
 

A fast algorithm for sample entropy computation by 
neighborhood matrix iteration 

Abstract—In order to reduce the computational complexity of 
traditional sample entropy, a fast sample entropy algorithm is 
proposed based on neighborhood matrix. The fast algorithm does the 
calculations in binary, and the neighborhood matrix of the high-
dimensional signal vector is deduced from the neighborhood matrix 
of the lower dimensional signal vector. Compared with the 
traditional algorithm, the computation time has been significantly 
reduced by using the fast sample entropy algorithm.1 
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I. INTRODUCTION  
AMPLE entropy is a measure of the complexity of time 
series, which was proposed by several nonlinear dynamics 
researchers at the end of last century [1-2]. The sample 

entropy is more consistent than the approximate entropy, and 
has been successfully applied in the analysis of the 
complexity of the signal sequence. The sample entropy has 
the following properties: (1) The sample entropy does not 
compare its own data segment [3-4]. It is the exact value of 
the negative mean natural logarithm of the conditional 
probability. So, the calculation of the sample entropy does not 
depend on the data length. (2) The sample entropy has a better 
consistency [5]. (3) The sample entropy is insensitive to lost 
data [6]. Even if the data is lost as much as 1/3, the effect on 
the sample entropy is still small. 

At present, the faster algorithm for calculating the sample 
entropy is presented by using a skip-list [7-9] and k-d tree 
[10-12] data structure, which counts the number of the 
matched pairs of the input time series. The effectiveness of 
this approach depends on the efficient programming of k-d 
tree, so it can’t be widely used subject to the programming 
complexity. A fast sample entropy iterative algorithm based 
on neighborhood matrix is proposed because the traditional 
sample entropy cost is high and the computation time is long. 
In this paper, the traditional sample entropy and fast sample 
entropy principle are introduced. Finally, the experimental 
results show that the fast sample entropy algorithm is more 
efficient than the traditional method. 
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II. THE SAMPLE ENTROPY  
The Sample Entropy is proposed by Richman [13]. It is an 

improved method of complexity, which provides a 
dimensionless index representing signal characteristics by 
measuring the complexity of the sequence [13,14]. The more 
complex signal sequence, the greater the corresponding 
sample entropy. The Sample Entropy is similar to the 
approximate entropy [15-17], but it solves the problem of 
statistical inconsistency in approximate entropy, and reduces 
the error of approximate entropy though its principle of 
calculation. 

The algorithm of computing sample entropy is as blow 
[18]: 
Step 1. Form a series of vector x(1)~x(N-m+1), whose length 
is m, defined by: 
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Step 2. The distance d[X(i), X(j)] between two vectors X(i) 
and X(j) is defined as the maximum absolute difference in the 
scalar components of X(i) and X(j). 
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Step 3. Define Nm(i), the number of vector X(j) ( j=1~N−m 
+1, j≠i ) such that the distance between the vectors X(j) and 
the generic vector X(i) is lower than r. 

Define Bi
m (r) as: 
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Step 4. The actual logarithmic average over all the vectors of 
the Bi

m (r) probability is computed as: 
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Step 5. Increase the length of vector to m+1. Repeat steps 1 to 
4 and find Bi

m+1 (r). 
Step 6. Theoretically, the sample entropy is defined as: 
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In practice, the length of time series N is finite, therefore, 
we can only get the estimate result instead of precise result. 
When the length is N, estimation of SampEn denoted as: 

 ( ) ( ) ( )[ ]rrrmSampEn BB mm 1ln, +−=             (6) 
It is important for the calculation of sample entropy to 

determine the value of m and r, because the sample entropy 
values directly relate to the value of m and r. In this paper, we 
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take the dimension m=2 and 3, and the threshold value is set 
as r=0.12Std, where Std is the standard deviation of the time 
series x(i). 

It can be seen from the above that, for a sequence whose 
length is N, there are two cases when calculating Bi

m (r). 
When m=2, it needs 2×CN

2 difference-comparison operations; 
when m=3, it requires 3×CN

2 difference-comparison 
operations. Totally, the traditional sample entropy requires 
5×CN

2 difference-comparison operations. This method has a 
large amount of calculation and a long running time, so it 
needs to be improved. 

III. A FAST ALGORITHM FOR SAMPLE ENTROPY COMPUTATION  
According to step 2 and step 3 of the traditional sample 

entropy algorithm, the vector distance can be transformed into 
binary form: for i, j, if |x(i+k)-x(j+k)|<r, (i≠j, k=0,…,m-1)  , 
the result is 1, otherwise, the result is 0. It compares the 
distance between the sequence points in the signal sequence 
and the size of the similarity tolerance, and the result is 
transformed to binary [19]. Then, neighborhood   matrix is 
formed, which contains all the comparison result between Xi 
and Xj. And the neighborhood matrix of the high-dimensional 
signal vector can be deduced recursively from the 
neighborhood matrix of the low-dimensional signal vector. In 
this way, floating point calculation can be translated into 
logical and integer operations, which can greatly speed up the 
computation [20]. The steps of the proposed fast algorithm are 
as follows: 

(1) Form a series of vector x(1)~x(N-m+1), where m=1. 
(2) Defining d1(i,j) as the element of the neighborhood 

matrix between X(i) and X( j): 
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(3) Obtain Bi
1 (r) as the neighborhood matrix of the one-

dimensional signal vector.  
(4) When m=2, the neighborhood matrix of the two-

dimensional signal vector can be deduced through the one-
dimensional signal vector: 
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(5) When m=3, the neighborhood matrix of the three-
dimensional signal vector can be deduced through the two-
dimensional signal vector: 
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The general formula for the neighborhood matrix of the m-
dimensional signal vector deduced the neighborhood matrix 
of the (m-1)-dimensional signal vector is as follows: 
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(6) Average Bi
m (r): 
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(7) Sample entropy is computed as: 
( ) ( ) ( )[ ]rrrmSampEn BB mm 1ln, +−=              (15) 

In the fast algorithm for a sequence with length N, it only 
needs CN

2 difference-comparison operations to get the 
neighborhood matrix. The neighborhood matrix of the 
multidimensional signal vector can be deduced through the 
(m-1)-dimensional vector of the neighborhood matrix. So, the 
fast algorithm reduces the difference-comparison operations 
to 1/5 times of the original method. Compared with the 
traditional sample entropy calculation, the fast method 
obviously improves the computation efficiency.  

IV. EXPERIMENTAL RESULT ANALYSIS  
In this study, MATLAB R2016a is used as the 

programming environment. The operating system is Windows 
10, ultimate (64 bit), the processor is Intel(R) Core(TM) i7-
7500U Processor, and the installed memory is 8.00GB. The 
speech signals are divided into frames, and the sample 
entropy of each frame is calculated. The frame length is 500 
and the frame shift is 50. For each single phoneme signal, we 
have calculated the sample entropy of each frame. The 
experimental results are shown from Fig. 1 to Fig. 7.  
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Fig. 1. The results of /v/ and /u/ 
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Fig. 2. The results of /ʃ/ and /s/ 
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Fig. 3. The results of /o/ and /m/ 
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Fig. 4. The results of /i/ and /h/ 
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Fig. 5. The results of /f/ and /u/ 
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Fig. 6. The results of devoiced /i/ and devoiced /e/ 
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Fig. 7. The results of /a/ and devoiced /a/ 

 
 
 
Here is a Summary of the running time of each of the above 

sounds in Table 1 for comparison. 
 

Table 1. The running time of each signal speech 

Speech 
signal 

traditional sample 
entropy algorithm 

(seconds) 

fast sample entropy 
algorithm  
(seconds) 

/v/ 3.873711 0.133045 
/u/ 3.765491 0.132110 
/f/ 3.724067 0.152851 
/ʃ/  3.800903 0.146402 
/o/ 3.742444 0.129946 
/m/ 3.650981 0.145057 
/i/ 3.684277 0.137326 
/e/ 3.698717 0.125836 
/a/ 3.715260 0.129309 
/s/ 3.741394 0.133130 
/h/ 3.718233 0.127741 
/f/ 3.723706 0.127774 

Devoiced-/i/ 3.837166 0.132441 
Devoiced-/a/ 3.709344 0.124831 
Devoiced-/e/ 3.727959 0.127638 

 

The following conclusions can be drawn from the 
experimental results: the fast sample entropy algorithm runs 
each single phoneme signal is about 0.13 seconds, and runs 
“philosophy” for 14.888 seconds. Under the same 
environment, the running time of the traditional algorithm is 
about 3.8 seconds. The fast sample entropy algorithm is about 
30 times faster than the traditional algorithm. 

Then the experimental results of the English word 
“mathematics” and the word “philosophy” run by the fast 
sample entropy algorithm are shown in the following figures, 
where the frame length is 500 but the frame shift is 1: 
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Fig. 8. The result of the “mathematics” 

 

0 1 2 3 4 5

10
4

-1

0

1
original speech signal of"philosophy"

0 1 2 3 4 5

10
4

0

1

2
the sample entropy of "philosophy"

 

Fig. 9. The result of the “philosophy” 

The fast sample entropy algorithm runs the English word 
“mathematics” for 20.505 seconds, and runs “philosophy” for 
14.888 seconds. The running time of each frame is 0.041 and 
0.029 seconds. Under the same environment, the running time 
of the traditional algorithm is 1643.501821 seconds and 
1245.634468 seconds. From the above results, it can be seen 
that the fast algorithm reduces the computation time by 80 
times and improves the computation efficiency. 

V. CONCLUSION  
Numerical calculation is transformed to binary in the fast 

algorithm, and the neighborhood matrix of the high-
dimensional signal vector is deduced from the neighborhood 

matrix of the low-dimensional signal vector. The algorithm 
analysis and experimental results show that the improved 
algorithm can shorten the computation time and improve the 
efficiency of the calculation, so that the sample entropy can be 
used in real-time processing applications. 
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