
1
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Abstract—The paper addresses the problem of parametric opti-
mization for the second order time delay system with a PI controller.
The integral of squared error as a index of quality is considered.
The value of the index is obtained using the quadratic Lyapunov
functional. The quadratic Lyapunov functional for time delay system
is determined by means of the Lyapunov matrix. In the paper the
optimization results for varies values of delay and for varies damping
factor are given.

Index Terms—parametric optimization, time delay system, Lya-
punov functional, Lyapunov matrix

I. INTRODUCTION

The Lyapunov quadratic functionals have many applications.
The Lyapunov quadratic functionals are applied in investigation
of time delay systems stability [1,7-10], in time delay systems
robustness bounds calculation [13], in computation of the
exponential estimates of the solutions of time delay systems
[12]. The Lyapunov quadratic functionals are also used in
the parametric optimization problem of time delay systems to
calculation of the value of the quadratic performance index, see
for instance [2-6]. The value of the index of integral of squared
error is equal to the value of quadratic Lyapunov functional
at the initial function of time delay system. The Lyapunov
functional fulfills the following condition. Its time derivative
computed along the solution of time delay system is equal
to the negatively definite quadratic form of system momentary
state. The Lyapunov quadratic functional can be determined by
means of the Lyapunov matrix. The uniqueness condition of
the Lyapunov matrix is given in [11]. In paper [2] is considered
the parametric optimization problem for the first order system
with a P-Controller. In papers [3-5] are considered parametric
optimization problems for the first order system with delay and
PD-Controller in [3], PI-Controller in [4] and PID-Controller
in [5] respectively. In paper [6] is considered the second order
time delay system with delay and with a P-Controller. The
paper extends the earlier results to the case of second order
system with time delay and PI-Controller. In the paper are
also given results of optimization for two different values of
damping factor and for varies values of delay.

II. FORMULATION OF THE PARAMETRIC OPTIMIZATION
PROBLEM

Let us consider a second order time delay system with a PI-
controller


d2x(t)

dt2 +2ζ ω0
dx(t)

dt +ω2
0 x(t) = k0u(t−h)

u(t) =−px(t)− 1
Ti

´ t
0 x(ξ )dξ

x(θ) = ϕ1(θ)
dx(t+θ)

dt |t=0= ϕ2(θ)

(1)

for t ≥ 0, θ ∈ [−h,0].
Where x(t) ∈ R is a solution of initial value problem (1),
u(t) ∈ R is the control, ζ is a damping factor, ω0 is a natural
frequency of oscillation, p is a gain of the PI-Controller and Ti
is a time of isodrome of a PI controller, ϕ1,ϕ2 ∈PC([−h,0],R)
- the space of piece-wise continuous functions defined on the
segment [−h,0].
One introduces the state variables x1(t) and x2(t) as follows{

x1(t) = x(t)
x2(t) =

dx1(t)
dt = dx(t)

dt

(2)

The set of Eqs (1) takes a form



dx1(t)
dt = x2(t)

dx2(t)
dt =−ω2

0 x1(t)−2ζ ω0x2(t)+ k0u(t−h)
u(t) =−px1(t)− 1

Ti

´ t
0 x1(ξ )dξ

x1(θ) = ϕ1(θ)

x2(θ) = ϕ2(θ)

(3)

for t ≥ 0, θ ∈ [−h,0].
We introduce a new state variable

x3(t) =
1
Ti

tˆ

0

x1(ξ )dξ (4)

One can reshape equation (3) to a form



dx1(t)
dt = x2(t)

dx2(t)
dt =−ω2

0 x1(t)−2ζ ω0x2(t)− k0 px1(t−h)− k0x3(t−h)
dx3(t)

dt = 1
Ti

x1(t)

x1(θ) = ϕ1(θ)

x2(θ) = ϕ2(θ)

x3(θ) =− 1
Ti

´ 0
θ

ϕ1(η)dη = ϕ3(θ)
(5)

for t ≥ 0, θ ∈ [−h,0].
System (5) can be written in an equivalent form
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


dx1(t)

dt
dx2(t)

dt
dx3(t)

dt

= A0

 x1(t)
x2(t)
x3(t)

+A1

 x1(t−h)
x2(t−h)
x3(t−h)


 x1(θ)

x2(θ)

x3(θ)

=

 ϕ1(θ)

ϕ2(θ)

ϕ3(θ)

= ϕ(θ)

(6)

for t ≥ 0, θ ∈ [−h,0], where

A0 =

 0 1 0
−ω2

0 −2ζ ω0 0
1
Ti

0 0

 (7)

A1 =

 0 0 0
−pk0 0 −k0

0 0 0

 (8)

In parametric optimization problem will be used the perfor-
mance index of quality

J =

∞̂

0

[
x1(t) x2(t) x3(t)

] w1 0 0
0 w2 0
0 0 w3

 x1(t)
x2(t)
x3(t)

dt

(9)
where w1 , w2 and w3 are positive real numbers.

Problem 1. Determine the gain popt and 1
Ti opt

which minimize
the integral quadratic performance index (9).

The value of the performance index J is given by formula, see
[2]

J = ϕ
T (0)U(0)ϕ(0)+2ϕ

T (0)

0ˆ

−h

U(−θ −h)A1ϕ(θ)dθ+

+

0ˆ

−h

0ˆ

−h

ϕ
T (θ)AT

1 U(θ −η)A1ϕ(η)dηdθ (10)

where U is a Lyapunov matrix.

III. THE LYAPUNOV MATRIX DETERMINATION

We need the Lyapunov matrix U to compute the value of the
index of quality (9). To this end we solve the set of equations,
see [2]

d
dξ

U(ξ ) =U(ξ )A0 +U(ξ −h)A1 (11)

U(−ξ ) =UT (ξ ) (12)

U(0)A0 +U(−h)A1 +AT
0 U(0)+AT

1 U(h) =−W (13)

for ξ ∈ [0,h].
Formula (12) implies

U(ξ −h) =UT (h−ξ ) = Z(ξ ) (14)

We calculate the derivative of Z(ξ ) with respect to ξ . Into this
derivative and into Eq. (11) we substitute in place of matrices
A0 and A1the terms (7) and (8). In this way we obtain the set
of differential equations[ dcolU(ξ )

dξ

dcolZ(ξ )
dξ

]
=

[
Q11 Q12
Q21 Q22

][
colU(ξ )
colZ(ξ )

]
(15)

where

Q11 =



0 0 0 −ω2
0 0 0 1

Ti
0 0

0 0 0 0 −ω2
0 0 0 1

Ti
0

0 0 0 0 0 −ω2
0 0 0 1

Ti
1 0 0 −2ζ ω0 0 0 0 0 0
0 1 0 0 −2ζ ω0 0 0 0 0
0 0 1 0 0 −2ζ ω0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(16)

Q12 =



0 0 0 −pk0 0 0 0 0 0
0 0 0 0 −pk0 0 0 0 0
0 0 0 0 0 −pk0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −k0 0 0 0 0 0
0 0 0 0 −k0 0 0 0 0
0 0 0 0 0 −k0 0 0 0


(17)

Q21 =



0 pk0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 k0 0 0 0 0 0 0 0
0 0 0 0 pk0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 k0 0 0 0 0
0 0 0 0 0 0 0 pk0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 k0 0


(18)

Q22 =



0 ω2
0 − 1

Ti
0 0 0 0 0 0

−1 2ζ ω0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 ω2

0 − 1
Ti

0 0 0
0 0 0 −1 2ζ ω0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ω2

0 − 1
Ti

0 0 0 0 0 0 −1 2ζ ω0 0
0 0 0 0 0 0 0 0 0


(19)
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for ξ ∈ [0,h].

Solution of Eq. (15) is given by the term[
colU(ξ )
colZ(ξ )

]
= Φ(ξ )

[
colU(0)
colZ(0)

]
(20)

where the matrix

Φ(ξ ) = [Φi j(ξ )] =

[
M11(ξ ) M12(ξ )
M21(ξ ) M22(ξ )

]
for i, j = 1, ...,18 is a fundamental matrix of system (15)

We determine the initial conditions of Eq. (15) colU(0),
colZ(0). Matrix U(0) is a symmetric matrix, so

U(0) =

 U11(0) U12(0) U13(0)
U12(0) U22(0) U23(0)
U13(0) U23(0) U33(0)


Eq. (14) implies Z(h) =UT (0) =U(0).

From Eq. (20) we obtain

colZ(h) = colU(0) = M21(h)colU(0)+M22(h)colZ(0) (21)

or in the equivalent form

[M21(h)− I]colU(0)+M22(h)colZ(0) = 0 (22)

Formula (14) also implies

U(−h) =UT (h) = Z(0) (23)

Taking (23) into account Eq. (13) takes a form

U(0)A0 +Z(0)A1 +AT
0 U(0)+AT

1 ZT (0) =−W (24)

In Eq. (24) we substitute in place of matrices A0 and A1the
terms (7) and (8).

Relation (24) and Eq.(22) form the set of algebraic equations

[
N11 N12

N21(h) M22(h)

][
colU(0)
colZ(0)

]
=



−w1
0
−w2

0
0
−w3
0(9,1)


(25)

where

N11 =



0 −2ω2
0

2
Ti

0 0 0
1 −2ζ ω0 0 −ω2

0
1
Ti

0
0 2 0 −4ζ ω0 0 0
0 0 0 0 −ω2

0
1
Ti

0 0 1 0 −2ζ ω0 0
0 0 0 0 0 0


(26)

N12 =


0 0 0 −2pk0 0 0 0 0 0
0 0 0 0 −pk0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −k0 0 −pk0 0 0 0
0 0 0 0 −k0 0 0 0 0
0 0 0 0 0 −2k0 0 0 0


(27)

N21(h) =
[

N211(h) N212(h) N213(h)
]

(28)

N211(h) =



Φ10,1(h)−1 Φ10,2(h)+Φ10,4(h)
Φ11,1(h) Φ11,2(h)+Φ11,4(h)−1
Φ12,1(h) Φ12,2(h)+Φ12,4(h)
Φ13,1(h) Φ13,2(h)+Φ13,4(h)−1
Φ14,1(h) Φ14,2(h)+Φ14,4(h)
Φ15,1(h) Φ15,2(h)+Φ15,4(h)
Φ16,1(h) Φ16,2(h)+Φ16,4(h)
Φ17,1(h) Φ17,2(h)+Φ17,4(h)
Φ18,1(h) Φ18,2(h)+Φ18,4(h)


(29)

N212(h) =



Φ10,3(h)+Φ10,7(h) Φ10,5(h)
Φ11,3(h)+Φ11,7(h) Φ11,5(h)

Φ12,3(h)+Φ12,7(h)−1 Φ12,5(h)
Φ13,3(h)+Φ13,7(h) Φ13,5(h)
Φ14,3(h)+Φ14,7(h) Φ14,5(h)−1
Φ15,3(h)+Φ15,7(h) Φ15,5(h)

Φ16,3(h)+Φ16,7(h)−1 Φ16,5(h)
Φ17,3(h)+Φ17,7(h) Φ17,5(h)
Φ18,3(h)+Φ18,7(h) Φ18,5(h)


(30)

N213(h) =



Φ10,6(h)+Φ10,8(h) Φ10,9(h)
Φ11,6(h)+Φ11,8(h) Φ11,9(h)
Φ12,6(h)+Φ12,8(h) Φ12,9(h)
Φ13,6(h)+Φ13,8(h) Φ13,9(h)
Φ14,6(h)+Φ14,8(h) Φ14,9(h)

Φ15,6(h)+Φ15,8(h)−1 Φ15,9(h)
Φ16,6(h)+Φ16,8(h) Φ16,9(h)

Φ17,6(h)+Φ17,8(h)−1 Φ17,9(h)
Φ18,6(h)+Φ18,8(h) Φ18,9(h)−1


(31)

M22(h) =

 Φ10,10(h) · · · Φ10,18(h)
...

. . .
...

Φ18,10(h) · · · Φ18,18(h)

 (32)

The Lyapunov matrix U(ξ ) we obtain from Eq. (20). The initial
conditions colU(0) and colZ(0) are attained by solving the set
of algebraic equations (25).

IV. OPTIMIZATION RESULTS

We compute the value of the performance index (10) for initial
function ϕ given by terms

ϕ1(θ) =

{
x01 f or θ = 0
0 f or θ ∈ [−h,0)

(33)
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ϕ2(θ) =

{
x02 f or θ = 0
0 f or θ ∈ [−h,0)

(34)

ϕ3(θ) =

{
x03 f or θ = 0
0 f or θ ∈ [−h,0)

(35)

After calculations one obtains

J =
[

x01 x02 x03
] U11(0) U12(0) U13(0)

U12(0) U22(0) U23(0)
U13(0) U23(0) U33(0)

 x01
x02
x03


(36)

We search for an optimal gain popt and optimal 1/Ti opt which
minimize the index (36). Optimization results, obtained by
means of Matlab function fminsearch, are given in Table I and
Table II. These results are obtained for x01 = 1, x02 = 1, x03 = 1
w1 = 1, w2 = 1, w3 = 1, k0 = 1, ω0 = 0,1 and for varies values
of time delay h and damping factor ζ .

TABLE I. OPTIMIZATION RESULTS FOR ζ=0.9
Delay h Optimal p Optimal 1/Ti Index value

0.5 0.2186 0.0062 943.6

1.0 0.1144 0.0033 2905,.1

1.5 0.0778 0.0023 5758.7

2.0 0.0592 0.0018 9360.4

2.5 0.0479 0.0015 13590

TABLE II. OPTIMIZATION RESULTS FOR ζ=1.5
Delay h Optimal p Optimal 1/Ti Index value

0.5 0.3498 0.0153 289.7

1.0 0.1912 0.0080 831,8

1.5 0.1331 0.0054 1643.4

2.0 0.1029 0.0040 2712.3

2.5 0.0844 0.0032 4026.7

Fig. 1 shows the value of x1(t) = x(t) for h = 1.5, ζ = 1.5 and
optimal values of a PI-Controller parameters popt = 0.1331 and
1/Ti opt = 0.0054.

0 20 40 60 80 100
−14

−12

−10

−8

−6

−4

−2

0

2

4

t

x1
(t

)

h=1.5, ζ=1.5, p=0.1331, 1/Ti=0.0054

Fig.1 The value of x1(t)

Fig. 2 shows the value of x2(t) =
dx(t)

dt for h = 1.5, ζ = 1.5 and
optimal values of a PI-Controller parameters popt = 0.1331 and
1/Ti opt = 0.0054.

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

t

x2
(t

)

h=1.5, ζ=1.5, p=0.1331, 1/Ti=0.0054

Fig. 2 The value of x2(t)

Fig. 3 shows the value of x3(t) for h = 1.5, ζ = 1.5 and
optimal values of a PI-Controller parameters popt = 0.1331 and
1/Ti opt = 0.0054.
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1.2

1.4

t

x3
(t

)

h=1.5, ζ=1.5, p=0.1331, 1/Ti=0.0054

Fig. 3 The value of x3(t)

Fig. 4 shows the value of x1(t) = x(t) for h = 1.5, ζ = 0.9 and
optimal values of a PI-Controller parameters popt = 0.0778 and
1/Ti opt = 0.0023.

0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

t

x1
(t

)

h=1.5, ζ=0.9, p=0.0778, 1/Ti=0.0023

Fig. 4 The value of x1(t)

Fig. 5 shows the value of x2(t) =
dx(t)

dt for h = 1.5, ζ = 0.9 and
optimal values of a PI-Controller parameters popt = 0.0778 and
1/Ti opt = 0.0023.
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h=1.5, ζ=0.9, p=0.0778, 1/Ti=0.0023

Fig. 5 The value of x2(t)

Fig. 6 shows the value of x3(t) for h = 1.5, ζ = 0.9 and
optimal values of a PI-Controller parameters popt = 0.0778 and
1/Ti opt = 0.0023.
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h=1.5, ζ=0.9, p=0.0778, 1/Ti=0.0023

Fig. 6 The value of x3(t)

Analyzing graphs on figures we can see oscillations with big
overshoot and long setting time. The overshoot is less for
greater values of damping factor. Oscillations are typical for
performance index of type integral of squared error. When we
compare results of that paper to results published in [6] we
can see that using PI-Controller causes oscillations with greater
overshoot and longer setting time than using P-Controller. The
values of the index of quality in case of PI-Controller are also
greater than in case of P-Controller.

V. CONCLUSIONS

In the paper the parametric optimization problem of the second
order time delay system with PI-Controller was presented. The
quadratic performance index was considered. The value of the
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index was determined by means of the Lyapunov matrix. The
results of optimization were given.
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