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Abstract—Deep Reinforcement Learning (DRL) has been 

recently deployed in many artificial intelligence applications, 

and game players are not an exception. Nine Men's Morris is a 

board game that has been addressed and implemented using 

different AI techniques. In this paper, a multi-agent design of a 

computer player is introduced that represents the placing, 

moving, and capturing phases of the Nine Men's Morris. This 

design is a self-play one that knows nothing about the game 

other than the rules. Monte Carlo Tree Search (MCTS) is 

combined with Convolutional Neural Network (CNN) in each 

agent to provide the DNN with the training data. This 

combination allows the DNN to play against itself and tune its 

weights to predict actions. This computer player design ensures 

a proper training of NN without any human dataset and can 

compete with expert humans in the board games .  

Keywords—deep reinforcement learning, nine men's morris, 

MCTS, self-play, convolutional neural network. 

I. INTRODUCTION  

Artificial Intelligence techniques have been used widely 
in decision-making applications especially computer game 
playing. Computer games, especially board games, offer a 
great domain to test any new AI  technique since they are 
formal, complex,  highly constraint, and need decision 
making [1]. In general, AI techniques used in game playing 
can be categorized as follows [1]: 

• Behavior authoring: which employs static ad-hoc 
representations. 

• Tree search: which builds trees for sequence actions 
after searching the space of future actions. 

• Supervised learning: which builds a learning  model  
based on a labeled dataset. 

• Reinforcement learning: in which agents learn good 
behaviors by cumulative rewards after interacting 
with its environment. 

• Unsupervised learning: in which patterns are found 
based on non-labeled datasets. 

Deep learning has also been deployed as a supervised 
learning technique by adding more hidden layers allowing 
recognizing more features [2].  In fact, supervised learning 
techniques happen to need high dimensional training dataset 
to come up with a decision making model [3]. This dataset is 
not always available for computer games and also tedious to 
build. On the other side, reinforcement learning has 
difficulties working on high dimensional state space to build 
a self learning decision making model. These limitations led 
to suggest deep reinforcement learning (DRL) which 
combines deep learning with reinforcement learning [4].  

This technique trains the model on the state space 
generated from the reinforcement technique and tune the 
training model parameters based on the cumulative rewards 
[5]. DRL represents a great choice for computer game 
players since it  implements self-play learning that compete 
with expert humans. 

Nine Men's Morris is a board game that is played 
between two players. It requires a game board, as shown in 
Fig.1, and nine pieces for each player [6]. The pieces of each 
player should be different in shape or color than the 
opponent's pieces. Nine Men's Morris has different phases as 
described in Section III. It includes deep thinking and plans 
and thus; deploying AI techniques would be mandatory to 
implement a computer player for it at expert level. 

In this paper, a multi-agent design of Nine Men's Morris 

game is proposed based on deep reinforcement learning. 

The proposed design implements a self-learning agent for 

both placing and moving phases of the game using both 

Convolutional Neural Network (CNN) and Monte Carlo 

Tree Search (MCTS). Another agent has been suggested for 

capturing pieces from the game board based on normal 

search. This design does not require a training dataset since 

it utilizes the reinforcement learning to provide the CNN 

with the game states and rewards in each phase of the game.  

The rest of the paper is organized as follows: Section II 

summarizes the current computer player achievements and 

implementations of the Nine Men's Morris game and other 

board games. The game variations, phases, and strategies 

are described in Section III. Section IV gives a general 

description of our proposed method. In Section V, we 

provide the conclusions. 

 

 

Fig.1. Nine Men's Morris game board. 

II. RELATED WORKS AND IMPLEMENTATIONS 

Board games are considered a great domain for testing AI 

techniques as they are formal, complex, highly constrained, 

and decision making environments [1]. Typically, intelligent 

agents are developed to play a game by implementing its 

rules and characteristics [7]. These agents are based on: 

search techniques, reinforcement learning, deep learning, or 

deep reinforcement learning. 
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 In [8],  a design and implementation for the board game 

Abalone have been proposed based on Alpha-Beta search. 

Minimax algorithm has been utilized for board games in [9]. 

It is also used in implementing Othello-playing programs 

[10].  

Reinforcement learning (RL) has been used widely in 

developing self learning agents for computer games. In [11, 

12] self-play learning agents have been utilized to create 

strategies. Go is a self-play learning agent that has been 

studied in [13]. A self-play techniques have been also used 

in [14] with Chess. Backgammon as a stochastic game was 

also proposed as a computer player using a self-play and 

knowledge based methods in [15]. Studies on mastering 

Chess, Shogi, and Go games, without human knowledge and 

based on reinforcement learning, have been introduced in 

[16, 17, 18]. 

       Deep neural network were considered in developing 

intelligent agents for board games. In [19], deep neural 

network was used to master the Go game. Othello game was 

also studied in [20] using an experimental approach of 

several CNN-based deep neural networks. In [21], deep 

reinforcement learning has been introduced in developing 

board games. Both Chess and Doubles Pong games were 

developed using deep reinforcement learning [22, 23].  A 

multi-agent methodology has been introduced for generic 

board games in [24]. 

III. NINE MEN'S MORRIS STRATEGIES 

Nine Men's Morris is an ancient board game dating back 

to 1400 B.C. [6]. It is a two-player, sequential, perfect 

information, deterministic, finite,  and zero-sum game [25]. 

Nine Men's Morris is a solved game that is also known as 

Mills, Merrils, or Cowboy Checkers [26]. The game has also 

another three variations which are three, six, and twelve 

men's morris. The game board, shown in Fig. 1, is a grid 

that consists of three concentric squares and four segments 

connecting the midpoints of the three squares' sides together 

horizontally and vertically. This makes 24 intersections 

available for the two players to place their pieces.  

Each player starts with nine pieces that are different 

from the other player pieces. The game starts by placing one 

piece at a time for each player and proceeds by moving a 

piece to a neighbor intersection at a time trying to make a 

mill, aligning three pieces along a horizontal or vertical line, 

which allows a player to capture or remove an opponent's 

piece from the board. The game ends either by reducing the 

pieces of an opponent to two pieces or leaving him without 

a legal move. 

 

Nine Men's Morris has two basic phases [27]: 

• Placing pieces: which starts on an empty board and 

each player places his pieces one piece at a time 

trying to make a mill. The player can capture any 

opponent's piece that is not in a mill if he succeed to 

make a mill. It is important to place pieces in 

versatile intersections and not concentrating the 

pieces in one side of the board [28]. Fig.2 shows 

two examples of placing phase. 

a b
 

Fig.2. Placing phase examples. a) player with black pieces has to prevent 

his opponent from forming a mill by placing his piece between the two 

white pieces. b) a full placing phase has ended leaving six intersections 

empty. 
 

• Moving pieces: in which each player moves on 

piece at a time to a neighbor and adjacent 

intersection trying to make a mill. The player can 

break his mill by moving one piece out of the mill 

and move it back after his opponent takes his turn. 

The player can move one piece back and forth 

between two mills and capturing opponent's piece at 

each turn. Fig. 3 shows and example of possible 

moving phase.  

Capturing pieces is not a random process, player has to 

decide which is the best opponent's piece to capture in order 

to enable himself forming another mill. Fig.3 shows that the 

player with white pieces captured a black piece that enables 

him to form another mill at the middle-right vertical line at 

his turn.. 

Fig.3. Moving phase example. a) player with white pieces moves 

one piece as shown by the arrow leading him to form a mill. b) 

player with white pieces decides to capture the black piece as 
shown by the arrow. 

 

IV. NINE MEN'S MORRIS DESIGN 

 In this paper, we propose a multi-agent design for  a 
computer player of the Nine Men's Morris game. The design 
architecture implements the two playing phases of the game. 
Three self-play learning agents of the game has been 
suggested: placing agent, moving agent, and capturing agent. 
The three agents communicate together in each playing 
phase and they are described as follows: 

• Placing agent: which builds a self-play learning 
model to place the pieces on the game board. It 
generates an action by training a CNN and 
communicating with the other two agents. 
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• Moving agent: which builds a self-play learning 
model to move one piece to another valid location on 
the game board. It generates an action by training a 
CNN and communicating with the capturing agent. 

• Capturing agent: which utilizes a normal search 
technique, since it has a limited search space, to 
capture (pound) one piece of the opponent's pieces 
from the game board. It does not generate an action 
and it can be called by either the moving or by 
placing agents in the playing phases.  

 The game board has been divided to 7x7 grid, as shown 
in Fig. 4, to ease the representation of the board state on the 
design. The state of the game board has been suggested 
accordingly to 7x7 array where each array cell represents a 
board intersection with a value of {-1, 1, 0, ∞} such that -1 
for player 1 pieces, 1 for player 2 pieces, 0 for empty 
intersection, ∞ for unavailable intersection. 

 

Fig. 4. 7x7 game board division for implementing game state. 

A. Playing Agents 

Each playing agent (placing, moving, or capturing) 

deploys DNN and MCTS in the training process. The neural 

network knows nothing about the Nine Men's Morris other 

than the rules. It plays against itself utilizing MCTS to 

predict actions and thus; update its parameters, in each 

iteration, to improve the performance. 

The neural network fθ has θ parameters which are the 

weights of the neural network.  The state which represents 

the configuration of the board is the input of the DNN. The 

output is the probability vector over all possible actions 

(pθ(s)). It also gives another output which is the state value, 

which is a continuous number between 1and -1 (νθ(s)). 

The DNN is initialized randomly at the beginning of the 

training phase. At each episode of the self-lay the DNN will 

be provided by training examples. These examples are a 

tuple of (st, πt, zt) where πt is an updated estimate of the 

policy after MCTS starting from st and zt is the final reward 

of the game from current player perspective. The final 

reward is obtained from the moving agent. The parameters θ 

of the neural network are updated through the training phase 

to minimize the error as in the equation below: 

� = �(��(��	 − ��	�
�

−  ������� . log��������(��	�               (1	 

       By time, neural network will learn the best action and 

the value for each state. 3-layer CNN networks followed by 

2 fully-connected feedforward networks have been deployed 

in each playing agent as shown in Fig.5. 
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Fig.5. Playing agent architecture using CNN. 

 

B. Placing Phase Policy 

Placing pieces on the Nine Men's Morris game board 

does not happen systematically or randomly as mentioned in 

Section III. Good placing of pieces improves the chances of 

winning the game in the moving phase and thus; the placing 

agent calls the moving agent and could call the capturing 

agents in the placing phase as shown in Fig. 6. The training 

of the placing agent using CNN involves the training of the 

CNN in both the moving and capturing agents. The self-play 

learning process is implemented using the policy iteration 

algorithm 1.The algorithm starts with a random state value 

and policy πt.  At each iteration, a number of self-play 

games are played. At each turn of the game, several MCTS 

simulations are accomplished starting from the current state 

st. An action, which is placing a piece, is randomly selected 

from the improved policy. After that, a training example 

consisting of state and policy is ready to run to discover the 

final reward zt at the end of the game. The moving agent is 

called to find the final reward after completing the placing 

phase. zt is +1 for winning the game, and -1 otherwise. 

Then, the training example tuple (st, πt,zt) of each agent is 

complete. At the end of each iteration, these training 

examples are utilized to train the NN. After that, the new 

network competes against the old one. If the new one wins 

for a set of games then the network is updated to new one. 

Otherwise, iteration is performed to get a new training 

example. As iteration goes by the network improves. 

 

 
Fig. 6. The multi-agent architecture of the placing phase. 
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C. Moving Phase Policy 

Moving phase on the Nine Men's Morris game board 

comes after the end of the placing phase.  Capturing a piece 

happens as a result of possible move (forming a mill) and 

thus; moving agent could call the capturing agent as shown 

in Fig. 7. The self-play learning process for this phase is 

implemented as in the policy iteration algorithm 1. The 

algorithm steps areas in policy iteration algorithm 1since 

both of them implement a DRL self-play agent. The first 

difference is the input state. The moving phase input is a 

fully placed board performed by the placing agent. The 

second difference is the output. It is the moving-actions-

probability vector and the value of the state.  The action 

space for this player is the moving actions where each piece 

can move to one of its empty neighbor space. The third 

difference is the evaluation function for the end of the game 

as in line 14 in algorithm 1. The placing player call the 

moving playing for the evaluation of the end of the game. 

However, the moving player evaluates the end of the game 

by counting the difference in number of pieces for each 

color. 

 

 

Fig. 7. The multi-agent architecture of the moving phase. 

 

 

V. CONCLUSION 

Nine Men's Morris is a board game that has two basic 
phases: placing and moving. In this paper, we proposed a 
multi-agent design for the game by suggesting two agents for 
the basic phases of the game. Another agent has also been 
suggested which implements capturing the pieces since it has 
strategy and does not happen systematically or randomly. 
The proposed design has been intended to play the game 
through self-play learning and does not need a training 
dataset or human knowledge. This has been implemented by 
combining and utilizing both the Convolutional Neural 
Network (CNN) and the Monte Carlo Tree Search (MCTS) 
in each agent. The three agents communicate with each other 
in the playing phases of the game.  
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