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Abstract—Piezoelectric materials have the capability to convert
electric energy into mechanical energy and vice versa. Functional
gradations of the material properties are getting increasing attention in
advanced engineering applications. Accurate and efficient numerical
methods are required for the simulation and safety analysis of such
structures. In this paper, the transient dynamic analysis of functionally
graded piezoelectric composites with cracks is presented. A time-
domain boundary element method (BEM) is developed for this
purpose. The present BEM uses the collocation method for the spatial
discretization of the time-domain boundary integral equations (BIEs),
while the convolution quadrature method is applied to the temporal
discretization. An iterative solution algorithm is implemented to solve
the non-linear semi-permeable electric crack-face boundary condition.
The investigated numerical examples indicate a significant influence
of the electric crack-face boundary condition, the functionally grada-
tion and the transient dynamic loading on the normalized intensity
factors.

Keywords—functionally graded piezoelectric solids, non-linear
crack-face boundary condition, dynamic intensity factors.

I. INTRODUCTION

Piezoelectric materials offer advanced possibilities in mod-
ern engineering structures due to their inherent coupling
effects between the mechanical and electric fields. They are
widely applied in smart devices and structures like trans-
ducers, actuators and sensors. In recent years composites
with a continuously change of the material properties are
getting increasing attention. Such functionally graded com-
posite materials (FGMs) can be designed to satisfy the most
beneficial mechanical and electric properties. An important
advantage over conventional laminates is that interfaces and
stress discontinuities are avoided. Piezoelectric ceramics are
very brittle and have a low fracture toughness. Therefore, the
dynamic crack analysis has a considerable importance to the
fracture and damage mechanics, design and optimization as
well as non-destructive testing of piezoelectric structures. An
important role in the crack analysis of piezoelectric materials
plays the formulation of the electric crack-face boundary
conditions. A more realistic non-linear electric crack-face
boundary condition has been presented taking into account
the electric permittivity of the medium inside the crack [9].

Since analytical solutions of the corresponding initial
boundary value problem are available only for very simple
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crack geometries, loading configurations and linear crack-face
boundary conditions, efficient numerical methods are needed
to solve more general problems. The finite element method
(FEM) has been used to solve various problems with contin-
uously graded material properties by many authors [10], [11].
Meshless methods have been presented to analyze functionally
graded material for example by [2], [12]. The boundary
element method (BEM) has been developed for the transient
dynamic crack analysis of piezoelectric solids by Garcı́a-
Sánchez et al. [7] and Wünsche et al. [15]. The extension of the
BEM to non-homogeneous materials is rather limited since the
corresponding fundamental solutions are either mathematically
very complicated or not available. Fundamental solutions for
heat conduction problems in exponentially graded materials
have been derived by Gray et al. [8]. Chan et al. [1] presented
the fundamental solutions for a two-dimensional exponen-
tially graded elastic isotropic medium. To avoid the use of
the specific fundamental solutions for functionally graded
materials Gao et al. [6] have presented a boundary-domain
integral equation formulation. This formulation has been used
by Ekhlakov et al. [4] to develop a Laplace-domain BEM for
the transient thermoelastic crack analysis in 2D functionally
graded isotropic materials. Yang et al. [16] have presented the
BEM for the free vibration analysis of 2D functionally graded
isotropic materials by using static fundamental solutions for
homogeneous isotropic materials. A boundary integral equa-
tion method (BIEM) for the analysis of time-harmonic crack
problems in functionally graded piezoelectric solids have been
derived by Dineva et al. [3].

In this paper, transient dynamic crack analysis in two-
dimensional, functionally graded piezoelectric solids is pre-
sented. Since special fundamental solutions for such materials
are not available a boundary-domain integral formulation
is developed. To solve the boundary integral equations nu-
merically a spatial collocation method and the convolution
quadrature method for temporal discretization are used. This
requires the Laplace transformed fundamental solutions for
homogeneous piezoelectric materials. The radial integration
method is implemented to compute the corresponding domain
integrals. An explicit time-stepping scheme is obtained to
compute the unknown boundary data. An iterative algorithm
is developed to solve the non-linear semi-permeable electric
crack-face boundary condition. Numerical examples will be
presented and discussed to show the effects of the electric
crack-face boundary conditions, the material gradation and the
transient dynamic loadings on the dynamic intensity factors.
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II. PROBLEM STATEMENT

We consider a two-dimensional, continuously non-
homogeneous and linear piezoelectric cracked solid. In the
absence of body forces, free electric charges and applying the
quasi-electrostatic assumption, the cracked solid satisfies the
generalized equations of motion

σiJ,i(x, t) = ρδ∗JK üK(x, t), δ∗JK =

{
δjk, J = j; K = k,
0, otherwise,

(1)
and the generalized constitutive equations

σiJ(x, t) = ciJKl(x)uK,l(x, t), (2)

with
ciJKl(x) = Θ(x)c0iJKl, (3)

where ρ is the mass density, δ∗JK is the generalized Kronecker
delta and Θ(x) prescribes the spatial variation of the material
properties. The generalized displacements uI , the generalized
stresses σiJ and the generalized elasticity tensor c0iJKl are
defined by

uI =

{
ui, I = i (mechanical displacements)
ϕ, I = 4 (electric potential) , (4)

σiJ =

{
σij , J = j (mechanical stresses)
Di, J = 4 (electric displacements) , (5)

c0iJKl =


cijkl, J = j; K = k (elasticity tensor)
elij , J = j; K = 4 (piezoelectric tensor)
eikl, J = 4; K = k (piezoelectric tensor)
−κil, J = K = 4 (electric permittivity

tensor)

.

(6)
A comma after a quantity represents spatial derivatives while
a dot over a quantity denotes time differentiation. Lower case
Latin indices take the values 1 and 2 (elastic), while capital
Latin indices take the values 1, 2 (elastic) and 4 (electric).
Further the following initial conditions

uI(x, t = 0) = u̇I(x, t = 0) = 0 (7)

and the boundary conditions on the external boundary

uI(x) = ūI(x), x ∈ Γu, (8)

tI(x) = t̄I(x), x ∈ Γt (9)

are considered. Here Γt and Γu are the external boundaries
where the generalized tractions tI and the generalized dis-
placements uI are prescribed.

On the upper and the lower crack-faces Γc+ and Γc−
self-equilibrated generalized tractions are considered. Three
different electric crack-face boundary conditions are applied
[9], [15]. Taking into account the electric permittivity κc =
κr · 8.854 · 10−12C/(Vm) of a medium inside the crack, the
semi-permeable crack-face boundary condition may be defined
by

Dn(x ∈ Γc+ , t) = Dn(x ∈ Γc− , t) =

−κc
ϕ(x ∈ Γc+ , t)− ϕ(x ∈ Γc− , t)

un(x ∈ Γc+ , t)− un(x ∈ Γc− , t)
, (10)

with κr being the relative electric permittivity of the medium
inside the crack, un and Dn are the normal components of the
displacements and electric displacements on the crack-faces.
If both crack-faces are considered as electrically impermeable,
which means κc = 0, the Eq. (10) simplifies to

Dn(x ∈ Γc+ , t) = Dn(x ∈ Γc− , t) = 0. (11)

In the opposite case both crack-faces are treated as electrically
permeable, which implies κc =∞, Eq. (10) reduces to

Dn(x ∈ Γc+ , t) = Dn(x ∈ Γc− , t),

ϕ(x ∈ Γc+ , t)− ϕ(x ∈ Γc− , t) = 0. (12)

The generalized crack-opening-displacements can be written
as

∆uI(x, t) = uI(x ∈ Γc+ , t)− uI(x ∈ Γc− , t). (13)

III. TIME-DOMAIN BOUNDARY INTEGRAL EQUATIONS

The initial boundary value problem is formulated as BIEs
in the following. Fundamental solutions for functionally
graded piezoelectric materials are not available. Therefore, a
boundary-domain integral formulation is derived. Using the
procedure shown in Gao et al. [6] the BIEs can be expressed
by

cIJ ũJ(x, t) =∫
Γ

[
uGIJ(x, y, t) ∗ tJ(y, t)− tGIJ(x, y, t) ∗ ũJ(y, t)

]
dΓy

+

∫
Ω

hGIJ(x, y, t) ∗ ũJ(y, t)dΩy. (14)

In Eq. (14 ) an asterisk ”∗” denotes the Riemann convolution
approximated by the convolution quadrature method [7] and
ũJ(x, t) = Θ(x)uJ(x, t) are the normalized displacements.
The free term cIJ is defined by cIJ = 1

2δIJ for the source
point x on the smooth boundary Γ and cIJ = δIJ for x
inside the domain Ω. Further uGIJ(x, y, t) is the generalized
displacement fundamental solution and

tGIJ(x, y, t) = c0qIKreq(y)uGKJ,r(x, y, t), (15)

hGIJ(x, y, t) = c0qIKrΘ,q (y)uGKJ,r(x, y, t). (16)

The Laplace-domain fundamental solutions for homogeneous
and linear piezoelectric solids can not be expressed in an
explicit form [13]. By applying the Radon-transform technique
they can be represented in the 2D case by a line integral over
the unit-circle as

uGIJ(x, y, p) =
1

8π2

∫
|n|=1

M∑
m=1

PmIJ
ρc2m

Ψ

(
p

cm
,
∣∣n · (y− x)

∣∣)dn,

(17)

Ψ(ξ) =
[
eξEi

(
− ξ) + e−ξEi

(
ξ)
]
,

ξ =

(
p

cm

∣∣n · (y− x)
∣∣), (18)

where p, Ei, n, cm and PmIJ are the Laplace parameter, the
complex exponential integral, the wave propagation vector,
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the phase velocities of the elastic waves and the projection
operator as given in [13], [14]. The fundamental solutions can
be divided into a static part and a dynamic part

uGIJ(x, y, p) = uSIJ(x, y) + uDIJ(x, y, p). (19)

IV. NUMERICAL SOLUTION PROCEDURE

To solve the boundary integral equations (14) numerically
the boundary Γ is discretized by quadratic elements. Quarter-
point elements are used at the crack-tips to describe the
local square-root behavior of the crack-opening-displacements
properly. The domain integrals are transformed into equivalent
boundary integrals with the radial integration method [5] to
avoid an additional mesh. For this purpose only internal nodes
inside the domain Ω are required. A fourth order spline-type
radial basis function is used.

To get a solvable system of linear algebraic equations the
boundary integral equations (14) are written for all boundary
nodes and internal nodes. After temporal and spatial discretiza-
tions the two systems of equations are obtained

CũKb = UStK − TS ũKb + HS ũKi

+
K∑
k=1

[
UD;K−k+1tk − TD;K−k+1ũkb + HD;K−k+1ũki

]
,

(20)

IũKb = UStK − TS ũKb + HS ũKi

+
K∑
k=1

[
UD;K−k+1tk − TD;K−k+1ũkb + HD;K−k+1ũki

]
.

(21)

Here, ub and t are the vectors of the generalized displacements
and tractions on the whole boundary, while ui is the vector
of the generalized displacements inside the domain. U, T
and H are the corresponding matrices of the Laplace-domain
fundamental solutions arising in Eq. (14). The superscripts
S and D indicate the static and the dynamic parts. The
diagonal matrices C and I result from the free term on the
left side. Both equations can be summarized into a common
system of linear algebraic equations. By invoking the boundary
conditions (8) and (9), the following explicit time-stepping
scheme is obtained

xK = (G1)−1

[
F1yK +

K−1∑
k=1

(
BK−k+1tk − AK−k+1uk

)]
,

(22)
where yK defines the vector of the prescribed boundary data
and xK is the vector of the unknown boundary and interior
data.

Since special crack-tip shape functions are implemented in
the present time-domain BEM to describe the local square-root
behavior of the generalized crack-opening-displacements at the
crack-tips properly, the dynamic intensity factors are obtained
in a direct and accurate manner without special techniques

from the numerically computed generalized crack-opening-
displacements at the closest node to the crack-tip using KII(t)

KI(t)
KIV (t)

 =

√
2π

le
H

 ∆u1(le, t)
∆u2(le, t)
∆ϕ(le, t)

 . (23)

In the Eq. (23), le is the distance between the crack-tip and the
closest node, KI and KII are the mode-I and mode-II stress
intensity factors respectively, KIV is the electric displacement
intensity factor and the matrix H is defined in [14].

V. NUMERICAL EXAMPLES

To show the effects of the material gradation, the transient
dynamic loading and the crack-face boundary conditions on
the dynamic intensity factors, a numerical example is inves-
tigated. For the convenience of the presentation the dynamic
intensity factors are normalized by

K∗I (t) =
KI(t)

K0
, K∗II(t) =

KII(t)

K0
,

K∗IV (t) =
e22

κ22

KIV (t)

K0
, (24)

with K0 = σ0
√
πa and a being the half-length of an internal

crack. To measure the intensity of the electric impact, the
following loading parameter is introduced

χ =
e22

κ22

D0

σ0
, (25)

where σ0 and D0 are the loading amplitudes. Plain strain
condition is assumed in all computations.

As example let us consider a rectangular plate with a central
crack of length 2a subjected to a combined impact tensile
loading σ(t) = σ0H(t) and impact electric loading D(t) =
D0H(t) on the left and the right boundary, as shown in the
Fig. 1. H(t) denotes the Heaviside step function.

Fig. 1. A rectangular plate with a central crack and functionally gradation
in the x1-direction

The geometry is determined by h = 20.0mm, 2w = h and
2a = 4.8mm. As material a piezoelectric Zirconate Titanate
(PZT-5H) is chosen, which has the linear material constants

c011 = 126.0 GPa, c012 = 84.1 GPa,

c022 = 117.0 GPa, c066 = 23.0 GPa,

e0
21 = −6.5 C/m

2
, e0

22 = 23.3 C/m
2
,

e0
16 = 17.0 C/m

2
,

κ0
11 = 15.04 C/(GVm), κ0

22 = 13.0 C/(GVm) (26)
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and the mass density ρ = 7500 kg/m3. The gradation of the
material in the x1-direction is defined by the exponential law

cIJ(x) = c0IJeβx1 , β =
1

2w
ln [α] , α =

cIJ(x1 = 2w)

c0IJ(x1 = 0)
.

(27)
The spatial discretization of the external boundary is done
by an element-length of 2.0mm and the crack is divided
into 6 elements. Inside the domain uniform distributed nodes
with the distance of 2.0mm are used. A normalized time-
step of cL∆t/h = 0.04 is used in all computations, where
cL =

√
c022/ρ is the quasi-longitudinal wave velocity. The

numerical results of the developed TDBEM obtained for the
electromechanical loading χ = 0.5 and different material
gradations α are shown in Figs. 2 and 3.
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Fig. 2. Normalized dynamic intensity factors of Tip A for the electrome-
chanical loading χ = 0.5 and different gradations α

Due to the quasi-static assumptions of the electric field,
which implies that the cracked plate is immediately subjected
to an electric impact, the normalized dynamic intensity factors
start from a non-zero value for the investigated combined
loading. The elastic waves induced by the mechanical impact
need some time to reach the crack and after that the dynamic
intensity factors increase rapidly until their maximum peak
values. The dynamic mode-II intensity factor vanishes, since
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Fig. 3. Normalized dynamic intensity factors of Tip B for the electrome-
chanical loading χ = 0.5 and different gradations α

no shear stress components are induced by the investigated
loading. Both Figs. 2 and 3 indicate a significant influence of
the functionally gradation on the normalized dynamic mode-
I and mode-IV intensity factors. The dynamic mode-I stress
intensity factor for the lower crack-tip is larger than that for the
upper crack-tip in the case of the functionally graded material.
In contrast, the mode-I stress intensity factors are identical
at both crack-tips for the homogeneous material due to the
symmetry conditions.

The normalized dynamic intensity factors obtained by the
present time-domain BEM for the impermeable (ip.), perme-
able (p.) and semi-permeable (sp.) crack-face boundary con-
ditions are presented in Fig. 4. Vacuum is assumed inside the
internal crack for the computations using the semi-permeable
crack-face boundary condition.

The electric permittivity has a significant influence on the
normalized dynamic mode-IV. By applying the permeable
crack-face boundary condition the crack does not exist for the
electric field and therefore the curve of the mode-IV intensity
factor has a similar behavior as that for the mode-I. In contrast,
the mode-IV intensity factor depends only weakly on the time
for the impermeable crack-face boundary condition. In a static
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Fig. 4. Comparison of the normalized dynamic intensity factors for different
electric crack-face boundary conditions

loading case, the impermeable crack-face boundary condition
leads to the strongest possible electric crack-tip field, while
an opposite tendency could be induced by a dynamic loading.
As well expected, the results of the semi-permeable crack
are between the bounds given by the impermeable and the
permeable crack-face boundary conditions.

VI. CONCLUSIONS

An improved 2D transient dynamic crack analysis in func-
tionally graded piezoelectric solids is presented in this paper.
A time-domain BEM is developed for this purpose. The
spatial discretization is performed by the collocation method
while the convolution quadrature method is adopted for the
temporal discretization. The domain integrals are transformed
into equivalent boundary integrals by the radial integration
method. An iterative algorithm is implemented to solve the
non-linear electrically semi-permeable crack-face boundary
condition. Numerical examples demonstrate the suitability of
the present time-domain BEM for the transient dynamic crack
analysis. The results indicate the necessity of the non-linear
electric crack-face boundary conditions for a more realistic
crack analysis.
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