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Abstract 

A modified Tikhonov-Phillips regularization method based on 

explicit preconditioned Conjugate Gradient and approximate 

inverse preconditioners for solving inverse problems is 

presented.  Several algorithmic procedures using termination 

criteria for explicit preconditioned CG (truncated EPCG) and 

the shifted structure of linear systems (shifted EPCG) are 

presented. A synoptic theoretical analysis on the convergence 

of modified TP method is presented. The numerical solution of 

a class of selected inverse problems indicates the performance 

of the proposed algorithms. 
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I. INTRODUCTION  

 

The concept of well-posed and ill-posed problems has 

been introduced by Hadamard (1923). The well-posed 

problems have unique solutions depending on various 

system parameters and arbitrary small perturbation data 

parameters cannot cause arbitrary large solution 

perturbations. The ill-posed problems often arise in the 

form of inverse problems in various areas of science and 

engineering in particular when the determination of 

internal structure of physical systems from system’s 

measured behaviour or the unknown input gives rise to 

measured output signals (computerized tomography, 

image restoration, signal processing, electromagnetic 

scattering, geophysics, optics, acoustics, astrometry) 

(Groetsh, 1993). 

 A well-posed mathematical model can have a unique 

solution stable with respect to noise in the input data, 

otherwise the problem is characterized as ill-posed 

problem and is unstable (Hadamard, 1923-1932). In 

computer mathematics and its applications there are 

several ill-problems and their corresponding numerical 

algorithms are often divergent. In order to overcome 

such difficulties special regularization techniques can be 

used taking advantage of a priori information (Whitney, 

2009). A class of regularization techniques can be 

designed for solving ill-posed inverse problems leading 

to regularized learning algorithms. These algorithms are 

easily implemented kernel methods having a common 

derivation, with different computational and theoretical 

properties. 

 The direct problems of natural sciences include the 

well-posed problems having unique solutions intensive 

to small changes in these problems. The inverse 

problems have the characteristic that aim to find the 

cause of given effects or finding laws of evolution given 

the cause and effect. There are indirect measurements 

such as determination of internal characteristics from 

measurements on their boundaries, the determination of 

system parameters from input/output measurements, the 

reconstruction of past events from measurements of 

present state. These inverse problems are often ill-posed 

and frequently are modelled by integral equations of the 

first kind. Consequently, research work has been focused 

in the study of integral equations, inverse problems and 

ill-posed problems (Groetsch, 1993). 

 

III. REGULARIZATION TECHNIQUE: CONCEPTS AND 

APPLICATIONS 

 

 Computing methodologies studying several topics, 

such as inverse problems, deterministic inverse problems 

(regularization, worst case convergence, no assumptions 

on noise), statistics (estimators, average case analysis, 

noise is random variable, specific structures), Bayesian 

inverse problems (posteriori distribution, specific 
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assumptions on noise and prior), control theory 

(F(control)=state, convergence of state not control, no 

assumptions) can be interesting research topics using 

regularization techniques (Kindermann, 2006). 

 In order to solve an ill-posed problem in a stable 

manner a priori information can be used, i.e. to construct 

a regularization solution to the given problem. This a 

priori information as smoothness of the solution 

generates the so-called Tikhonov regularization 

variational technique, allowing to obtain stable 

approximate solutions for ill-posed problems by 

stabilizing functional (Whitney, 2009; Kindermann, 

2006; Hofman, 1996). 

 Regularization techniques are processes of 

introducing additional information for solving ill-posed 

problems or prevent over-fitting in the fields of machine 

learning and inverse problems ith application in general 

in many areas of mathematics, statistics and computer 

science (Neumaier, 1998; Bühlmann and Van De Geer, 

2011). Regularization techniques can be used in the field 

of classification, where empirical learning of classifiers 

and learning from finite data sets, are underdetermined 

problems. 

 

III.  TIKHONOV-PHILLIPS REGULARIZATION 

METHODS FOR INVERSE PROBLEMS 

 In several scientific fields, such as least squares 

methods, integral equations etc., simple forms of 

regularization can be used to learn simpler models, 

induce models to be sparse, introduce group structures in 

learning problems. These processes are known as 

Tikhonov regularizations (Tikhonov, 1963) and are also 

used in non-linear regularization (total variation 

regularization) for fitting data sets and reducing solution 

norms. In general regularization methods can be 

motivated as computational techniques improving the 

generalizability of learned models. 

 Several basic principles lead to regularization, such 

as iterative optimization, projection, penalized 

minimization, enforcing solution stability. The main idea 

of using regularization techniques is used in machine 

learning (filter functions; function approximation in 

signal processing and approximation theory; neural 

networks, radial basis function) and statistics problems, 

while the solution of inverse problems is related to the 

use of Tikhonov regularization 

 One of the well-known regularization techniques for 

solving ill-posed inverse problems is the Tikhonov-

Phillips method (Tikhonov et al., 1995; Phillips, 1962). 

Tikhonov regularization can be used for solving linear 

discrete ill-posed problems. Note that a well-posed 

problem has a unique solution that changes as the initial 

conditions changed. Regulation process can stabilize ill-

posed problems giving accurate approximate solutions 

including prior related information. Tikhonov 

regularization can also produce solutions in the case that 

the given large data sets contain statistical noises (ridge 

regression). 

Disadvantages of Regularization 

The disadvantages of Tikhonov regularization include 

the following: 

(i)  when this technique is used with Morozov’s 

discrepancy principle (Anzengruber and 

Ramlau, 2009; Scherzer, 1993) there is 

repeated matrix manipulation for computing 

the solutions. The approximate solution uses 

an inverse (should exist) and start Newton’s 

iterations with proper selection of 

parameters (overestimated parameter). 

(ii)  in the process there is reconstruction non-

smooth or discontinuous solutions, where 

different penalty terms should be used. 

IV. THE EXPLICIT PRECONDITIONED CONJUGATE 

GRADIENT METHOD 

 

 During the last decades, considerable research 

effort has been directed to the solution of complex linear 

and nonlinear systems of algebraic equations by using a 

class of iterative methods. This class includes the 

conjugate gradient method and its hybrid multi-variants 

(Reid, 1971; Evans and Lipitakis, 1980; Axelsson 1985; 

Saad, 1985; Lipitakis and Gravvanis, 1992; Benzi., 

1988-2002; Gravvanis, 1995; Saad and Van der Vorst, 

2001). The explicit preconditioned conjugate gradient 

(EPCG) and approximate inverse have been efficiently 

used for solving large sparse linear systems with 

unsymmetric matrices of irregular structures (Saad, 

2001; Lipitakis, 2016-2017).  

 An Adaptive Explicit Preconditioned Conjugate 

Gradient (EPCG) method using the explicit approximate 

preconditioner can solve the problem 
1 min b AR x , 

where R is the sparse, non-singular QR factor, while the 

preconditioned CGLS method can solve the equations: 
TM R R , 

1  T T T TR A A R u R A b   and u Rx . 

Note that the factor Q cannot be stored, while the only 

additional computational work is solving the two 

equations    TR w v and Rz w . All the factorization 

processes are numerically stable. 
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 In order to compute efficiently the solution of 

the linear system Ax b , a modified Explicit 

Preconditioned Conjugate Gradient (mEPCG) method is 

applied in the following algorithmic form: 

 

Algorithm mEPCG (A, b, tol, x0, M*, x) 

Purpose: a modified EPCG method is used for solving a 

given system of linear equations  

Input: A is a symmetric and positive definite coefficient 

matrix, b is the right hand side vector, tol is the 

predetermined tolerance, 
0
x  is the initial guess, M* is 

the required preconditioner 

Output: x the solution vector  

Computational Procedure: 

Step 1: Given
0x , preconditioner M* 

Step 2: set 
0 0*r A x b            

Step 3:  solve M*y0 = r0  for y0         

Step 4: set 
0 0 , 0p y k             

Step 5: while 0kr              

 Step 5.1: compute a step length         

      ( * ) / (p * )T T

k k k k ka r y A p     

 Step 5.2:  update the approximate solution    

        
1 *k k k kx x a p       

 Step 5.3:  update the residual        

 
1 *A*k k k kr r a p              

 Step 5.4:  solve M* yk+1 = rk+1        

  Step 5.5:  compute a gradient correction     

      factor 
1 1 1( * ) / (r *y )T T

k k k k kr y     

 Step 5.6:  set the new search direction      

         1 1 1 *k k k kp y p      

 Step 5.7:  set k=k+1           

Step 6: end (while) 

 

This algorithm requires the additional work that is 

needed to solve the linear system  

  nn

* r = r~ M            (4.1) 

once per iteration. Therefore, the preconditioner M* 

should be chosen such that can be done easily and 

efficiently. 

The preconditioner M*=G that results in a 

minimal memory use. The storage requirement was the 

vectors r, x, y, p and the upper triangular matrix G, in the 

data implementation. The convergence rate of 

preconditioned CG is independent of the order of 

equations and the matrix vector products are orthogonal 

and independent. The preconditioned CG method in not 

self-correcting and the numerical errors accumulate 

every round. Therefore, to minimize the numerical errors 

in the EPCG, it was used double precision variables at 

the cost of memory use. Note that in the case of 

undertermined linear systems the left preconditioned 

method can be applied, while if there is an 

overdetermined linear system then the right 

preconditioned can be applied (Saad, 1988). 

 

V. TIKHONOV-PHILLIPS REGULARIZATION 

METHOD FOR ILL-POSED PROBLEMS  

 

Several ill-posed problems arise in large variety of 

applications when the considered problem is modelled 

by integral equations of the first kind with smooth 

kernels arising from inverse problems [medical images 

(Louis, 1992; Natterer, 1986), scattering problems 

(Colton and Kress, 1992), geophysics problems 

(Garmany, 1979), applications in differential equations 

(Kunisch and Sachs, 1992)]. 

 The Tikhonov-Phillips regularization requires the 

solution of  

     
 yAαΙ)xΑ(Α **

,    (5.1) 

for several values of α. This system can be solved by 

CG-type methods, by selecting proper termination 

criteria and solving various shifted structures of system 

(5.1) for different values of parameter α. 

The inverse problems can be modelled by the system 

     yAx  ,         (5.2) 

where A is a compact operator between Hilbert spaces, x 

is the searched quantity and y describes the given data 

occurring from measurement of limited precision 

(perturbed data y+ with known error bound  

     
  yy        (5.3) 

The inverse problem is ill-posed when A is not 

continuously invertible or equivalently the set  

     }|{  yAxXx     (5.4) 

is inbounded quantity. 

The Tikhonov-Phillips (TP) regularization technique 

(Tikhonov and Yagola, 1998) results when the system 

(5.2) is replaced by  

     
 yAx ** )(  ,     (5.5) 

where α is the regularization parameter and the TP 

solution is 

    
  yAaIAAxa

*1* )(      (5.6) 

Note that a large value of α suppresses the data errors 

but increases the approximation errors, while the 

computational complexity of the corresponding 
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algorithm is determined by the efficiency of the method 

used for solving the operator equations (5.5). 

 

Several fast CG-type methods for determining the 

optimal value of parameter α and computing the TP 

solution. These methods include (i) a truncated CG 

method solving approximately the equation (5.5) and (ii) 

a shifted CG method based on the three term recurrence 

Lanczos process for computing the solution xα
+ 

(Frommer and Maas, 1999). 

 Let us consider the TP regularization for solving 

equation (5.2), i.e.  

      yAxaIAA *)( *     (5.7) 

where  yy , and A is a compact 

operator between Hilbert spaces X, Y (Engl et al., 1996; 

Hanke and Hansen, 1993; Louis, 1992). 

Consider x* the exact solution of equation (5.2)  with 

unperturbed data. Then the error estimate states  

   
v

a caaxx   ])2/[(* 2/1     (5.8) 

showing that small values of parameter α leads to strong 

amplification of data error (Neubauer, 1988; Maas and 

Rieder, 1997). 

The theoretically optimal value for α of the order  

    αopt =  Ο (ε[2/(2ν+1)]).       (5.9) 

Since the exact value of ν is unknown a priori the type of 

parameter has to investigated (Neubauer, 1988). The 

selection of parameter α can be chosen according to 

Morozov discrepancy principle, such as 

    ryAxa  
, where r>1,  (5.10) 

leading to optimal convergence rate as ε→0 (Maas and 

Rieder, 1997). 

 The TP regularization methods can be implemented 

by using a class of algorithmic methods consisting of 

two nested iterations: the outer iteration running over 

different values of parameter α and the inner iteration 

(CG iteration) solving the regularized linear system 

(5.1). 

 

VI. Modified TP Regularization Algorithms 
 

 Several algorithmic implementations of the TP 

regularization method have been presented (Frommer 

and Maas, 1999). In the following a class of modified TP 

regularization algorithms based on the explicit 

preconditioned conjugate gradient and approximate 

inverse preconditioners is presented. 

The modified standard TP regularization algorithm with 

EPCG can be described as follows: 

 

 

Algorithm mTPR-1 (α0, q, r, x) 

Purpose: This algorithm applies the TP regularization 

with truncated EPCG  

Input: parameter α0, q, residual r 

Output: solution x* 

Computational Procedure:   

Step 1: Choose α0, q, r 

Step 2: For k=0,1,… until convergence  

 Step 2.1: Compute αk,   

 Step 2.2: Solve 
 yAxIaAA k

*)*( using EPCG 

method. 

Step 3: End 

 

Note that the termination criterion can be  

    ryAxa  
         

The CG-type methods with appropriate termination 

criteria yield regularization methods by themselves 

(Hanke, 1995). 

Other related algorithmic variants requiring considerably 

fewer computational operations (matrix-vector 

multiplications) will be presented. 

 

Algorithm mTPR-2 (α0, q, r, x*) 

Purpose: This algorithm applies the TP regularization 

with truncated EPCG  

Input: parameter α0, q, residual r 

Output: solution x* 

Computational Procedure:   

Step 1: choose α0, q, r 

Step 2: set 0*

1


a
x  

Step 3: for k=0,1,… until convergence ryAxa  
 

 Step 3.1: compute             

 Step 3.2: set 
*

)1(

0

 kaak xx          

 Step 3.3: perform EPCG iteration on       

     
 yAxIaAA k

*)*(       

  Step 3.3.1: check for each iterate 
j

akx
 the 

condition 
v

a caaxx   ])2/[(* 2/1  holds or if the 

iteration has converged           

 Step 3.4: call the last EPCG iterate 
*

akx      

Step 4: end               

  

In the case that )( *AA is (nearly) singular, then 

)( * aIAA   is ill-conditioned when the value of 

parameter α is small. 
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Another more stable algorithm than the standard EPCG 

implementation for the regularized system can be 

described as follows: 

 

Algorithm mEPCG-TPR-3 (x0, α0, q, r, x*) 

Purpose: This algorithm applies the TP regularization  

         with truncated EPCG  

Input: initial vector x0, parameter α0, q, residual r 

Output: solution vector x* 

Computational Procedure: 

Step 1: choose x0 ,             

Step 2: compute z0 = y-Ax0; r0 = A* z0 – α x0    

Step 3: set p0 = r0            

Step 4: for j =0,1,…,Nmax /until convergence/ 

 Step 4.1: qj = A pj          

 Step 4.2: βj = (rj , rj) / [(qj , qj ) + α (pj , pj)]  

 Step 4.3: xj+1 = xj + βj pj        

 Step 4.4: zj+1 = zj -βj qj         

 Step 4.5: rj+1 = A* zj+1 – α xj+1      

 Step 4.6: wj = (rj+1 , rj+1) / (rj , rj)      

 Step 4.7: pj+1 = rj+1 + wj pj        

Step 4: end              

 

The algorithm mEPCG- TPR- 3 is more stable than the 

modified standard EPCG algorithm for the regularization 

system since updates recursively the quantity 

jj Axyz  
 rather than the EPCG residuals, requiring 

only the computation of the norm ||zj||. 

The shifted structure of systems (5.1) can be used by 

considering the general linear system 

    Mx = b,           (6.1) 

where M is symmetric, positive definite matrix. Then, 

the following TP regularization with modified EPCG 

method for the shifted system can be used: 

 

Algorithm TPR-SHIFTED MEPCD-4 (u0, α0, q, r, u*) 

Purpose: This algorithm applies the TP regularization  

           with shifted EPCG  

Input: initial vector u0, parameter α0, q, residual r 

Output: solution vector u* 

Computational Procedure:   

Step 1: for maxk ,…0,1,=k  

 Step 1.1: set 
k

k qaa 0 , 00 akx        

 Step 1.2: set 
 yu*

0 ; compute 
*

0

**

0 u A = v  

 Step 1.3: set ,β/ u = ,β/  v= v, 0

*

000

*

00

*

00 uv  

 Step 1.4: set 0, 1*

0

00  uvrp akak ,      

 Step 1.5: for j=0,1,… until convergence     

    then the j-th Lanczos step/      

   Step 1.5.1: set ),(, jjjjj qqdAvq   

   Step 1.5.2: compute 1

*

1   jjjjjj uudqu   

  Step 1.5.3: set 
*

1

**

1   jj uAv         

  Step 1.5.4: compute
*

11   ii v ,       

  Step 1.5.5: compute vj+1 = vj+1*/ βj+1;  

      u j+1 = uj+1*/ βj+1  

 Step 1.6: for k=0,1,…, kmax ,         

     if the system  has not converged   

     then compute (j+1) EPCG iterate and  

       check for convergence    

Step 2: end 

 

VII. ON THE CONVERGENCE OF MODIFIED 

TP REGULARIZATION METHOD 

 

 In this section a synoptic theoretical analysis on the 

convergence rate of modified TP regularization method 

is presented. A similar analysis has been given for the 

case of TP regularization methods (Frommer and Maass, 

1999). 

 Let us consider a class of inverse problems 

mathematically modelled by the relationship 

       A x = y,        (7.1) 

where A denotes a compact operator between Hilbert 

spaces X, Y, i.e. A: X→Y, x is the solution vector and y 

is the set of given data arising from measurements with 

limited precision, i.e. perturbed data with known 

available error bounds, i.e. 

      yy         (7.2) 

      yAxx |      (7.3) 

is unbounded, and the solution of the instability of the 

inverse problem requires regularization methods. In this 

case the equation (1.1) can be replaced by  

     
 yAx ** )(  ,     (7.4) 

where α is the regularization parameter, while the TP 

solution (1.4) can be denoted by  

    
 yAaIAAx a *1*, )[      (7.5) 

The convergence rate of the modified TP regularization 

method is governed by the following theorem: 

 

Theorem 1: Let us assume that A is a compact 

injective* operator and let 
ax ,

 denotes the solution of 

the equation of (7.5). Then for an arbitrary xϵX it holds 

    
ayxyx ,,   ,  (7.6) 

where  

   
  yAx **, )(     (7.6a) 
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(*) Note that the term injective refers to functions 

preserving distinctness, i.e. never maps distinct elements 

of its domain to the same element of its codomains.   

 

 Proof 

 

 Let us consider },,{ nnn vu   be a generalized 

eigenvalue decomposition (svd) of A: X→Y, i.e. un is an 

orthogonal basis of X, and vn is an orthonormal system 

in Y such that nnn vAu   and 
nnn uvA *
 The 

singular values n  are nonnegative and 0n  for 

compact operators A. Then,  

    



0n

zAz n



 , nn vu      (7.7) 

Since 
22212 ][][   

     (7.8) 

with α, μ>0 and  ]2/[1]/[1 2/11   
  (7.9) 

we have that  

 auzaAz n

n

n 4/},][{
22

0

22
 



   (7.10) 

In the case that A is injective, then we have that 

    



0

,
n

nn uuzz


     (7.11) 

and  

 

2

0

22
2

* ,)()( 



n

nn uzazaIAA


  (7.12) 

from which we obtain  

   ]2/[})({ 2/1* azaIAAAz    (7.13) 

From these relationships the conclusion of the theorem 

easily follows■ 

 

 Let λmin and λmax denote the smallest and largest 

eigenvalues of )( *AA . 

After the normalization of A, we have λmax ≈ 1 and λmin ≈ 

0 and assuming that 

    1min  a       (7.14) 

the condition numbers of matrices )( * aIAA   can be 

computed as 

 aaaaIAAcond /1)]/()[()( minmax

*    

               (7.15) 

The number of EPCG iterations achieving a 

predetermined accuracy is proportional to the square root 

of condition number. If 
*N(k) is the number of EPCG 

iterative steps required on system k until convergence, 

then 
*N(k)  is proportional to 1/ (α1/2), and 

kqc ]/1[N(k) 2/1*  . 

Then,  

 


 
kopt

k

kopt qqckN
0

2/12/11* ]1/1/[]1)/(1[)(   

               (7.16) 

which is more than 
*N(k) . 

 The algorithms represent a stable implementation of 

the EPCG method for the regularized system 

])[( ** yAxaIAA  . 

VIII.  MODEL PROBLEMS  

 

 The presented TP regularization algorithms based on 

EPCG methods can be applied to several ill-posed model 

problems (Frommer et al., 1999), such as  

(i) the solution of inverse ill-posed problem defined by  

A x = y, with the compact operator 


1

0

22 ),(]),1,0([])1,0([: dttkxLLTA  , 

where 









tfor

tfort
tsk





),1(

),1(
),(      (8.1) 

(ii) the hyperthermia treatment planning model (for 

non-invasive cancer therapy) is defined by: 


G

dyyxFxExE )],([)()(0 ,      (8.2) 

where  

)(/)]],())()([(

),()())(([),( 00

2

yyxyyyE

yxyEywyxF








,   (8.3) 

Force acoustic waves to travel on half, G is the volume 

containing the patient, ε is the dielectricity and  

  ]4/[][),(
2/

yxeyx
wyxi




     (8.4) 

This equation governs the electric field generated by 

antennae (Bolomey et al., 1990). 

 

(iii) Seismic travel time inversion model: The geophysical 

subsurface structure consists of measuring travel times 

of acoustic waves and acoustic pulses are emitted at 

points x on the surface while travel times are 

measured. The linear model force the acoustic waves 

to travel on half circles. Small deviations n(x,y) of 

expected linearly increasing velocity field is linked to 

measured data by the following integral equation: 
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   




0

, )]sin()cos([ djjxng hhiji  (8.5) 

where Δg denotes the difference between measured 

values and those predicted by linear model. The inverse 

problem of recovering n from the measured data is an ill-

posed one (Bortfeld, 1983). 

 
IX.    CONCLUSIONS 

 

 A modified Tikhonov-Phillips regularization method 

for solving inverse and ill-posed problems has been 

presented. This method is based on explicit 

preconditioned conjugate gradient methods and 

approximate inverse preconditioners. Several 

algorithmic procedures for implementing the truncated 

EPCG and shifted EPCG using termination criteria and 

shifted structures respectively are used A synoptic 

theoretical analysis on the convergence of modified TP 

method is presented. The truncated EPCG algorithm 

seems to perform better than the rest related algorithms. 

Future research work will be focused on modified 

Tikhonov-Phillips regularization methods for solving 

inverse and ill-posed 3D problems and in parallel 

computer environments. 
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