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Abstract—This article deals with different approaches to
continuous-time system identification from sampled data.
Continuous-time system identification is important problem in
control theory. Continuous time models provide many advan-
tages against discrete time models because of better physical
insight into the system properties. The traditional approach with
least squares method with state variable filters is presented.
Two alternative approaches to continuous-time identification
are proposed. The generalized Laguerre functions method and
the method based on least squares estimation with numerical
solution of differential equation are introduced. These three
different approaches to continuous-time system identification
from sampled data are compared on the example. It is shown that
proposed alternative methods can give better results in terms of
relative root mean square error of the outputs of the identified
systems than the least squares method with state variable filters.

Keywords—generalized Laguerre function, continuous-time
LTI system, numerical integration, identification

I. INTRODUCTION

There has been recent interest, see [1], [2], [3], in direct

identification of continuous time models from sampled discrete

time data of input and output {u(tk), y(tk)}. Much of the

system identification literature deals with the discrete time

models due to their suitability for designing digital control

systems. Real world described by the differential equations

derived from the physical laws is naturally continuous. Con-

tinuous time models provide many advantages against discrete

time models because of better physical insight into the system

properties. The identified parameters of the continuous time

model usually have the direct physical interpretation. One

can see [4] for some motivation examples for identifying

continuous time models from sampled data. The aim of this

article is to present two alternative approaches to continuous-

time system identification from sampled data and compare

them with traditional least squares (LS) method with state

variable filters (SVF). The identification method based on The

Generalized Laguerre Functions (GLF) was described in [5].

The comparison between GLF and LS method was done in [6]

with the emphasis on the difference between identification with

simple and generalized Laguerre functions. In this article we

will introduce new approach to continuous-time identification
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based on numerical solution of differential equations and

compare it with GLF method and with traditional LS method

with SVF.

II. IDENTIFICATION OF CONTINUOUS-TIME SYSTEMS

FROM SAMPLED DATA

Let us assume a continuous time linear dynamical system

described by the linear differential equation with constant

coefficients. Let u(t) be the input signal and y(t) the output

signal.

A(p)y(t) = B(p)u(t), (1)

y(t) = F (p)u(t) (2)

F (p) =
B(p)

A(p)
=

b0p
m + b1p

m−1 + . . .+ bm
pn + a1pn−1 + . . .+ an

, n ≥ m.

(3)

p is the time-domain differentiation operator, i.e

px(t) =
dx(t)

dt
, (4)

Given this description, the identification problem is to

determine a suitable model structure for (2) and then estimate

the parameters that characterize this structure, based on the

sampled input and output data ZN = {u(tk), y(tk)}
N
k=1.

III. THE LS METHOD WITH SVF

Many methods based on the least squares with the use of

the state variable filters have been developed for identification

of the continuous-time models, see [3], [4]. In this section we

will describe the least squares method with SVF.

The model (2) can be written in the differential equation

form

y(n)(t) + a1y
(n−1)(t) + . . .+ any(t) =

= b0u
(m)(t) + b1u

(m−1) + . . .+ bmu(t). (5)

The state variable filter L(p) can be applied on both sides of

the equation in order to obtain the derivatives of input and

output.

L(p)A(p)y(t) = L(p)B(p)u(t). (6)

The above equation can be written in the following form

(Ln(p) + a1Ln−1(p) + . . .+ anL0(p))y(t) =

= (b0Lm(p) + . . .+ bmL0(p))u(t), (7)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 12, 2018

ISSN: 1998-0159 9



with

Lk(p) = L(p)pk, k = 0, 1, . . . , n. (8)

The equation (7) can be written as

y
(n)
f (t) + a1y

(n−1)
f (t) + . . .+ any

(0)
f (t) =

= b0u
(m)
f (t) + b1u

(m−1)
f (t) + . . .+ bmu

(0)
f (t), (9)

y
(k)
f (t) = lk(t) ∗ y(t), u

(k)
f (t) = lk(t) ∗ u(t), (10)

where lk(t) is the impulse response of the filter Lk(p) and ∗
is the operator of convolution. Then we can write down the

above equation (9) in the standard regression form, i.e.

y
(n)
f (tk) = ϕT

f (tk)θ, (11)

ϕT
f (tk) = [−y

(n−1)
f (tk),−y

(n−2)
f (tk) . . .

. . .− y
(0)
f (tk), u

(m)
f (tk), u

(m−1)
f (tk), . . . , u

(0)
f (tk)], (12)

θ = [a1, a2, . . . , an, b0, b1, . . . , bm]T . (13)

The least squares SVF estimate is then given by (see [4])

θ̂ =

[

1

N

N
∑

k=1

ϕf (tk)ϕ
T
f (tk)

]−1

1

N

N
∑

k=1

ϕf (tk)y
(n)
f (tk). (14)

The general form of the SVF is an all-pole process with a

denominator C(s) (see [4])

L(p) =
1

C(p)
=

1

pn + c1pn+1 + c2pn−2 + . . .+ cn
. (15)

According to [4] it can be shown that the SVF filter is optimal

in statistical terms if

C(p) = A(p). (16)

For practical computation the SVF are often chosen (see [2])

as the so-called basic state variable filter

L(p) =
1

(p+ λ)n
, (17)

where λ is chosen larger than the guessed bandwidth of the

identified system, see [2] for more detailed discussion of the

choice of the parameter λ.

If the noise is present in the model (5) the least squares SVF

estimate will lead to the biased results. Typical solution is the

use of the Instrumental variable method, where the outputs

y
(k)
f are replaced by the instruments z

(k)
f , see [7], [4].

IV. THE LS METHOD WITH NUMERICAL INTEGRATION

This section introduces an alternative approach to SVD

filters, attempting to obtain least-squares estimates of the

continuous-time model parameters. This methodology is ap-

plied to the identification problem represented by the following

differential equation

y(1)(t) + a1y(t) = b0u(t). (18)

Let us suppose that the input u(t) forms the sequence gen-

erated with the period Tk ≡ tk − tk−1, where tk > tk−1.

The key task is to transform the sampled system (18) into the

regression model (11). This transformation can be made by

integrating (18) over the time interval [tk−1, tk], which yields

y(tk)− y(tk−1) + a1

∫ tk

tk−1

y(t)dt = b0

∫ tk

tk−1

u(t)dt. (19)

Using the discrete character of u(t) allows us to write
∫ tk

tk−1

u(t)dt = Tku(tk−1). (20)

Since the output y(t) is outside the sampling time instants

unknown, the required integral shall be approximated numer-

ically. By invoking the trapezoidal rule (chapter 2.1 in [8]),

one can obtain
∫ tk

tk−1

y(t)dt ≃
Tk

2

(

y(tk−1)

2
+ y(tk−1/2) +

y(tk)

2

)

, (21)

where y(tk−1/2) ≡ y(tk−1 + Tk/2).
Hence, the regression vector ϕ(tk) corresponding to θ =

[a1, b0]
T of the sampled system (18) possesses the form

ϕT (tk) =

[

−
Tk

2

(

y
(

tk−1

)

2
+ y

(

tk−1/2

)

+
y
(

tk
)

2

)

,

Tku
(

tk−1

)

]

. (22)

V. THE GENERALIZED LAGUERRE FUNCTIONS METHOD

The history of using the Laguerre orthonormal functions

in system modeling and identification since their introduc-

tion in [9], [10] and [11] is rather long, with many papers

documenting the differing theoretical approaches. In [12] the

Laguerre functions were applied for the identification of the

finite expansion of the transfer function. The approach in

[12] was further developed in [13] with the use of the Kautz

functions and in [14] with the generalized orthonormal basis

functions. In [15] it was proved that nth order transfer function

can be expanded into the ratio of two linear combinations of n
Laguerre functions and the coefficients of these combinations

were identified. This was an alternative approach to the

transfer function approximated by a finite sum of orthonormal

basis functions in [12], [13] and [14]. In this section we will

present the method for identification of the dynamical systems

based on the transform of their inputs and outputs instead of

the expansion of the transfer functions. The inputs and outputs

will be expanded into the generalized Laguerre functions basis.

Let us assume that the input and output signals are square-

integrable in the Lebesgue sense, i.e.,

u(t), y(t) ∈ L2[0,∞). (23)

Thus, we can expand the input and output signals into the

generalized Laguerre function series L
(α)
n (t, p)

L(α)
n (t, p) =

√

2pΓ(n+ 1)

Γ(n+ α+ 1)
e−pt(2pt)α/2lαn(t, p), (24)

with the time-scale parameter p and the generalization param-

eter α

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 12, 2018

ISSN: 1998-0159 10



u(t) =

∞
∑

n=0

Un(α1, p1)L
(α1)
n (t, p1), (25)

y(t) =

∞
∑

n=0

Yn(α2, p2)L
(α2)
n (t, p2). (26)

The generalized Laguerre functions are orthonormal in the

[0,∞), and therefore the coefficients Un(α1, p1), Yn(α2, p2)
can be expressed as

Un(α1, p1) =

∫

∞

0

u(t)L(α1)
n (t, p1)dt, (27)

Yn(α2, p2) =

∫

∞

0

y(t)L(α2)
n (t, p2)dt. (28)

For the Laplace images of the input and output of the system

(2), we have the equation

L{y(t)} =
B(s)

A(s)
L{u(t)}, (29)

where L is the symbol of the Laplace transform. With addi-

tional computation we will get

∞
∑

n=0

Yn(α2, p2)L{L
(α2)
n (t, p2)} =

=
B(s)

A(s)

∞
∑

n=0

Un(α1, p1)L{L
(α1)
n (t, p1)}. (30)

For the Laplace transform of the generalized Laguerre

function, we have the identity

L{L(α)
n (t, p)} = Φ(n, α, p)

P
(α)
n (s)

(s+ p)n+1+α/2
, (31)

Φ(n, α, p) =
√

(2p)α+1Γ(n+ 1)Γ(n+ α+ 1), (32)

P (α)
n (s) =

n
∑

m=0

A(α)
n,m

n−m
∑

i=0

(

n−m

i

)

sn−m−ipi, (33)

A(α)
n,m =

(−1)m(2p)mΓ(m+ α/2 + 1)

m!(n−m)!Γ(m+ α+ 1)
. (34)

The above expression for the Laplace transform of the

generalized Laguerre functions is another form of the iden-

tity derived in [16]. By additional editing of the previously

introduced formula (30) we obtain

∞
∑

n=0

Yn(α2, p2)Φ(n, α2, p2)
P

(α2)
n (s)

(s+ p2)n+1+α2/2
=

=
B(s)

A(s)

∞
∑

n=0

Un(α1, p1)Φ(n, α1, p1)
P

(α1)
n (s)

(s+ p1)n+1+α1/2
.

(35)

This expression comprises only the powers of s; thus, it is

sufficient to equate the coefficients of the same powers of s
in order to get the coefficients of the polynomials A(s), B(s),
namely to obtain the unknown transfer function F (s) as a

fraction of two polynomials from the time progression of the

input and output signals.

For practical computation, we can obtain only a finite

number of terms N1, N2 in the Fourier expansion series for

the input and output signals:

uN1
(t) =

N1
∑

n=0

Un(α1, p1)L
(α1)
n (t, p1), (36)

yN2
(t) =

N2
∑

n=0

Yn(α2, p2)L
(α2)
n (t, p2). (37)

It is also possible to measure the input and output signals only

for the finite time T :

UT
n (α1, p1) =

∫ T

0

u(t)L(α1)
n (t, p1)dt, (38)

Y T
n (α2, p2) =

∫ T

0

y(t)L(α2)
n (t, p2)dt. (39)

We can write the above equation (35) in the form

N2
∑

n=0

Y T
n (α2, p2)Φ(n, α2, p2)

P
(α2)
n (s)

(s+ p2)n+1+α2/2
≈

≈
B(s)

A(s)

N1
∑

n=0

UT
n (α1, p1)Φ(n, α1, p1)

P
(α1)
n (s)

(s+ p1)n+1+α1/2
.

(40)

After multiplying both sides of the equation by the term

(s+ p2)
N2+1+α2/2(s+ p1)

N1+1+α1/2 (41)

and performing some computation, we obtain the following

approximation of the transfer function:

F̃ (s,N1, N2, T ) ≈
(s+ p1)

N1+1+α1/2

(s+ p2)N2+1+α2/2
∗

∗

∑N2

n=0 Y
T
n (α2, p2)Φ(n, α2, p2)P

(α2)
n (s)(s + p2)

N2−n

∑N1

n=0 U
T
n (α1, p1)Φ(n, α1, p1)P

(α1)
n (s)(s+ p1)N1−n

.

(42)

The following limit holds

lim
N1→∞

lim
N2→∞

lim
T→∞

F̃ (s,N1, N2, T ) = F (s). (43)

The order of the above-approximated system (42) is

N = N1 +N2 + 1 +max(α1/2, α2/2). (44)

The quality of the approximation depends on the numbers

N1, N2 in the truncated expansions of the input and output

signals, on the time scale parameters p1, p2, and on the choice

of the generalization parameters α1 and α2. The difference

between the order of the numerator and the denominator in the

transfer function approximation (42) is α2−α1

2 ; this can lead
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us to the non-integer transfer function approximation when the

difference α2 −α1 is not an even integer. Study [16] presents

the relationship between the choice of the optimal parameter

α and the time scale parameter p in the case of approximating

the given signal x(t) ∈ L2[0,∞) by the truncated series of

the GLF.

xN (t) =
N
∑

n=0

XnL
(α)
n (t, p) (45)

At this point, let us define the following moments:

m−1 = (x(t),
1

t
x(t)), m0 = (x(t), x(t)), (46)

m1 = (x(t), tx(t)), m2 = (x′(t), tx′(t)). (47)

The optimal parameter p with the given generalization param-

eter α for truncated expansion of x(t) to the GLF can be

computed as follows:

p(α) =

√

α2m
−1+4m2

m1

2
(48)

The optimal parameters p, α for truncated expansion of x(t)
to GLF can be computed

p =

√

m−1m2

|m1m−1 −m2
0|

(49)

α =
m0

m−1
2p (50)

This choice of parameters minimizes the ISE ζ(α, p):

ζ(α, p) = (e(t), e(t)) =

∞
∑

n=N+1

X2
n(α, p), (51)

e(t) = x(t) − xN (t). (52)

In paper [17], the above results are generalized for more

classes of orthogonal functions; in this connection, it should

also be mentioned that the result (48) for the SLF (α = 0)

was first derived in [18]. For simplification purposes, we used

the nearest even approximation of the computed α in order

not to deal with the fractional order system approximation of

(42) in the example below.

The number of dominant Hankel singular values of system

(42) can help us to find the order of the original system and

to appropriately choose the order K of the reduced system.

The balanced truncation of the system based on omitting the

part of the system corresponding to the N − K smallest

Hankel singular values in the Singular value decomposition

of the approximated systems will be used in the next section.

More detailed description of the procedure is available in, for

example, paper [19]. The MATLAB implementation “balred”

of this approximation will be used in the next chapter.

VI. EXAMPLE OF SYSTEM IDENTIFICATION

The experiments with the system identification were done

in MATLAB. The first order dynamical system with one real

pole was chosen for comparison.

F (p) =
5

p+ 4
. (53)

The input signal for the identification was chosen as

u(t) = e−t. Sampling periods were chosen as Ts =
0.1s, 0.05s, 0.01s. The step input responses of the reduced

approximated systems of the order K = 2 (reduced from order

N = 8, see (44)) with the GLF method, with LS method with

SVF (LSSVF) given by L(p) = 1
(p+λ)n and with LS method

with trapezodial integration (LSTRAPZ) are presented in the

Fig. 1 with sampling period Ts = 0.1s. The corresponding

relative RMS errors (rRMSE) are shown

rRMSE =
RMS(y(t)− ŷ(t))

RMS(y(t))
∗ 100%, (54)

where y(t) is step input response of the original system and

ŷ(t) is step input response of the approximated systems. The

number n in the definition of state variable filter L(p) is given

by the order of the original system, λ is chosen larger than

the guessed bandwidth, see [2] for more detailed discussion

of the choice of the parameter λ in LSSVF. The graph of the

relative approximation errors

y(tk)− ŷ(tk)

y(tk)
(55)

is displayed in the Fig. 2 with sampling period Ts = 0.1s.

The comparison of relative RMS errors for different sampling

periods is in the TABLE I.

0 1 2 3 4 5 6 7 8 9 10

t

0
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1.4

1.6

1.8

2

S
te

p
 i
n

p
u

t 
re

s
p

o
n

s
e

rRMSE LSSVF=2.7643%, rRMSE GLF=0.22015%, rRMSE LSTRAPZ=0.011797%

Original system response

Approximated system response with LSSVF

Approximated system response with GLF

Approximated system response with LSTRAPZ

Fig. 1. Step input response of the approximated systems, Ts = 0.1s

VII. CONCLUSION

New method for continuous-time system identification from

sampled data based on least squares estimation with numer-

ical solution of differential equation was introduced. It was

compared with traditional least squares method with state
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0 1 2 3 4 5 6 7 8 9 10

t

-0.15

-0.1

-0.05

0

0.05

0.1

Relative approximation error

LSSVF approximation error

GLF approximation error

LSTRAPZ approximation error

Fig. 2. Relative approximation error of the approximated systems, Ts = 0.1s

TABLE I
RELATIVE RMS ERRORS FOR DIFFERENT METHODS OF IDENTIFICATION

FOR DIFFERENT SAMPLING PERIODS

rRMSE LSSVF method GLF method LSTRAPZ method

Ts = 0.1s 2.7643% 0.22015% 0.011797%

Ts = 0.05s 1.8955% 0.066312% 0.0029554%

Ts = 0.01s 0.022859% 0.015304% 0.00011829%

variable filters and with the method based on expansion of the

input and output signals into generalized Laguerre functions.

It was shown that we can obtain better results in terms of

relative RMS error with proposed LSTRAPZ method than with

LSSVF and GLF methods for the identification of the first

order dynamical system. In the future work we will take a

look on the generalization of the least squares with numerical

integration for the systems of higher orders.
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