
 

 
 

 
Abstract—Static and dynamic problems of coupled electro-

elasticity are considered for electrostatic (capacitive) transducers 
used as sensors and actuators based on nano- and microsystem tech-
nology in various applications. Above-mentioned problems are ana-
lyzed by mathematical apparatus of nonlinear mechanics and bifurca-
tion theory as well as modern numerical methods, including numeri-
cal continuation techniques for nonlinear boundary-value problems. 
Comparative analysis of analytical and numerical methods was per-
formed for nonlinear static and dynamic boundary problems of elec-
tro-elasticity for nano- and microsystems engineering. Equilibrium 
forms, their stability and bifurcations were studied for afore-named 
elastic systems under the influence of electric fields of various confi-
gurations.  
 

Keywords - Micro-electromechanical systems, equilibrium forms, 
stability of periodic motion.  

I. INTRODUCTION 

Recent time the achievements of micro- and nano-
electromechanical systems (MEMS and NEMS) appeal the 
great interest of physics, biologists, electrician-engineers. The 
using of these devices is connected with their high sensitivity 
to nano- and micro-scale alterations of physical and biological 
parameters. For example, it’s used as a determination of mole-
cular mass, biochemical reactions, production of some new 
molecules, nanoparticles, and also for sensitivity for alteration 
of different types of external microphysical magnitudes. With 
help of miniature nano- and micro-sensors the supersensitive 
for extremely small forces and periodic excitation have been 
found. Reaching of this sensitivity is connected with attain-
ment of Mega and even Giga-Hertz diapason of eigen fre-
quency of their dynamical characteristics. Increasing of eigen 
frequency until 1GHz gives the opportunity to avoid the influ-
ence of some physical noise on micro-sensors, such as, for 
example, a temperature and humid fluctuations. 
   It is necessary to say that not less important the micro-
sensors based on «pull-in» effect [13] have been obtained. 
This effect gives the opportunity to determine the micro-
alteration of external or inner excitation. 
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«Pull-in» instability is an inherently nonlinear effect con-
nected with disappearance of equilibrium forms of elastic part 
of sensitive and actuating mechanism. This effect occurs at 
achievement of electro or magneto static actions the deter-
mined critical value.  
    

II  SYSTEM WITH ONE FIXED ELECTRODE 
 

Let’s consider the electromechanical model of micro-
electromechanical oscillator, which consists from mass (mo-
bile plate) attached to immobile plate of plane-parallel micro-
capacitor by spring with damper (Fig. 1.1). 

 

 
Fig.1.1 – Model of micro-electromechanical oscillator 

 
The designations of this figure are 𝑑𝑑 – distance between 

immobile plate and a fixing point of oscillator, 𝑚𝑚 – mass of 
mobile plate, с – dissipation coefficient, 𝑘𝑘 – stiffness of 
spring, 𝑙𝑙 – length of unstrained spring.  Taking in account the 
coincidence of positive direction of axe 𝑥𝑥 with direction of 
ponderomotive force of attraction between plates, the expres-
sion of this force takes a form: 

𝐹𝐹𝑒𝑒 = 1
2
𝜖𝜖𝑟𝑟𝜖𝜖0𝑆𝑆𝑉𝑉2

(𝑑𝑑−𝑢𝑢)2 .                                        (1.1) 

The equation of oscillator motion is written in next view:  

𝑚𝑚𝑑𝑑2𝑢𝑢
𝑑𝑑𝑡𝑡2 + 𝑐𝑐 𝑑𝑑𝑢𝑢

𝑑𝑑𝑡𝑡
+ 𝑘𝑘(𝑢𝑢 − 𝑙𝑙) = 1

2
𝜖𝜖𝑟𝑟𝜖𝜖0𝑆𝑆𝑉𝑉2

(𝑑𝑑−𝑢𝑢)2              (1.2)                                              

Passing to dimensionless values  
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𝑥𝑥 = 𝑢𝑢−𝑙𝑙
𝑑𝑑−𝑙𝑙

, 𝜏𝜏 = �𝑘𝑘
𝑚𝑚
𝑡𝑡 = Ω0𝑡𝑡, 𝛼𝛼 = 𝑐𝑐

√𝑚𝑚𝑘𝑘
,             (1.3)                                     

the equation (1.2) transforms to view 
𝑑𝑑2𝑥𝑥
𝑑𝑑𝜏𝜏2 + 𝛼𝛼 𝑑𝑑𝑥𝑥

𝑑𝑑𝜏𝜏
+ 𝑥𝑥 = 𝜆𝜆

(1−𝑥𝑥)2,                       (1.4)               

    here  𝜆𝜆 = 1
2
𝜖𝜖𝑟𝑟𝜖𝜖0𝑆𝑆𝑉𝑉2

𝑘𝑘(𝑑𝑑−𝑙𝑙)3  – dimensionless parameter determina-

tive the relation between ponderomotive and elastic force, 
acting in this system. Really parameter 𝜆𝜆 can be present in 
form 

𝜆𝜆 = 1
2
𝜖𝜖𝑟𝑟𝜖𝜖0𝑆𝑆𝑉𝑉2

(𝑑𝑑−𝑙𝑙)2 ⋅ 1
𝑘𝑘(𝑑𝑑−𝑙𝑙)

= 𝐹𝐹𝑒𝑒�

𝐹𝐹𝑠𝑠�
,                                   (1.5) 

where 𝐹𝐹𝑒𝑒� = 1
2
𝜖𝜖𝑟𝑟𝜖𝜖0𝑆𝑆𝑉𝑉2

(𝑑𝑑−𝑙𝑙)2  – characteristic ponderomotive force 
corresponding to distance between plates at  unstrained spring; 
𝐹𝐹𝑠𝑠� = 𝑘𝑘(𝑑𝑑 − 𝑙𝑙) – characteristic elastic force, emergent in spring 
at coincidence of capacitor plates. In Figure 1.2 the branching 
diagram of equilibrium positions for equation (1.4) be absent 
of dissipation 𝛼𝛼 = 0 is shown. The law branch is stable and 
upper is unstable 

 

 
Fig.1.2 – Branching diagram for equilibrium position 
 
Let’s pass to investigation regimes of motion of micro-

electromechanic oscillator in field of one electrode with peri-
odic potential. Before then consideration the task of forced 
oscillation let’s study the quality structure of phase plane ac-
counting dissipation determined by coefficient 𝜇𝜇 > 0. The 
equation of motion of mobile plate in constant electric field 
takes a form: 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝜏𝜏2 + 𝜇𝜇 𝑑𝑑𝑥𝑥

𝑑𝑑𝜏𝜏
+ 𝑥𝑥 = 𝜆𝜆

(1−𝑥𝑥)2.                          (1.6) 
The phase portrait of system (1.6) at different parameter 𝜆𝜆 

and fixed coefficient of dissipation  𝜇𝜇 is shown in Fig.1.3 
As it shown from this figure, at 𝜆𝜆 < 𝜆𝜆∗ = 4

27
 this system has 

two critical points: stable focus and saddle. At 𝜆𝜆 > 𝜆𝜆∗ critical 
points are absent, i.e. 𝜆𝜆∗ - branching point, at which these crit-
ical points conjugate. 

Let’s pass to task of forced oscillation of micromechanical 
oscillator in field of one electrode. Here we may consider two 
different cases of oscillation excitation. In first case the vol-
tage between fixed plate and conductive elastic element is 

alternating function of time. For example voltage changes as 
𝑉𝑉𝐴𝐴𝐴𝐴 cosΩ��̃�𝑡. At second case stationary level of voltage is added 
to dynamical excitation, so full voltage: 𝑉𝑉𝐷𝐷𝐴𝐴 + 𝑉𝑉𝐴𝐴𝐴𝐴 cosΩ��̃�𝑡.  

 

 
Fig.1.3 – Phase portraits MEMS – oscillator accounting 

damping (𝜇𝜇 = 0,05) 
 
The first regime of excitation is used in high-frequency 
switchers and others microsystem devices, in which necessary 
to maximum quickly consequence of elastic element from 
stable equilibrium position and achieve contact with fixed 
plate («pull-in» effect). The second regime is used in works of 
resonators, accelerometers, pressure sensors, frequency gene-
rators.  

Let’s consider the first variant of oscillation excitation. The 
motion equation of this variant has a form: 

�̈�𝑥 + 𝜇𝜇�̇�𝑥 + 𝑥𝑥 = 𝜆𝜆 cos 2 Ω𝑡𝑡
(1−𝑥𝑥)2                              (1.7) 

Here for convenience dimensionless time designate by letter 

𝑡𝑡, dimensionless frequency of excitation Ω = Ω�

Ω0
. Let’s 

formulatе analytic solution (1.7) with help asymptotic me-
thods of the nonlinear oscillation theory [1, 2].  The small pa-
rameter 𝜀𝜀 is introduced in designation of coefficient of dissipa-
tion 𝜀𝜀𝜇𝜇 and amplitude of excitation ε𝜆𝜆 and expand nonlinear 
item into Taylor series in vicinity of zero: 
�̈�𝑥 + 𝜀𝜀𝜇𝜇�̇�𝑥 + 𝑥𝑥 = 𝜀𝜀𝜆𝜆 cos2 Ω𝑡𝑡 (1 + 2𝑥𝑥 + 3𝑥𝑥2 + 4𝑥𝑥3 + ⋯ ).  (1.8) 

With aim of building uniformly suitable expansion we use 
asymptotic manyscale method. The solution of equation (1.8) 
will be search in view  
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𝑥𝑥 = 𝑥𝑥0(𝑇𝑇0,𝑇𝑇1, … ) + 𝜀𝜀𝑥𝑥1(𝑇𝑇0,𝑇𝑇1, … ) + ⋯             (1.9) 
where 𝑇𝑇𝑘𝑘 = 𝜀𝜀𝑘𝑘𝑡𝑡 – different scale of time, 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 0,1,2, … - 

unknown functions. 
Following [2], let’s express derivatives on real time 𝑡𝑡 

through derivatives by 𝑇𝑇𝑘𝑘 : 
𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝐷𝐷0 + 𝜀𝜀𝐷𝐷1 + ⋯ , 𝑑𝑑2

𝑑𝑑𝑡𝑡2 = 𝐷𝐷0
2 + 2𝜀𝜀𝐷𝐷0𝐷𝐷1 + ⋯ , …    (1.10) 

where 𝐷𝐷𝑘𝑘 = 𝜕𝜕/𝜕𝜕𝑇𝑇𝑘𝑘 . Let’s build the first approximation. 
Substituting (1.9), (1.10) into (1.8) and grouping terms of n 
order 𝜀𝜀, we obtain next system of equations  

𝐷𝐷0
2𝑥𝑥0 + 𝑥𝑥0 = 0, 

𝐷𝐷0
2𝑥𝑥1 + 𝑥𝑥1 = −2𝐷𝐷0𝐷𝐷1𝑥𝑥0 − 𝜇𝜇𝐷𝐷0𝑥𝑥0 + 𝜆𝜆 cos2 Ω𝑇𝑇0 [1 + 2𝑥𝑥0 +

3𝑥𝑥0
2 + 4𝑥𝑥0

3], …                                                                   (1.11) 
Solution of homogeneous equation for 𝑥𝑥0 is written in com-

plex form 
𝑥𝑥0(𝑇𝑇0,𝑇𝑇1) = 𝐴𝐴(𝑇𝑇1)𝑒𝑒𝑖𝑖𝑇𝑇0 + (𝑐𝑐. 𝑐𝑐. ),                  (1.12) 

where shot designation for complex conjugate items is in-
troduced. The complex amplitude is determined as 

𝐴𝐴(𝑇𝑇1) = 1
2
𝑎𝑎(𝑇𝑇1)𝑒𝑒𝑖𝑖𝑖𝑖 (𝑇𝑇1),                            (1.13) 

where 𝑎𝑎 and 𝑖𝑖 – required function of slow time 𝑇𝑇1 (ampli-
tude and phase). 

Let’s consider the main resonance, at which frequency of 
external excitation 2Ω ≈ 1. Let’s introduced parameter of fre-
quency mismatch 𝜎𝜎 by formula 

Ω = 1
2

+ 𝜀𝜀𝜎𝜎.                                   (1.14) 
Substituting (1.12), (1.14) into right part of second equation 

of system (1.11) and using condition of absent of secular items 
we obtain next differential equation for complex amplitude  
−2𝑖𝑖𝐴𝐴′ − 𝜇𝜇𝑖𝑖𝐴𝐴 + 𝜆𝜆𝐴𝐴 + 6𝜆𝜆𝐴𝐴2�̅�𝐴 + 𝜆𝜆

4
𝑒𝑒2𝑖𝑖𝜎𝜎𝑇𝑇1 + 3𝜆𝜆

4
𝐴𝐴2𝑒𝑒−2𝑖𝑖𝜎𝜎𝑇𝑇1 +

3𝜆𝜆
2
𝐴𝐴�̅�𝐴𝑒𝑒2𝑖𝑖𝜎𝜎𝑇𝑇1 = 0.                                                               (1.15) 
Pass on to exponential form of writing equation (1.15)  and 

separating real and imaginary part of equation, we obtain next 
system of differential equation for slowly changing amplitude 
and phase of oscillation: 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑇𝑇1

= −
1
2
𝜇𝜇𝑎𝑎 +

𝜆𝜆
4
�1 +

3
4
𝑎𝑎2� sin 𝛾𝛾, 

𝑎𝑎 𝑑𝑑𝛾𝛾
𝑑𝑑𝑇𝑇1

= 2𝑎𝑎𝜎𝜎 + 1
2
𝜆𝜆𝑎𝑎 + 3

4
𝜆𝜆𝑎𝑎3 + 𝜆𝜆

4
�1 + 9

4
𝑎𝑎2� cos 𝛾𝛾.    (1.16)                                   

Here input designation  
𝛾𝛾 = 2𝜎𝜎𝑇𝑇1 − 𝑖𝑖.                            (1.17) 

Critical points of autonomous system (1.16) correspond to 
stationary oscillations. These points satisfy algebraic system 

1
2
𝜇𝜇𝑎𝑎 =

𝜆𝜆
4
�1 +

3
4
𝑎𝑎2� sin 𝛾𝛾, 

−2𝑎𝑎𝜎𝜎 − 1
2
𝜆𝜆𝑎𝑎 − 3

4
𝜆𝜆𝑎𝑎3 = 𝜆𝜆

4
�1 + 9

4
𝑎𝑎2� cos 𝛾𝛾       (1.18) 

Exclusion of variable 𝛾𝛾 leads to equation implicitly defining 
dependence of amplitude of stationary oscillation from fre-
quency mismatch 𝑎𝑎(𝜎𝜎):  

𝜆𝜆2

16
= 1

4
𝜇𝜇2𝑎𝑎2

�1+3
4𝑎𝑎

2�
2 + �

2𝑎𝑎𝜎𝜎+1
2𝜆𝜆𝑎𝑎+3

4𝜆𝜆𝑎𝑎
3

1+9
4𝑎𝑎

2 �
2

       (1.19)    

The comparable of amplitude-frequency characteristics, ob-
tained by three methods: according to analytic expression 
(1.19); direct numerical calculation of approximated system 

(1.8); direct numerical calculation of initial system (1.7) at 
different values of parameter 𝜆𝜆 are shown in Fig.1.4, Fig.1.5. 
     The numerical dependence 𝑎𝑎(𝜎𝜎) are determined using al-
gorithm prolongation by parameter of periodic solution which 
realized by software package MATCONT [3]. Coefficient of 
damper 𝜇𝜇 takes equal 0,005. 

 

 
Fig.1.4 – Comparable of amplitude-frequency response 

Ω ≈ 1
2

, 𝜆𝜆 = 0.01 
 

 
Fig.1.5–Comparable amplitude-frequency response 

Ω ≈ 1
2

, 𝜆𝜆 = 0.05 
 As it see from these Figures, at sufficiently small value 𝜆𝜆 

the first approximation to solution is obtained by manyscale 
method practically coincide with direct numerical solution 
equation (1.8). The difference of approximated solution from 
direct numerical solution of initial nonlinear equation (1.7) 
consists in existence branch of unstable periodic motions at 
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negative values of mismatch parameter 𝜎𝜎. The practical sense 
of this branch consists in that it limits the field of attraction of 
stable periodic regime with small amplitude of oscillation.  
The comparable regimes of motion, which are describes by 
equation of systems (1.7), (1.8) in dependence of initial condi-
tions are shown in Fig.1.6. The comparable amplitude-
frequency responses are shown in Fig.1.4. 

  

        
 

Fig.1.6 – Comparing regimes of motion for systems  
(1.7), (1.8) 

 
As it see from this Figure, the expanding of right part of eq-

uation (1.7) in Taylor series keeping items with order not 
higher third can leads to wrong conclusion about stability of 
stationary oscillation motion at large initial  perturbation.  

More detail let’s consider the question of determination sta-
bility of founding periodic regime of oscillation. According to 
common statements of theory stability of motion [4-8], for 
determination stability of stationary regime it’s need to build 
the equation in variation in vicinity of investigation regime. In 
case of analysis of periodic oscillation the equation in varia-
tion present itself the linear equation with periodic coefficients 
[9]. The condition of asymptotic stability of periodic motion is 
location of all multipliers (eigen values of monodromy matrix) 
inside of unit circle in complex plane. The existence of multip-
lier with module equal unit corresponds to limited (in common 
case nonperiodical) motion. Availability of multiplier outside 
of unit circle presents the criterion of instability of investi-
gated periodic motion.  

Using in numerical calculation software package 
MATCONT gives possibility to calculate multiplier in vicinity 
of every obtained stationary periodic regime of oscillation. 
This possibility gives us the condition of confirmation the loss 
of stability of periodic motion of system (1.7) in regular ex-
tremal point on the left branch of amplitude-frequency re-
sponse (Fig. 1.4). The dependence maximum module of mul-
tiplier from parameter of mismatch 𝜎𝜎 is shown in Fig.1.7. Two 
connected curves in point of intersection corresponds to loss 
of stability (in this Figure 𝜆𝜆 = 0,05). 

 
` 
Fig. 1.7 – The dependence of multiplier maximum module 

from frequency mismatch 𝜎𝜎 
 
As it see from this picture disaffiliation of multiplier with 

unit circle of complex plane take place at the same mismatch 
that corresponds to inflection of left branch of amplitude-
frequency response in Figure 1.5. Independent from 𝜎𝜎 availa-
bility in system multiplier with module equal unit causes by 
peculiarity of numerical realization in MATCONT task of pro-
longation on parameter periodic motion. Exactly, that corres-
ponding program froм MATCONT appropriate for investiga-
tion of autonomous dynamical system. In connection with it 
the necessary of build autonomous system equivalent to (1.7) 
in sense of description of micro-electromechanical oscillator 
motion. For this non-autonomous item cosΩ𝑡𝑡 in equation 
(1.7) changed by fixed solution (limit cycle) for next dynami-
cal system [10]: 

�̇�𝑥 = 𝑥𝑥 + Ω𝑦𝑦 − 𝑥𝑥(𝑥𝑥2 + 𝑦𝑦2), 
�̇�𝑦 = −Ω𝑥𝑥 + 𝑦𝑦 − 𝑦𝑦(𝑥𝑥2 + 𝑦𝑦2),                 (1.20) 

possess asymptotically stable solution  
𝑥𝑥 = sinΩ𝑡𝑡 ,𝑦𝑦 = cosΩ𝑡𝑡.                       (1.21) 

Thus, current system equation in MATCONT, written down 
in standard form, has a form 

�̇�𝑥1 = 𝑥𝑥2, 

�̇�𝑥2 = −𝜇𝜇𝑥𝑥2 − 𝑥𝑥1 −
𝜆𝜆𝑥𝑥4

2

(1−𝑥𝑥1)2,                                                   
�̇�𝑥3 = 𝑥𝑥3 + Ω𝑥𝑥4 − 𝑥𝑥3(𝑥𝑥3

2 + 𝑥𝑥4
2),               (1.22) 

                     �̇�𝑥4 = −Ω𝑥𝑥3 + 𝑥𝑥4 − 𝑥𝑥4(𝑥𝑥3
2 + 𝑥𝑥4

2) 
Linear system differential equation with periodic coeffi-

cients, obtained from (1.22) by way of build equation in varia-
tion relatively stationary periodic solution, has multiplier 
equal unity, that allows to interpret Fig. 1.7. 

Now we investigate the dependence of amplitude fixed os-
cillation from parameter of excitation 𝜆𝜆 at given frequency in 
vicinity of main resonance Ω ≈ 1

2
. The comparing of direct 

numerical solution of system (1.7) with approximated analytic 
solution of (1.8) and also numerical solution of corresponded 
system (1.19) is shown in Fig.1,8 
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Fig.1.8 – Dependence of oscillation amplitude from  

parameter 𝜆𝜆, 𝜎𝜎 = −0,05 
 
 

 
 

Fig.1.9 – Dependence of oscillation amplitude from 
 parameter 𝜆𝜆, 𝜎𝜎 = 0,02 

 
As it see from Fig.1.8, at frequency smaller resonance 

(𝜎𝜎 < 0), the dependence amplitude of oscillation from para-
meter 𝜆𝜆 in form coincide with obtained early diagram of 
branching equilibrium positions shown in Figure 1.2 and cha-
racterized of existence critical value of parameter 𝜆𝜆, which 
limit to upper the field of existence stationary regimes of os-
cillation.  The maximum amplitude of established periodic 
motion don’t exceed value  0,5. 

According to Fig.1.9 in superresonance zone (𝜎𝜎 > 0) the 
character of dependence amplitude 𝑎𝑎 from parameter 𝜆𝜆 is 
another: critical value essentially increase 𝜆𝜆 ≅ 0,37,  also 
maximum amplitude of superresonance zone increase 𝑎𝑎 ≅ 0,8. 
For comparing critical value of parameter 𝜆𝜆 at static analysis 
(«static pull-in»), according Fig.1.2 in static case 𝜆𝜆∗ ≅ 0,148 
at corresponding value of static displacement 𝑎𝑎∗ ≅ 0,32. Thus 
in superresonance zone establish oscillation with amplitude 

greatly exceeding possible amplitude of stable equilibrium 
positions. 

As it see from Fig.1.8, Fig.1.9  approximated analytical so-
lution coincide with numerical at small values of parameter 𝜆𝜆, 
that corresponds to initial  assumption of applying manyscale 
method. 

Let’s pass to investigation of second method excitation, in 
which to alternating component of voltage 𝑉𝑉𝐴𝐴𝐴𝐴  the stationary 
level 𝑉𝑉𝐷𝐷𝐴𝐴 is added. Corresponded dynamical system has a view 

�̈�𝑥 + 𝜇𝜇�̇�𝑥 + 𝑥𝑥 = 𝜆𝜆 (1+𝜐𝜐 cos Ω𝑡𝑡)2

(1−𝑥𝑥)2                            (1.23) 
This equation is solved numerically That as early with 

software package MATCONT. The amplitude-frequency res-
ponses for this system for different values 𝜆𝜆 are shown in Fig. 
1., Fig.1.11 presented for values of mismatch 𝜎𝜎 in vicinity of 
main resonance Ω = 1 + 𝜎𝜎. Here the resonance frequency 
Ω∗ = 1  in difference of first case then resonance frequency  
Ω∗ = 1/2. Dimensionless amplitude of alternating component 
of voltage 𝜐𝜐 = 0,01; coefficient of dissipation 𝜇𝜇 = 0,005. 

 
Fig.1.10 – amplitude-frequency response in vicinity of main 

resonanсe  𝜆𝜆 = 0,07 
 

 
Fig,1.11 – amplitude-frequency response in vicinity of main 

resonanсe 𝜆𝜆 = 0,12 
As evident from these Figures, at given values of parameter 
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in system not observe the opportunity going out from regime 
of stationary oscillations. Small resonance peac in Figure 1.11 
at Ω ≅ 1

3
 corresponds to second resonance, produced by pres-

ence cubical item of expansion into Tailor series the right part 
equation. 

     The dependence of amplitude stationary oscillation from 
amplitude of alternating external excitation 𝜐𝜐 at different val-
ues of frequency mismatch 𝜎𝜎 is shown in Fig. 1.12, 1.13  

 

 
Fig.1.12–Dependence 𝑎𝑎(𝜐𝜐), 𝜆𝜆 = 0,12, 𝜇𝜇 = 0,005, 

 𝜎𝜎 = −0,25 
 

 
Fig.1.13 – Dependence 𝑎𝑎(𝜐𝜐), 𝜆𝜆 = 0,12, 𝜇𝜇 = 0,005,  

𝜎𝜎 = −0,4 
 

III System with two fixed electrodes 
 

Let’s proceed to consideration of micro-electromechanical 
oscillator in field of two electrodes. To mobile plate (point 
mass of oscillator) and fixed electrodes disclose identical po-
tential difference 𝑉𝑉 (Fig.2.1). In assumption of symmetry sys-
tem the length of unstrained spring 𝑙𝑙 is believed equal zero.  

 

 
Fig.2.1 – Micromechanical oscillator in field of two  

electrodes 
Equation of oscillator motion is written in next form: 

𝑚𝑚𝑑𝑑2𝑢𝑢
𝑑𝑑𝑡𝑡2 + 𝑐𝑐 𝑑𝑑𝑢𝑢

𝑑𝑑𝑡𝑡
+ 𝑘𝑘𝑢𝑢 = 1

2
𝜖𝜖𝑟𝑟𝜖𝜖0𝑆𝑆𝑉𝑉2

(𝑑𝑑−𝑢𝑢)2 −
1
2
𝜖𝜖𝑟𝑟𝜖𝜖0𝑆𝑆𝑉𝑉2

(𝑑𝑑+𝑢𝑢)2                 (2.1) 
or, in dimensionless form  

                𝑑𝑑
2𝑥𝑥

𝑑𝑑𝜏𝜏2 + 𝜇𝜇 𝑑𝑑𝑥𝑥
𝑑𝑑𝜏𝜏

+ 𝑥𝑥 = 𝜆𝜆 � 1
(1−𝑥𝑥)2 −

1
(1+𝑥𝑥)2�,                  (2.2) 

Let’s begin the investigation of micromechanical oscillator 
motion in field of two electrodes. Before then consideration 
task of forced oscillation let’s study quality structure of phase 
plate at accounting of dissipation, which determine by coeffi-
cient 𝜇𝜇 > 0. The phase portraits of this system at different 
values of parameter  𝜆𝜆 and fixed 𝜇𝜇 are shown in Fig.2 2.  

 
 

 
Fig.2.2 – Phase portraits MEMS oscillator accounting dam-

per (𝜇𝜇 = 0,05) 
 
As it see from this pictures, at 𝜆𝜆 < 0,25  system has three 

critical points: stable focus in point of origin and two saddles, 
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situated symmetrically relatively origin point (0,0). At 
𝜆𝜆 = 0,25 critical points flow together and produce one saddle 
in origin coordinates. 

In absent of dissipation in equation (2.2) 𝜇𝜇 = 0 diagram of 
branching of equilibrium positions takes a form: 

 

 
Fig.2.3 – Diagram of branching of equilibrium  

position 
As it see from this Figure, value 𝜆𝜆∗ corresponds one-sided 

subcritical bifurcation with disappearance of stable equili-
brium positions [11, 12]. 

Also one main step, premonitory the investigation of dy-
namical task, present the building branching diagram of equi-
librium position for system with two electrodes in the presence 
of cubic item in expression of elastic force: 

 
𝑑𝑑2𝑥𝑥
𝑑𝑑𝜏𝜏2 + 𝑥𝑥 + 𝑖𝑖𝑥𝑥3 = 𝜆𝜆 � 1

(1−𝑥𝑥)2 −
1

(1+𝑥𝑥)2�.               (2.3) 
                    

Accounting of cubic item gives the quality changing of bi-
furcation diagram at sufficiently large value of parameter 𝑖𝑖, 
characterizing relation between gap of capacitor and width of 
plate. Namely, as it see from (2.3) at increasing 𝑖𝑖  the type of 
bifurcation is changed from subcritical to supercritical, that 
gives the branching from zero solution the stable nontrivial 
equilibrium forms, obtained with help software package 
MATCONT at different values of parameter  𝑖𝑖, as it shown in 
Fig. 2.4 

As it see from Fig.2.4, the accounting  cubic item in expres-
sion for nonlinear recreate force allow to quality describe pos-
sibility nontrivial equilibrium positions of elastic elements of 
microsystem technic in field of two electrodes.. 

Let’s pass to investigation micro-electromechanical oscilla-
tor under the action of periodic excitation. Taking in account 
foresaid equation of motion: 

 
�̈�𝑥 + 𝜀𝜀𝜇𝜇�̇�𝑥 + [1 − 4𝜀𝜀𝜆𝜆 cos2 Ω𝑡𝑡]𝑥𝑥 + 𝜀𝜀[𝑖𝑖 − 8𝜆𝜆 cos2 Ω𝑡𝑡]𝑥𝑥3 = 0                                    

(2.4) 
 

 
Fig. 2.4 – Diagram of branching equilibrium positions 

Thus in contrast to system with one electrode here excita-
tion has pure parametric character.  The solution of this equa-
tion with periodic coefficients will be search with help asymp-
totic manyscale method. The solution of equation is written in 
form 
𝑥𝑥 = 𝑥𝑥0(𝑇𝑇0,𝑇𝑇1, … ) + 𝜀𝜀𝑥𝑥1(𝑇𝑇0,𝑇𝑇1, … ) + ⋯,                       (2.6) 
where  𝑇𝑇𝑘𝑘 = 𝜀𝜀𝑘𝑘𝑡𝑡 – different scale of time, 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 0,1,2, … - 

sought functions. 
Let’s build the first approximation. Substituting (2.6) into 

(2.5) and grouping members on degree of 𝜀𝜀, we obtain next 
system of equation: 
𝐷𝐷0

2𝑥𝑥0 + 𝑥𝑥0 = 0,   
𝐷𝐷0

2𝑥𝑥1 + 𝑥𝑥1 = −2𝐷𝐷0𝐷𝐷1𝑥𝑥0 − 𝜇𝜇𝐷𝐷0𝑥𝑥0 + 4𝜆𝜆 cos2 Ω𝑇𝑇0 [𝑥𝑥0 +
         + 2𝑥𝑥0

3   ]   − 𝑖𝑖𝑥𝑥0
3, …                                                     (2.7)   

The solution of homogeneous equation for 𝑥𝑥0 is written in 
complex form 
𝑥𝑥0(𝑇𝑇0,𝑇𝑇1) = 𝐴𝐴(𝑇𝑇1)𝑒𝑒𝑖𝑖𝑇𝑇0 + (𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑙𝑙𝑒𝑒𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑢𝑢𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒), (2.8)                                    

Complex amplitude of oscillation is determined as 
𝐴𝐴(𝑇𝑇1) = 1

2
𝑎𝑎(𝑇𝑇1)𝑒𝑒𝑖𝑖𝑖𝑖 (𝑇𝑇1),                                                  (2.9) 

where 𝑎𝑎 и 𝑖𝑖 – sought functions of slow time 𝑇𝑇1.  
Let’s consider the main parametric resonance, at which fre-

quency of external excitation Ω ≈ 1. Parameter of mismatch 
frequency 𝜎𝜎 is used by formula 

Ω = 1 + 𝜀𝜀𝜎𝜎.                                                         (2.10) 
Substituting into right part of second equation of system 

and writing condition of absent the secular items we obtain 
next differential equation for complex amplitude: 
−2𝑖𝑖𝐴𝐴′ − 𝜇𝜇𝑖𝑖𝐴𝐴 + 2𝜆𝜆𝐴𝐴 + 𝜆𝜆�̅�𝐴𝑒𝑒2𝑖𝑖𝜎𝜎𝑇𝑇1 + 3𝐴𝐴2�̅�𝐴(4𝜆𝜆 − 𝑖𝑖) +

       +2𝜆𝜆𝐴𝐴3𝑒𝑒−2𝑖𝑖𝜎𝜎𝑇𝑇1 + 3𝐴𝐴�̅�𝐴2𝑒𝑒2𝑖𝑖𝜎𝜎𝑇𝑇1 = 0.                             (2.11) 
Pass on to exponential form of writing equation and sepa-

rating real and imaginary part of equation, we obtain next sys-
tem of differential equations for slowly changing amplitude 
and phase of oscillation 

2
𝑑𝑑𝑎𝑎
𝑑𝑑𝑇𝑇1

= −𝜇𝜇𝑎𝑎 + �𝜆𝜆𝑎𝑎 �1 −
𝑎𝑎2

2
� +

3𝑎𝑎2

4
� sin 𝛾𝛾, 

𝑎𝑎 𝑑𝑑𝛾𝛾
𝑑𝑑𝑇𝑇1

= 2𝑎𝑎𝜎𝜎 + 2𝜆𝜆𝑎𝑎 + 3𝑎𝑎3

4
(4𝜆𝜆 − 𝑖𝑖) + �𝜆𝜆𝑎𝑎 �1 + 𝑎𝑎2

2
� +

           + 3𝑎𝑎3

4
� cos 𝛾𝛾.                                                            (2.12) 
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Here       
𝛾𝛾 = 2𝜎𝜎𝑇𝑇1 − 2𝑖𝑖. 

Critical points of autonomous system (2.12) corresponds to 
stationary oscillations. These points satisfy algebraic system 

  

𝜇𝜇𝑎𝑎 = �𝜆𝜆𝑎𝑎 �1 − 𝑎𝑎2

2
� + 3𝑎𝑎2

4
� sin 𝛾𝛾,  

−2𝑎𝑎𝜎𝜎 − 2𝜆𝜆𝑎𝑎 − 3𝑎𝑎3

4
(4𝜆𝜆 − 𝑖𝑖) = �𝜆𝜆𝑎𝑎 �1 + 𝑎𝑎2

2
� + 3𝑎𝑎3

4
� cos 𝛾𝛾                              

(2.13) 
Exclusion of variable 𝛾𝛾 leads to equation implicitly defining 

dependence of amplitude of stationary oscillation from fre-
quency mismatch 𝑎𝑎(𝜎𝜎):      

 � 𝜇𝜇𝑎𝑎

𝜆𝜆𝑎𝑎�1−𝑎𝑎
2

2 �+3𝑎𝑎3
4

�
2

+ �
2𝑎𝑎𝜎𝜎+2𝜆𝜆𝑎𝑎+3𝑎𝑎3

4
(4𝜆𝜆−𝑖𝑖)

𝜆𝜆𝑎𝑎�1+𝑎𝑎2
2 �+3𝑎𝑎3

4

�
2

= 1.   (2.14)     

           
The amplitude-frequency response calculated by formula 

(2.14) for different values of geometric nonlinear parameter 𝑖𝑖 
at fixed values 𝜆𝜆 = 0,1, 𝜇𝜇 = 0,005, 𝜀𝜀 = 1 is shown in Fig. 
2.5  

 
Fig. 2.5 – Amplitude-frequency response in vicinity of  

main parametric resonance 
The observing character of dependence amplitude of estab-

lish oscillation 𝑎𝑎 from frequency mismatch 𝜎𝜎 corresponds to 
common properties of parametric oscillation [9]: outside 
«zone of synchronization» oscillations caused perturbation in 
initial condition damp from presence of dissipation forces. 
Inside of synchronization zone the zero equilibrium position 
became unstable and the character of motion is determined by 
nonlinear items in equation..  In contrast to linear system with 
periodic coefficient, for which according to Floquet-Lyapunov 
theory periodic oscillations only separate the field of limited 
and unlimited solutions, for considerate nonlinear system the 
zone of synchronization can present the field of existence of 
stationary periodic motion. 

The regimes of initial nonlinear system (2.4) at different 
values of frequency mismatch  𝜎𝜎 and parameter of geometrical 
nonlinearity 𝑖𝑖 is shown in Fig. 2.6. The another parameters      

are fixed: 𝜆𝜆 = 0.1, 𝜇𝜇 = 0.005, 𝜀𝜀 = 1. 
 
 

   
 

  
Fig. 2.6 – Regimes of motions system  

 
As it see from these pictures, at 𝑖𝑖 = 0 and 𝜎𝜎 = −0,1 ampli-

tude of oscillations increases without limit, that quality corres-
ponded to parametric resonance in linear system. At 𝑖𝑖 = 6 in 
zone of synchronization (𝜎𝜎 = −0,1) stationary oscillation with 
amplitude 𝑎𝑎 ≅ 0,17 is observe; outside of this zone (𝜎𝜎 =
−0,2) oscillation is damper. Thus the character of motions 
initial nonlinear system corresponds approximated analytic 
results, obtained by manyscale methods (see Fig.2.6). Accord-
ing to obtained results the factor of geometrical nonlinearity is 
determined possibility or impossibility of collapsing plates of  
capacitor (“pull-in”)  at parametric excitation of elastic ele-
ment MEMS. 
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