
A Multi-agent Design of a Computer Player for

Nine Men's Morris Board Game using Deep

Reinforcement Learning

 Jafar Abukhait

Department of Communications,

Electronics and Computer Engineering
Tafila Technical University

Tafila, Jordan

jafar@ttu.edu.jo

 Ahmad Aljaafreh

Department of Communications,

Electronics and Computer Engineering

Tafila Technical University
Tafila, Jordan

a.aljaafreh@ttu.edu.jo

 Naeem Al-Oudat

Department of Communications,

Electronics and Computer Engineering

Tafila Technical University
Tafila, Jordan

naeemodat@ttu.edu.jo

Abstract—Deep Reinforcement Learning (DRL) has been

recently deployed in many artificial intelligence applications,

and game players are not an exception. Nine Men's Morris is a

board game that has been addressed and implemented using

different AI techniques. In this paper, a multi-agent design of a

computer player is introduced that represents the placing,

moving, and capturing phases of the Nine Men's Morris. This

design is a self-play one that knows nothing about the game

other than the rules. Monte Carlo Tree Search (MCTS) is

combined with Convolutional Neural Network (CNN) in each

agent to provide the DNN with the training data. This

combination allows the DNN to play against itself and tune its

weights to predict actions. This computer player design ensures

a proper training of NN without any human dataset and can

compete with expert humans in the board games .

Keywords—deep reinforcement learning, nine men's morris,

MCTS, self-play, convolutional neural network.

I. INTRODUCTION

Artificial Intelligence techniques have been used widely
in decision-making applications especially computer game
playing. Computer games, especially board games, offer a
great domain to test any new AI technique since they are
formal, complex, highly constraint, and need decision
making [1]. In general, AI techniques used in game playing
can be categorized as follows [1]:

• Behavior authoring: which employs static ad-hoc
representations.

• Tree search: which builds trees for sequence actions
after searching the space of future actions.

• Supervised learning: which builds a learning model
based on a labeled dataset.

• Reinforcement learning: in which agents learn good
behaviors by cumulative rewards after interacting
with its environment.

• Unsupervised learning: in which patterns are found
based on non-labeled datasets.

Deep learning has also been deployed as a supervised
learning technique by adding more hidden layers allowing
recognizing more features [2]. In fact, supervised learning
techniques happen to need high dimensional training dataset
to come up with a decision making model [3]. This dataset is
not always available for computer games and also tedious to
build. On the other side, reinforcement learning has
difficulties working on high dimensional state space to build
a self learning decision making model. These limitations led
to suggest deep reinforcement learning (DRL) which
combines deep learning with reinforcement learning [4].

This technique trains the model on the state space
generated from the reinforcement technique and tune the
training model parameters based on the cumulative rewards
[5]. DRL represents a great choice for computer game
players since it implements self-play learning that compete
with expert humans.

Nine Men's Morris is a board game that is played
between two players. It requires a game board, as shown in
Fig.1, and nine pieces for each player [6]. The pieces of each
player should be different in shape or color than the
opponent's pieces. Nine Men's Morris has different phases as
described in Section III. It includes deep thinking and plans
and thus; deploying AI techniques would be mandatory to
implement a computer player for it at expert level.

In this paper, a multi-agent design of Nine Men's Morris

game is proposed based on deep reinforcement learning.

The proposed design implements a self-learning agent for

both placing and moving phases of the game using both

Convolutional Neural Network (CNN) and Monte Carlo

Tree Search (MCTS). Another agent has been suggested for

capturing pieces from the game board based on normal

search. This design does not require a training dataset since

it utilizes the reinforcement learning to provide the CNN

with the game states and rewards in each phase of the game.

The rest of the paper is organized as follows: Section II

summarizes the current computer player achievements and

implementations of the Nine Men's Morris game and other

board games. The game variations, phases, and strategies

are described in Section III. Section IV gives a general

description of our proposed method. In Section V, we

provide the conclusions.

Fig.1. Nine Men's Morris game board.

II. RELATED WORKS AND IMPLEMENTATIONS

Board games are considered a great domain for testing AI

techniques as they are formal, complex, highly constrained,

and decision making environments [1]. Typically, intelligent

agents are developed to play a game by implementing its

rules and characteristics [7]. These agents are based on:

search techniques, reinforcement learning, deep learning, or

deep reinforcement learning.

NTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 13, 2019

ISSN: 1998-0159 141

 In [8], a design and implementation for the board game

Abalone have been proposed based on Alpha-Beta search.

Minimax algorithm has been utilized for board games in [9].

It is also used in implementing Othello-playing programs

[10].

Reinforcement learning (RL) has been used widely in

developing self learning agents for computer games. In [11,

12] self-play learning agents have been utilized to create

strategies. Go is a self-play learning agent that has been

studied in [13]. A self-play techniques have been also used

in [14] with Chess. Backgammon as a stochastic game was

also proposed as a computer player using a self-play and

knowledge based methods in [15]. Studies on mastering

Chess, Shogi, and Go games, without human knowledge and

based on reinforcement learning, have been introduced in

[16, 17, 18].

 Deep neural network were considered in developing

intelligent agents for board games. In [19], deep neural

network was used to master the Go game. Othello game was

also studied in [20] using an experimental approach of

several CNN-based deep neural networks. In [21], deep

reinforcement learning has been introduced in developing

board games. Both Chess and Doubles Pong games were

developed using deep reinforcement learning [22, 23]. A

multi-agent methodology has been introduced for generic

board games in [24].

III. NINE MEN'S MORRIS STRATEGIES

Nine Men's Morris is an ancient board game dating back

to 1400 B.C. [6]. It is a two-player, sequential, perfect

information, deterministic, finite, and zero-sum game [25].

Nine Men's Morris is a solved game that is also known as

Mills, Merrils, or Cowboy Checkers [26]. The game has also

another three variations which are three, six, and twelve

men's morris. The game board, shown in Fig. 1, is a grid

that consists of three concentric squares and four segments

connecting the midpoints of the three squares' sides together

horizontally and vertically. This makes 24 intersections

available for the two players to place their pieces.

Each player starts with nine pieces that are different

from the other player pieces. The game starts by placing one

piece at a time for each player and proceeds by moving a

piece to a neighbor intersection at a time trying to make a

mill, aligning three pieces along a horizontal or vertical line,

which allows a player to capture or remove an opponent's

piece from the board. The game ends either by reducing the

pieces of an opponent to two pieces or leaving him without

a legal move.

Nine Men's Morris has two basic phases [27]:

• Placing pieces: which starts on an empty board and

each player places his pieces one piece at a time

trying to make a mill. The player can capture any

opponent's piece that is not in a mill if he succeed to

make a mill. It is important to place pieces in

versatile intersections and not concentrating the

pieces in one side of the board [28]. Fig.2 shows

two examples of placing phase.

a b

Fig.2. Placing phase examples. a) player with black pieces has to prevent

his opponent from forming a mill by placing his piece between the two

white pieces. b) a full placing phase has ended leaving six intersections

empty.

• Moving pieces: in which each player moves on

piece at a time to a neighbor and adjacent

intersection trying to make a mill. The player can

break his mill by moving one piece out of the mill

and move it back after his opponent takes his turn.

The player can move one piece back and forth

between two mills and capturing opponent's piece at

each turn. Fig. 3 shows and example of possible

moving phase.

Capturing pieces is not a random process, player has to

decide which is the best opponent's piece to capture in order

to enable himself forming another mill. Fig.3 shows that the

player with white pieces captured a black piece that enables

him to form another mill at the middle-right vertical line at

his turn..

Fig.3. Moving phase example. a) player with white pieces moves

one piece as shown by the arrow leading him to form a mill. b)

player with white pieces decides to capture the black piece as
shown by the arrow.

IV. NINE MEN'S MORRIS DESIGN

 In this paper, we propose a multi-agent design for a
computer player of the Nine Men's Morris game. The design
architecture implements the two playing phases of the game.
Three self-play learning agents of the game has been
suggested: placing agent, moving agent, and capturing agent.
The three agents communicate together in each playing
phase and they are described as follows:

• Placing agent: which builds a self-play learning
model to place the pieces on the game board. It
generates an action by training a CNN and
communicating with the other two agents.

NTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 13, 2019

ISSN: 1998-0159 142

• Moving agent: which builds a self-play learning
model to move one piece to another valid location on
the game board. It generates an action by training a
CNN and communicating with the capturing agent.

• Capturing agent: which utilizes a normal search
technique, since it has a limited search space, to
capture (pound) one piece of the opponent's pieces
from the game board. It does not generate an action
and it can be called by either the moving or by
placing agents in the playing phases.

 The game board has been divided to 7x7 grid, as shown
in Fig. 4, to ease the representation of the board state on the
design. The state of the game board has been suggested
accordingly to 7x7 array where each array cell represents a
board intersection with a value of {-1, 1, 0, ∞} such that -1
for player 1 pieces, 1 for player 2 pieces, 0 for empty
intersection, ∞ for unavailable intersection.

Fig. 4. 7x7 game board division for implementing game state.

A. Playing Agents

Each playing agent (placing, moving, or capturing)

deploys DNN and MCTS in the training process. The neural

network knows nothing about the Nine Men's Morris other

than the rules. It plays against itself utilizing MCTS to

predict actions and thus; update its parameters, in each

iteration, to improve the performance.

The neural network fθ has θ parameters which are the

weights of the neural network. The state which represents

the configuration of the board is the input of the DNN. The

output is the probability vector over all possible actions

(pθ(s)). It also gives another output which is the state value,

which is a continuous number between 1and -1 (νθ(s)).

The DNN is initialized randomly at the beginning of the

training phase. At each episode of the self-lay the DNN will

be provided by training examples. These examples are a

tuple of (st, πt, zt) where πt is an updated estimate of the

policy after MCTS starting from st and zt is the final reward

of the game from current player perspective. The final

reward is obtained from the moving agent. The parameters θ

of the neural network are updated through the training phase

to minimize the error as in the equation below:

� = �(��(��	 − ��	�
�

− ������� . log��������(��	� (1	

 By time, neural network will learn the best action and

the value for each state. 3-layer CNN networks followed by

2 fully-connected feedforward networks have been deployed

in each playing agent as shown in Fig.5.

S
ta
te

R
e
w
a
rd

Fig.5. Playing agent architecture using CNN.

B. Placing Phase Policy

Placing pieces on the Nine Men's Morris game board

does not happen systematically or randomly as mentioned in

Section III. Good placing of pieces improves the chances of

winning the game in the moving phase and thus; the placing

agent calls the moving agent and could call the capturing

agents in the placing phase as shown in Fig. 6. The training

of the placing agent using CNN involves the training of the

CNN in both the moving and capturing agents. The self-play

learning process is implemented using the policy iteration

algorithm 1.The algorithm starts with a random state value

and policy πt. At each iteration, a number of self-play

games are played. At each turn of the game, several MCTS

simulations are accomplished starting from the current state

st. An action, which is placing a piece, is randomly selected

from the improved policy. After that, a training example

consisting of state and policy is ready to run to discover the

final reward zt at the end of the game. The moving agent is

called to find the final reward after completing the placing

phase. zt is +1 for winning the game, and -1 otherwise.

Then, the training example tuple (st, πt,zt) of each agent is

complete. At the end of each iteration, these training

examples are utilized to train the NN. After that, the new

network competes against the old one. If the new one wins

for a set of games then the network is updated to new one.

Otherwise, iteration is performed to get a new training

example. As iteration goes by the network improves.

Fig. 6. The multi-agent architecture of the placing phase.

NTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 13, 2019

ISSN: 1998-0159 143

C. Moving Phase Policy

Moving phase on the Nine Men's Morris game board

comes after the end of the placing phase. Capturing a piece

happens as a result of possible move (forming a mill) and

thus; moving agent could call the capturing agent as shown

in Fig. 7. The self-play learning process for this phase is

implemented as in the policy iteration algorithm 1. The

algorithm steps areas in policy iteration algorithm 1since

both of them implement a DRL self-play agent. The first

difference is the input state. The moving phase input is a

fully placed board performed by the placing agent. The

second difference is the output. It is the moving-actions-

probability vector and the value of the state. The action

space for this player is the moving actions where each piece

can move to one of its empty neighbor space. The third

difference is the evaluation function for the end of the game

as in line 14 in algorithm 1. The placing player call the

moving playing for the evaluation of the end of the game.

However, the moving player evaluates the end of the game

by counting the difference in number of pieces for each

color.

Fig. 7. The multi-agent architecture of the moving phase.

V. CONCLUSION

Nine Men's Morris is a board game that has two basic
phases: placing and moving. In this paper, we proposed a
multi-agent design for the game by suggesting two agents for
the basic phases of the game. Another agent has also been
suggested which implements capturing the pieces since it has
strategy and does not happen systematically or randomly.
The proposed design has been intended to play the game
through self-play learning and does not need a training
dataset or human knowledge. This has been implemented by
combining and utilizing both the Convolutional Neural
Network (CNN) and the Monte Carlo Tree Search (MCTS)
in each agent. The three agents communicate with each other
in the playing phases of the game.

REFERENCES

[1] G. N. Yannakakis, J. Togelius, Artificial Intelligence and Games,
Springer, 2018, [online] Available: http://gameaibook.org.

[2] Y. LeCun, Y. Bengio, G. Hinton, "Deep learning", Nature, vol. 521,
pp. 436-444, May 2015.

[3] S. Kotsiantis, S. Zaharakis, P. Pintelas, "Supervised Machine
Learning: A Review of Classification Techniques", Informatica, vol.
31, pp. 249-268, 2007.

[4] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J.
Pineau, “An introduction to deep reinforcement learning,” Found.
Trends Mach. Learning, vol. 11, no. 3-4, 2018.

[5] [12] R. S. Sutton and A. G. Barto, “Reinforcement learning: An
introduction.” MIT press, 2018.

[6] R. C. Bell, Board and table games from many civilizations. Courier
Corporation, 1979, vol. 1.

[7] M. Rezende and L. Chaimowicz, "A Methodology for Creating
Generic Game Playing Agents for Board Games," 2017 16th
Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames), Curitiba, 2017, pp. 19-28.

[8] A. Papadopoulos, K. Toumpas, A. Chrysopoulos and P. A. Mitkas,
"Exploring optimization strategies in board game Abalone for Alpha-
Beta search," 2012 IEEE Conference on Computational Intelligence
and Games (CIG), Granada, 2012, pp. 63-70.

[9] T. Gonsalves, “Board games ai”, in Advanced Methodologies and
Technologies in Artificial Intelligence, Computer Simulation, and
Human-Computer Interaction. IGI Global, 2019, pp. 68–80.

[10] M. Buro, “Experiments with multi-probcut and a new high-quality

evaluation function for othello,” Games in AI Research, pp. 77–96,
1997.

[11] E. P. Manning, “Using resource-limited nash memory to improve an

othello evaluation function,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 1, pp. 40–53, 2010.

[12] W. Jaskowski and M. Szubert, “Coevolutionary cma-es for
knowledgefree learning of game position evaluation,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 8,
no. 4, pp. 389–401, 2016.

[13] S. Gelly and D. Silver, “Achieving master level play in 9 x 9
computer go.” in AAAI, vol. 8, 2008, pp. 1537–1540.

[14] E. A. Heinz, “New self-play results in computer chess,” in
International Conference on Computers and Games. Springer, 2000,
pp. 262–276.

[15] M. A. Wiering, “Self-play and using an expert to learn to play
backgammon with temporal difference learning.” JILSA, vol. 2, no. 2,
pp. 57–68, 2010.

[16] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general

reinforcement learning algorithm that masters chess, shogi, and go

through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.

NTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 13, 2019

ISSN: 1998-0159 144

Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” Nature, vol. 550, no. 7676, p.
354, 2017.

[18] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess

and shogi by self-play with a general reinforcement learning
algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[20] P. Liskowski, W. Jaskowski, and K. Krawiec, “Learning to play
othello with deep neural networks,” IEEE Transactions on Games,
vol. 10, no. 4, pp. 354–364, 2018.

[21] Xenou K., Chalkiadakis G., Afantenos S., "Deep Reinforcement
Learning in Strategic Board Game Environments". In: Slavkovik M.
(eds) Multi-Agent Systems. EUMAS 2018. Lecture Notes in
Computer Science, vol 11450. Springer, Cham, 2019.

[22] M. Lai, “Giraffe: Using deep reinforcement learning to play

chess,” CoRR, vol. abs/1509.01549, 2015. [Online]. Available:

http://arxiv.org/abs/1509.01549

[23] E. A. O. Diallo, A. Sugiyama and T. Sugawara, "Learning to
Coordinate with Deep Reinforcement Learning in Doubles Pong
Game," 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), Cancun, 2017, pp. 14-19.

[24] M. Rezende and L. Chaimowicz, "A Methodology for Creating
Generic Game Playing Agents for Board Games," 2017 16th
Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames), Curitiba, 2017, pp. 19-28.

[25] G. E. G´evay and G. Danner, “Calculating ultrastrong and extended
solutions for Nine Men’s Morris, Morabaraba, and Lasker Morris,”
IEEE Transactions on Computational Intelligence and AI in Games,
vol. 8, no. 3, pp. 256–267, Sept 2016.

[26] F. Chesani, A. Galassi, M. Lippi and P. Mello, "Can Deep Networks
Learn to Play by the Rules? A Case Study on Nine Men's Morris,"
in IEEE Transactions on Games, vol. 10, no. 4, pp. 344-353, Dec.
2018.

[27] R. Gasser, “Solving nine men’s morris,” Computational Intelligence,
vol. 12, no. 1, pp. 24–41, 1996.

[28] Vedar, Erwin A.; Wei Tu; Elmer Lee. "Nine Men's
Morris". GamesCrafters. University of California, Berkeley.
Retrieved 2006-12-31.

NTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 13, 2019

ISSN: 1998-0159 145

