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Abstract—This work concerns the problem of
the supervised identification of the parameters
using a new mathematic tools based on a Positive-
definite kernel on a Hilbert space using a Gaussian
kernel. The input sequence is assumed to be in-
dependent and identically distributed (i.i.d), zero
mean and must be non-Gaussian. The developed
method is tested for different channel models.
Simulation examples are provided to verify the
performance of the developed method. The ob-
tained results chowed the efficiency of the devel-
opped method.

Indexing terms/Keywords: Wirless, net-
works, FIR channel, Reproducing Positive-
definite kernel, Hilbert space, Gaussian ker-
nel, code-division multiple access, MCCDMA,
Equalization, identification, wirless communi-
cation, Spreading, Reproducing Kernel Hilbert
Space.

I. INTRODUCTION

Wirless or cellular networks has been knowen
a great evolution, which requires operators
to improve their services offered. The vocals
conversations were a major challenge for re-
searchers, especially with the massive explosion
of internet traffic in fixed networks, which im-
poses an effective improvement of techniques
based on mobile network technology, several
services has been introduced, such as 2G system
including email, web access and online bank
transaction services. Then the 3G architecture
was held to solve the defects of the 2G, the
first is based on Direct Sequence Code-Division
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Multiple Access (DSCDMA)[1]. However, the
capabilities of 3G system remains insufficient
due to the needs expressed in permanence. The
4th Generation that supports high-speed remains
the solution adapted to the expectations of users.
our work is situeted on the 4th Generation.

The identification of channe parameters has
became a research topic mainly addressed by
researchers in the signal processing field. In this
work, we will apply a new method based on a
positive-definite kernel on a hilbert space [2]
[31[4] [5] using a gaussian kernel, in order to
identify the channel parameters.

II. POSITIVE DEFINITE KERNELS

Kernel methods constitute an imoptant feild
of machine learning for nonlinear function es-
timation [6]. Their popularity can be ascribed
to their simplicity, flexibility, and good perfor-
mance [?].

Kernel regression seeks an estimate of fj in
an RKHS 7, which is the space of functions
f:x — R defined as:

m

H = {f:f(m):Zaik:(x,a:i), acR
i=0
(h

The kernel map & : x xx — R is any function
defining a symmetric and positive semidefi-
nite N x N matrix with entries (K)o
k(z,z') Vz,z’ € R

Symmetry and positivity are required. For
any finite sequence zi,Ts,...,x, the matrix
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K of elements K(z;,x;) (matrix of Gram) is
positive definite : Vo € R" :a” Ka > 0.

In our work, we used the gaussien kernel
k(z,y) = exp[—%] in the estimation of
the functions on the parameters, but there are
many kind of kernelssuch as:

o Linear kernel
o Polynomial kernel
« Laplacian kernel .

A positive definite kernel K can build a space
of functions, The function space with a scalar
product is a Hilbert space H reproducing kernel
called RKHS [7](Reproducing Kernel Hilbert
Space).

The RKHS simply defined by its components
(functions) and by a scalar product (between
functions).

1) Vo € x, ks = k(x,.) € Hy;
2) <kma ky> = k(fl%y);

III. POSITIF DEFINITE KERNEL AND
ASSOCIATED ALGORITHMS

We restrict ourselves to the case of a linear
channel of communication and time invariant,
and we supposed a finite impulse response. It
can be described as a convolution filter h(k) of
the transmitted signal z(k) [8][9].

We assume that we observe the output signal
y(k) as a discrete-time signal which is described
by the following equation:

y(k) = hi (1) * 2(k) h(i)z(k —1) (2)
i=0
and
s(k) = y(k) + n(k) 3)
With:

-z(n) is the input sequence

-h,, is the channel parameters

-y(n) represents the system output in noiseless
case and s(n) is the observed system output
corrupted by additive Gaussian noise n(n).
-n(k) is an additive white Gaussian noise.

The following conditions are assumed to be
satisfied:
- The model order ¢ is supposed to be known,
- The input sequence z(n) is independent and
identically distributed (i.i.d) zero mean, the vari-
ance is ai = 1, and non Gaussian,
- The system is causal and hd(0) = 1, - We
assume taht the meseared noise n(k) is zero
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mean, gaussian, i.i.d, with unknown variance
2

O

The correlation and the spectrum of the out-

put signal y(k) are given respectively by:

ry (k) = s (k) + 1o (k) = o i h(i)h(k + i)

+a25(k)
4)
And

Sy(w) = 02| H(w)|* + o7, )

The problem addressed is to identify the
channel parameters h,, using the positive defi-
nite kernels.

However, if we set:

F="h,*x (6)
The equation 2 becomes :
y(k) = F(k) + n(k) %

According to the equation 7, we will focus
our stady on the estimation parameters of the
function F'. If we apply the Laplace transforme
on the equation 6, it becomes:

L(F) = L(hy).L(z)

®)

Historically, the approaches of kernels was
mentioned since sixty years. Our idea is to use
the learning examples ((z;,y;))i=1,m to make
a parameter identification of the input space x
by weighting the outputs associated with inputs
(Ti)i=1,m-

The weight K (z, z;) which is associated with
each output y; depends on the relative posi-
tion of z; in the input space x and the point
x considered. The function K (z,z’) defining
these weights is called, in these approaches
[10], kernel function that is expressed by:

d(z, :17’))

o
Where d(x,z’) is a scale factor defined on a
set , and g(.) is a decreasing function.
A frequent choice for this function is g(z) =
2

K(z,2") = g( 9)

exp~ z . The use of this type of kernel function
leads to estimate § as weighted average of
(yi)i=1,m Wwith a stronger weight to examples
where the distance d(x,x;) is small, the notion
of being determined by the small value of o.
Use the inductive principle of minimization
of regularized empirical risk, taking the stan-
dard deviation as a function of loss in our
problem of telecommunication, the estimated
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parameters are obtained by solving the func-
tional minimization formulated as cited in ([6],
[2])

m

1
F)=— s —F(z:))? F|? (1
Re(F) = 3 = Fa)P+1 | FI? (10
A. Theorem 1

(Representer theorem). The solution to the
functional minimization in (10) can be ex-
pressed as

F(x;) = iaik(:ci,:c)
for m

This result is important because it shows
that the regularized problems of the form (10)
naturally have solutions of the form (theorem
1):

Y

same o; ERi=1...m

m
F(z;) = aik(a, ) (12)
i=0
In our case, we try to solve this nonlinear
regression problem in Yy, for that, we need to
define the fuction ¢ in a new hilbert space F,
in order to make the problem a linear regression
problem in the new space.
our approach is to estimate the parameters of
the vector F', which amounts to estimate the
parameters .
The norm of the function ¢ = > ok, is

given by the quadratic form defined by the
similarity matrix K of size n X n.

617, =" Ka (13)

The optimization problem can be rewritten by
replacing the search for F' by the search for the
coefficients «;.

Lets pose Y the vector of components y; ,
the probleme (10) becomes :

Ro(a) = argmingegrn [

+Aala]
14
The function R is convex and differentiable
on «. The coefficients «; are obtained by solv-
ing the linear system :

(K4+nX\X)a=Y (15)

Soon as A > 0 the matrix (K + nAl) is
invertible.

When searching for parameters «;, several
algorithms are possible, in our work we adopt
the development of Cholisky.
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The solution of the system (15) is given
by the least squares method as the following
equation:

a= (K +n\)™* (16)

B. Reproducing Kernel Hilbert Space

Set F an Hilbert space [2] of real functions
defined on an indexed set x :

F={> ak(z;,.):meN,z; €,
i=1
a; €R,i=1...m}

a7

F is called Hilbert space reproducing kernel
[11] with a scalar product denoted (., .)p (with
the norme ||f||r = /{f, f)r) if there exists a
function k£ : x x x — R having the following
properties:
1) for any element x € y.k(x,.) belongs to
F.
2) the function k is a reproducing kernel
function, i.e, such that for any functions
f € F, we have :

f(@)

(18)
The fact that the kernel function is recurring
means that, any function f inF is equal to
a scalar product, which is also a finite linear
combination of basis functions.

The scalar product on F' is defined as follows.
Let have two functions f,g € F' defined by :

ﬂngmm%m

<f7 k(!E, )>]F - imalk(iﬂl,ZE)

n (19)
g(r) = ;Bjk(xj,x)
Then :
(f,9) = 72::1 :Zloéiﬂjk(fl?i,fl?j) = :ilaif(zi)
= 3 Bj9(a))
- (20)

It is interesting to note that while the basis of
Mercer depends on the extent p defined on Y,
this is not the case of the reproducing base
kernels which depends only on the function
kernel.

Moreover, the Hilbert space of functions Lo
(with scalar product(f,g)r, = [ f(z)g(z)dz)
contains many irregular functions. In Lo, tha
function of Dirac § is the representation func-
tion, i.e. f(z) = [ f(2')d(x—a")da’ The kernel
functions play a role analogous to the function
0 in a Reproducing Kernel Hilbert spaces ,
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which are thus more regular, their degree of
regularity depending on the regularity of the
kernel function associated.

C. Mercer Theorem

If k(.,.) is a symmetric and continuous func-
tion of an integral operator.

b
oy) = A1) = | Ka.9) @)y -+ hie)

’ 21

Verifying :
/ k(z,2")f(z)f(z")dzdz' >0  (22)

XXX

For any function f € La(x) (square integrable)
(x being a compact subspace R), then the
function &(.,.) can be expanded into a series of

uniformly convergent depending positive eigen-
values \; and eigenfunctions 1); :

N
k(,a') =3 Nj(a)(a))  (23)
j=1

Where N is the number of positive eigenvalues
(possibly infinite number).

IV. PHILOSOPHY OF KERNEL METHODS
A. linear methods

This approach allows to use linear methods
developed untel the sixty years to discover
nonlinear relationships in the data.

The figure 1 summarizes the steps of the
method generic. It is crucial to realize that, in
this approach, the essential information about
the data expressed in the kernel matrix K.

Identification algorithm of
the parameters ai

T T

ws|  Calculofai | ===t Calculof Fi

FFTof Fi

Calcul of the
chanel parameters

Gram matrix ‘

Figure 1: Chain generic treatment of kernel
methods

B. Gram Matrix

The Gram matrix (or kernel matrix) contains
all the information used by the kernel methods
on data input. Elle est symétrique : G;; = G;.
Exclusive use of the information contained in
this matrix about the training data, has the
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consequence that a part of the information on
this data is lost. For exemple, This matrix is
rotation invariant points in the input space y.

C. Definition of a Gaussian kernel

1) Search of the parameters a: Lets have x
a non-empty set, and H a Hilbert space.
We define a kernel k£ from : x X x — R by
the following application :
= — yl? )
o

k(x,y) = exp(— (24)

par The vector z is the input signal,the function
F follows the following form :
F(z) = Zaik(xi,x) (25)
i=0

From the equation 25, our goal amounts to
finding the parameters o by minimizing the
equation 10, we can represent the coefficients
of the function F' of a simplified manner:
F(0) = apk(0,0)+a1k(1,0)+... + a;k(4,0) +
e F ank(n,0)
F(1) = apk(0, 1)+ a1 k(1, 1) +...+ o k(3, 1) +
e + ank(n, 1)

F(i) = apk(0,i) + ark(1,4) + ... + a;k(i,4) +
o+ ank(n, i)

F(n) = apk(0,n)+a1k(1,n)+...4a;k(i,n)+
.+ ank(n,n)

This system can be represented in the follow-
ing matrix form :

£(0,0)  Kk(1,0) k(i, 0)
k(0,1)  k(1,1) k(i, 1)
F(0)
( ) = (0, ©) ki, 4)
h(n)
k0, n) k(1 n) k(i,n)

«0

J

|

D. Example of a channel of 2nd order

(26)

To validate this method of reproducing kernel
Hilbert space, we will worked on the first time
on a simple exemple, we will start with a chanel
of the 2nd order, this last is defined by the
folowing equations :

y(k) = z(k) — 0.85x(k — 1) + 1.0x(k — 2)
zros : 0.415 £+ 70.911,
s(k) = y(k) +w(k).
(27)
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The channel identification problem is to es-
timate hp based only on the received signal
r(k) and with knowledge of the energy of the
transmitted data x(k). The output of the channel
is characterized by its impulse response h(n),
which we identify its parameters.

M
=1

o

True
Estimated

=)
k=A
y
]
=
5
k3
=

-40

; ; ; H ; ; H H ;
02 04 0B 08 [ 12 14 1B 18 2
Normalized Frequency (xn rad/sample)

Phase (degrees)

0 0‘2 0‘4 U.‘E UIE 1‘ 1 ‘2 1 I4 1 IE 1 ‘E 2
Mormalized Frequency (> radfsample)

Figure 2: Estimation of the impulse responses

in amplitude and phase with a Gaussian kernel

From the figure (2),we note that the estimated
parameters follow the same shape as the true
channel parameters.

V. MC-CDMA (BROADBAND)
CHANNEL

There are many obstacles Between a mobile
station (MS) and a base station, neighboring
buildings causes a great loss of information
during transmission between a fixed base and
mobile station, and especially in vicinity of the
MS. For this, the channel can be viewed as a
time varying linear filter of impulse response
h(7) observed at time t, which can be expressed
as Safi et al [8] [9] [12]

L-1

h(r) = ¢id(r — ) (28)
i=0

d(n) is Dirac function, 1; is the magnitude of

the target ¢+, L = 18 the number of target and

7; is the time delay (from the origin) of target

i.

A. Mobile Channel Model (BRAN A)

For the development of the standard Hiper-
LAN2, the ETSI BRAN Group worked out
channel models in the 5 GHz band. There are
many scenarios. In this paragraph we consider
the ETSI BRAN A model representing the
propagation in office.

52

Table I: Delays and magnitudes of the 18 trips
BRAN A radio channel

Delays T; magnitudes h; Delays T; magnitudes h;
(ns) (dB) (ns) (dB)
0 0 90 -7.8
10 -0.9 110 -4.7
20 -1.7 140 <13
30 2.6 170 -9.9
40 3.5 200 -12.5
50 4.3 240 -13.7
60 5.2 290 -18
70 -6.1 340 224
80 6.9 390 -26.7

B. Mobile Channel Model (BRAN E)

As has treated the case of a channel in the
interior of an office, it is imperative to handle
the case in outdoor environment.

Table II: Delays and magnitudes of the 18 trips
BRAN E radio channel

Delays T; magnitudes h; Delays T; magnitudes h;

(ns) (dB) (ns) (dB)
0 -4.9 320 0.0
10 5.1 560 -2.8
20 5.2 710 -5.4
40 0.8 400 -11.7
70 1.3 880 -7.3
100 1.9 1070 -10.6
140 0.3 1280 -13.4
190 1.2 1510 -17.4
240 2.1 1760 -20.9

C. MC-CDMA SYSTEM

In MC-CDMA systems, the codes are trans-
mitted in the frequency domain on different
subcarriers, toutfois, the subcarrier are sensitive
to problems of synchronosations such as timing
errors, the frequency offset of the carrier, also
the emplitude and phase additive noise. In this
section we describe an equalization based on
a new concept using defined positive Kernal.
It is one of the technologies considered can-
didates for wireless communication systems of
the fourth generation [13].

The MC-CDMA signal is derived from the
concatenation of operations spread spectrum by
direct sequence modulation and multi-carrier
[14]. The MC-CDMA modulator spreads the
dataa; of each user ¢ in the frequency domain.
The spreading is done by multiplying data a;
by each element of c¢; code associated sprawl.
The MC-CDMA modulator is in the case where
the spreading code has a length Lc equal to the
number of subcarriers N,.
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In this case, the MC-CDMA emetter system
is given by :

N,—1Np—1
a;

) 27 fit
E g Ci.k €Xp 29)
V NP q=0 k=0

Avec fr = fo+ % Where N, the number of
users and NV,, the number of the subcarriers.
The impulse response h of the channel can be
writen as 30. This expression takes fixed paths
when the transmitter and receiver are moving.

(t) =

P-1

h(rt) = Y By(t) exp' @™ot +0:®) 5(7—(,)

p=0
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and frequency interleaving. finally, and to fa-
cilitate the introduction of different detection
techniques [16], we will take L. = N,. We can
represent our matrix system:

r=HCa+n (33)

Where r is a vector containing the values
received on each subcarrier :

r=[ro..rn,—1] (34)

The matrix H is the matrix of size parameters
of the channel Np x Np.

The hypotheses previously assumed on the
proper sizing of the system allow us to consider

. ) (30) this matrix as diagonal matrix H:
The issued signal s and the receved one r are
related by: ho 0 0
0 h 0
r(0) = (hx9)(0)+ () H— . (35)
- 3 o §(r — t — 7)dr + n(t C
Jox Bp exp (r = m)x(t — 7)dT + n(t) 0 0 th_1
P—1

(31)
In order to overcome disturbances introduced
by the transmission channel, it is necessary to
implement an equalization device. Two classes
of detectors exist [14][15], single-user detectors
and multi-user detectors. In the first case, only
the sequence of the user assumed known, re-
lated interference to other users are then consid-
ered jammers. In the other, the sequences for all
users are known, multiple access interference is
then considered deterministic signals and not as
random. So, where IN,, users are active, from the
relationship 30 of the impulse response h of the
channel, the received signal may be expressed
by :

| B=lNuzl Np—1

\/Nip ng j;) kgo
2i7r(fo+T%)(t—Tp)}
(32
In order to facilitate the presentation of dif-
ferent detection techniques, we assume an ade-
quate dimensioning of the system studied. So,
the duration of the guard interval Ty is suffi-
cient, ensuring no interference between symbols
and subcarriers. Furthermore, the duration of
the MC-CDMA symbol is sufficient to consider
the channel as invariant over the duration of
this symbol, well as the absence of frequency
selectivity on each subcarrier. Then, the inde-
pendence of random processes affecting each
subcarrier will be guaranteed by the temporal

r(t)

reel{3, exp'®r a;cy ; exp

ISSN: 1998-0159

53

The matrix C' represente the spreading codes.
The spreading operation can therefore be rep-
resented as the multiplication of the matrix C
by the vector a, constituted of the data of each
user. We can therefore write :

C= [Coy te aCNn—l]
€0,0 Co,1 Cp,2 Co,N,,—1
C1,0 C1,1 C1,2 C1,N,,—1
CNp,—1,0 CN,-1,1 CN,-1,2 CN,—1,N,—1
(36)
Wlth C; = [Coﬂ', Cl,ia cee ,CNP_LAT and
a = [a()valv"' ,aNp71]T

The vector n presente the N, components of
the noise affecting each subcarrier, it is can be
modeled as a Gaussian additive process: n =
[no,n1, - - - ,TLNPA]T

In reception, the structure of the studied de-
tectors based on the use of an equalization stage,
followed despreading operations according to
the user’s sequence considered, see figure (3).

[ort) ) —{ Equalizer ‘ -{ spreading ‘ a

Figure 3: Principle of the single user detection

Single-user detectors consider only the active
user signal, other users are treated as jammers.
Single-user detectors typically encountered us-
ing a linear equalization structure [17], [18],
consisting of an equalizer into an outlet. Us-
ing the above matrix notation, it is possible
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to express G,the diagonal matrix composed of
coefficients equalization Gk :

0 gg --- 0
G=1. . . . (37
0 0 IN,—1

After equalization and despreading in the se-
quence of the user C; considered, the estimated
transmitted symbol d@; can be expressed as :

a; = CiiTG’I"
=¢; 7 TGHCa+c¢;7Tn

P
2
= E ik grhra;
k=0
N,—1Np,—1

+ Z Z Ci,kCq,kgkQq

q=0 k=0

Np—1
2
+ E Cik” GrNik
k=0

(38)

VI. THE OPTIMUM DETECTOR IN
SINGLE-USER CONTEXT

A. The detector combination and orthogonality
restoration COR(Zéro Forcing(ZF))

This technique COR, for Orthogonality
Restoring Combining, cancels completely the
dispersion introduced by the channel. The use
factor applied to each subcarrier is given by:

1
gr = —avechy, # 0. 39)
h

In this case, the expression of the estimate d;
becomes :

N,—1
~ 2
= E Ci,k Gy
k=0
N,—1Np—1

+ Z Z Czkchaq+ Z Czkink

q=0 k=0

(40)
The use of orthogonal spreading codes to the
levels of the transmitter guarantees :
Np—1

Z ciykcqﬂk = 0V4 75 q

(41)

ISSN: 1998-0159

B. The combination detector minimum mean
square error (MMSE)

This MMSE technical [19][8], for Minimum
Mean Square Error, offers a compromise be-
tween minimizing the term multipath interfer-
ence and maximizing signal to noise ratio. It
comes from the application of the Wiener filter
[16][20]. The calculation of the equalization
coefficients has to minimize the mean square er-
ror for each subcarrier between the transmitted
signal and the equalized signal. This resolution
leads to the expression of the coefficients g :

b

With the channel normalization hypothesis in
power :E[|hy|?] = 1. The coefficient 7y is cal-
culated from the estimated signal to noise ratio
per subcarrier, inducing additional complexity.

In this case, the expression of the estimate d;
becomes :

a; = Z C'k27|hk|2 a;
i = 7, 2 1 %
— |hel® + =

N,—1
2

hi|®
Z CilkCa,k 0 @)
- |7 |2

9=
Np—

2 |hk:‘
+ Z |h |2

1 L2
k=0

As well it is assumed that the spreading codes
are orthogonal, so we can deduce that :

Np—1
> cincor =0¥i#q (44)
k=0

So, the equation 43 becomes:

Np—1
N 2 |hk‘2
k=0 [For |? + e
w (45)
k
+ Z Gy, k2 Iil? + 1 Nk
= || +
VII. SIMULATION RESULTS

In this section we show the performance
results obtained by computer simulation for dif-
ferent SNR and assuming that the input channel
is driven by non Gaussian signal z(n). The
output channel y(n) is corrupted by a gaussian
noise N(n). The equalization performance of
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MC-CDMA systems are evaluated using al-
gorithm previously studied.This assessment is
made by calculating the Binary Error Rate
(BER), for both ZF and MMSE equalizers,
using the measured and estimated parameters
of both channels A and BRAN BRAN E.

A. BRAN A Identification using the Reproduc-
ing Kernal Hilbert Space algorithm (RKHS)

The figures (Fig. 4 and 5) shows that the
estimated parameters of the channel impulse
response approach to real model parameters.
These results are performed for SNR = 32 dB
and a number of samples N = 4096.
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Figure 4: Parameter estimation of the impulse
response of BRAN A channel using the RKHS
algorithm for SNR=16 db

We represente the estimation of the BRAN A
parmaeters usign the RKHS algorithme, for an
SNR = 16db the data length is 2048 and for
100 iterations, we observe a very lwo variation
due to the noise on the parameters estimation.

—o MeasuSred BRAN A)
—E—RKHS

- ®

Sample of the magnetude impulse response

I i I I
200 260 300 380

time in (ns)

Figure 5: Parameter estimation of the impulse
response of BRAN A channel using the RKHS

algorithm for SNR=32 db

In this section we consider the BRAN E
channel model. The fig 6 represente the impulse
response estimation for BRAN E channel model
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usign RKHS algorithme for SNR 16db.
These last shows that there is a slight influence
of noise in impulse response parameters estima-
tion, whereas for a SN R = 32db, the effect of
noise decreases.

—T ‘P? | —© MeasuSred BRAN E) H
@

RKHS

I i I i
50 100 180 200 250 300

Times in (ns)

as0

Figure 6: Parameter estimation of the impulse
response of BRAN E channel using the RKHS
algorithm for SNR=16 db

|2 Measusred @RAN EY

i —a AkHg

o

Samples of the magnitugs impuise response

I}
o

| i i i i
00 1000 1200 1400 1e00
Times in (ns)

i I i
200 400 €0

o

1800

Figure 7: Parameter estimation of the impulse
response of BRAN E channel using the RKHS
algorithm for SNR=32 db

VIII. MC-CDMA SYSTEM
PERFORMANCE

To evaluate the performance of the MC-
CDMA system, using the Reproducing Kerne
Hilbert Space methods. These performances are
evaluated by calculation of the Bit Error Rate
(BER), for ZF and MMSE equalizers, using the
measured and estimated BRAN A and BRAN
E channel impulse response. These stadie was
evaluated for different SNR values.

A. ZF and MMSE equalizers : case of BRAN A
channel

We represent in the figure Fig. 8 the simula-
tion results using the measured parameters and
the parameters estimated by the reproducing
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kernel hilbert space method appleid to BRANA
channel. The equalization presente a acceptable
results using ZF equalizer.

N BEIT ERROR RATE FOR MC-CDMA [DOWNLIMI). BRAN A - Zero Forcing
W e T

TS H I P soinnil —e—2F: True channel
....... T =4 = 2F RKHS channel Estimation

Figure 8: BER of the estimated and measured

BRAN A channel, for different SNR, using the
ZF equalizer

BIT ERROR RATE FOR MG-GDMA [DOWNLINK): BRAN A - MMSE

T T T
—&—MMSE: True channel
—#% —MMSE: RKHS channel Estimation

Figure 9: BER of the estimated and measured
BRAN A channel, for different SNR, using the
MMSE equalizer

the figures (8 and 9) shows that for defferent
SNR the results obtained by RKHS folow the
same form comparing with those obtained using
mesured data. From thes same figures we con-
clude that: the equalization results using MMSE
equalizer is better than those obtained by ZF
equalizer, especially where the SNR > 20db,
in these case we have only a BER of 1074,

B. ZE and MMSE equalizer : case of BRAN E
channel

We represent in the Fig. (10 and 11), the
simulation results of BER estimation using
the measured and estimated of the BRAN E
channel impulse response. The equalization is
performed using ZF and MMSE equalizers.

From the results obtained by the equalizers
ZF and MMSE (Fig. 10 and 11), it is clear
that the BER obtained, based on the estimated
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o EIT ERROR RATE FOR MC-CDMA DOWNLIMK). ERAN E - Zero Fomcing
W e T

B e e PP PSS TEPEbN fonn | —&—7F: True channel
i Do | T = 2F: RKHS channel Estimation

BER

Figure 10: BER of the estimated and measured

BRAN E channel, for different SNR, using the
ZF equalizer

o BIT ERROR RATE FOR MG-ODMA (DOWNLINK): BRAN E - MMSE

e
—&—MMSE: True channel
—# —MMSE: RKHS channel Estimation

Figure 11: BER of the estimated and measured
BRAN E channel, for different SNR, using the
MMSE equalizer

parameters, and year using the RKHS method
gives good results per compared to those ob-
tained in using the measured values of BRAN
E channal. So, if the SNR values are superior to
20db, we observe that 1 bit error occurred when
we receive 103 bit, but if the SNR > 20db we
obtain only one bit error for 104 bit received.

IX. CONCLUSION AND PERSPECTIVES

The development of kernel methods, espe-
cially for the identification and equalization of
the channel parameters, marks the point of con-
vergence of several essential concepts: passing
the nonlinear, thanks to the astuteness kernels,
a large family of linear algorithms relying only
on scalar products in the space of inputs Y.

In this paper, it has been applied the method
of defined positive kernels for the parameter
identification of a wirless transmission channel,
for a single user of a finite impulse response
signal, and for a stationary system and time
invariant. We applied this approach to a dif-
ferent channels, and it was observed from the
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results of the simulation parameters in phase
and amplitude that follows the shape of the
measured response. The RKHS algorithm show
their efficiency in the impulse response channel
(BRAN (A and E) normalized for the MC-
CDMA system) identification with high preci-
sion, MMSE has demonstrated its effectiveness
compared to ZF, knowing that both of them give
very satisfactory results.
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