) ball deterioration. 

 
 

 
 
 
 
 
 

 
 

 

V. DETECTION PROCESS 
The results of the proposed method are presented in this 

section. The algorithm of EEMD is applied to the stator 
current for healthy and faulty bearing with different loads. 
Figure (4) shows the results of the decomposition of the stator 
current by the EEEMD (ratio at rated load 40%). The signals 
from the first four IMFS, considered relevant for them. It can 
be concluded that these IMFs will be considered signals that 
contain more information on the bearing. 

 

Fig. 4. Stator current EEMD (cage damage). 

 

By applying the steps in the proposed method, we calculate 
the entropy of the envelope signal of IMFS selected for 
different loads and bearing defects. 

The results obtained after calculation of the entropies for 
selected IMFS envelopes are illustrated in the bar graph shown 
in Figure (5). The analysis of these results shows that the 
criterion based on the entropy of the signals provides a good 
discrimination of bearing defects. Note the entropy in the case 
of healthy bearings is higher than those for faulty bearings. 
The entropy will be used as a component of the vector 
features. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Entropy values of healthy and faulty bearings. 

Table II. Bearings parameters 
 
    Type                                  6204.2ZR 
Outer diameter                       47 mm 
Inside diameter                      20 mm 
  Pitch diameter Dp                31.85mm 
Number of balls N                           8 
Diameter of balls DB              12 mm 
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VI. RESULTS AND DISCUSSION 
 In order to classify the different defects in classes with 

the SVM classifier, we use the vector features having as 
components the entropy and the Euclidean distance between 
the healthy signal without load and the signals with the 
different loads. In figure (6), we have represented the 
distribution of fault data of the five classes (healthy, ball, cage, 
inner race and outer race) for a ratio to nominal load of 
53.33%. We notice in this figure, that the data of the class 
‘healthy’ and those of the class ‘outer race’ are almost 
confused. 

 

 

 

 

 

 

 

 

 

 

Fig.6. Data distribution of 5 fault classes of rolling element bearings for ratio 
to nominal load 53.33%. 

 

For a best distribution of defects in classes, we reduce the 
classification of these into four classes (healthy, ball, cage, 
inner ring). As shown in Figure (7), we note that the four 
classes of defect data are well discriminated. This 
demonstrates that the feature vector with entropy and distance 
components gives better class discrimination for fault 
diagnosis of rolling element bearing based on current analysis. 

 

 

Fig.7. Data distribution of 4 fault classes of rolling element bearings for ratio 
to nominal load 53.33%. 

 

When applying the SVM toolbox [35] in our study, two 
kernel functions, polynomial and Gaussian, were used in fault 
classification. Figures (8) and (9) illustrate the results of the 
SVM multi-class classification of signals for a healthy state   
and faulty states of bearings for ratio to nominal load 53.33%. 

Table III shows the accuracy of the classification for the two 
SVM multiclass strategies; OAO and OAA. Each value in the 
table indicates the classification accuracy obtained with two 
different kernel; Gaussian and polynomial. It is shown in this 
table that the best accuracy for both strategies is obtained 
using the polynomial kernel. Further analysis of these results 
shows that the OAA strategy has higher classification 
accuracies than OAO. As shown in Table III, the accuracy rate 
of 100% is obtained when using the polynomial kernel and the 
OAA strategy. 

 

Fig.8. Multiclass SVM (OVA, kernel=gaussian) 
Rate of correct class in training data: 98.81% 

 

Fig.9. Multiclass SVM (OVA, kernel=polynomial) 
Rate of correct class in training data: 100% 
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VII. CONCLUSIONS 
In this paper, a stator current analysis method using the 

Hilbert Huang transform and the SVM is presented for the 
diagnosis of induction motor bearing defects. The proposed 
method uses the entropy of the first four IMFS of the stator 
current decomposition based on the EEMD as an indicator of 
defects. The analysis of the experimental results demonstrated 
the effectiveness of the proposed method. 

 

APPENDIX: 
The parameters of the asynchronous motor used in this 

article are as follows: 

0.7 kw, 220/3380V, 1.95/3.4A, 2780 rpm, 50Hz. 
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