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Abstract— Gradient optimization methods are often used to Second, the use of standard software packages for
solve problems of computer simulation of the crystal structures of ~ calculation of second derivatives can be associated with large
materials. In this case it becomes necessary to calculate the partial restrictions on the dimension of the problem and this fact must
derivatives of the total atoms' system energy according to different be taken into account when a fragment of the material under
parameters. Frequently the calculation of these derivatives is an study contains an enormous number of atoms.
extremely time-consuming and difficult problem. In this paper we
present an algorithm for calculation of the second derivatives of the
atoms' system energy with respect to the coordinates of the atoms in
the case when the interaction of atoms is described by the Tersoff
Potential.

In this paper a special multi-step process is constructed to
calculate the energy of the atoms' system. This makes it
possible to substantially simplify and increase the reliability of
the calculation of the second derivatives of energy. On the
basis of the constructed multi-step process, an algorithm of
calculation of the exact values of the Hessian of considered

Keywords— potentials, energy, gradients, Hessian, fast cost function is proposed.

automatic differentiation
Il. ALGORITHM FOR COMPUTING HESSIAN OF THE COST

I. INTRODUCTION FUNCTION

When describing and modelling the crystal structure of a
material characterized by chemical composition, geometry,
and type of chemical bond, interatomic interaction potentials
are used. The properties of crystals with a covalent connection

|
(for example, carbon, silicon, germanium, etc.) are often E = z ZV“. , Vij = fc(rij)(\/R (rij)_bijVA(rij))v

The Tersoff Potential makes it possible to calculate the
bond energy of the atoms' system by the following formula:

described by the Tersoff Potential (see [1]). It is an example of i=1j=1

a multiparticle potential based on the concept of the order of j=i

connections: binding force between two atoms is not constant,

but depends on the local environment. 1 r<R—-R_ =R-

structure of the material under study is the optimization
according to the coordinates of the particles, which arranges 2R,
particles in positions corresponding to the minimum of the 0 rsR+R.. =R"
total atoms' system energy. To solve this problem gradient ! '
optimization methods are often used (see [2]-[4]). At this stage
it becomes necessary to calculate the partial derivatives and R _ _ ( /7 )
the Hessian of the energy of atoms' system according to the Vi = ( ) exp f2 (
coordinates of the atoms. In the case when the energy is
determined using the Tersoff Potential, the calculation of the
=Va(r; )— 2. 15 ﬂ\f (

One of the important stages of modelling the crystal z(r—R)
i i imizati f(r)_ 1 sm(j, R <r<R”

indicated first and second derivatives is an extremely time-
consuming and difficult problem.

First, as the results of the performed studies showed (see
[5]), the use of the finite difference method does not allow to 1
calculate the derivatives of the energy with acceptable 5,
accuracy. In addition, in the case of using this method it is b (1+ (Q/Q,J )r,)
necessary to carry out researches related to the choice of the
suitable increment of atoms' coordinates at each stage of the
optimization problem.

ISSN: 1998-0159 146



NTIf_RNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN $IMULATION

Z f ( k)guka)uk’

k;tI j

.

Tijk = (rij —f

2

Dy = eXp(fz'ijk )

2
Ui = 9(0) = 1+(dj -

Here | is the number of atoms in the group under
consideration; Iy are the distances between atoms with
numbers i and J; ejk is the angle formed by the vectors

c

connecting the atom i with the atoms | and Kk respectively;

R and R,; are known parameters, identified from

experimental properties of substance. The Tersoff Potential
depends on ten parameters, specific to modelled substances:
.S, n,y,A,c,d,h.

e ’ e )
The distance between atoms with numbers i and J (
i, j =1,1) is determined by the relationship:

Lij :\/(Xli _le)2+(x2i _X2j)2+(x3i _X3j)2 )

(X ,X2i ,Xgi) are the coordinates of the
2, .2 2

We represent the calculation of the energy of atoms'
system (the interaction of atoms is described by the Tersoff
Potential) in the form of a multi-step process. Let U and z be
vectors having coordinates:

i-th atom,

i = A [
U - Ul,Uz,,Ulo - 21,22,...,217 .
where
u=D0,, u=r, U=, u=S, Uu=n,
Then

a= {lek \/(Xli =%y )"+ 0 = Xor )" + (g = X )’ }
= [l = P by = Py = P |

Z, = {Zijk

. Z + lek Zijk 2
N TS 1 S )i,-k oal
2213 1
2, = {2 = 1,(27)}
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7. =12 =¢g 4| Y8 (Ug)
: o u9 (Ug) + (U — 20)?
_ ik _ _-1i Ijk
26_{6 —Tijk—(zl }
ijk 3 ijk
Z; = {ZI7J - Yijk — exp((u7) ZIJ )}'

_ )ik _ ijk 5 ijk uk
28_{28 = f. ()@ =24 25 }

IJ_

_ ijk
Z9 - 9 _glj ZZ !
k¢| j
Zig = {Z = 75ij = UgZg }

) {1'11:(7@-”)77_(2 }'
b
2, =473 by =1+ 7)) 2ot
Z)3 = {21”3 :\/(Xli _le)2 +(X2i _X2j)2 +(X3i _ij)z}’

'J —
14 —

VR

= {7 = O o, 20, )
4

u 2, i
Z;5 = U _VA— 1_419XP(—U3 u(zlus_uz)j ’
Uy | Ug

Z1 :{216: fo (24 }
Z;7 = {21U7 =V Zije(zlijzt AvYAL }
(=01, j=i,1,j=i,k=01,k=i,j).

Thus, the energy of the atoms' system is calculated by the
formula:

L
X Xor Xa1) = 20 224
i-1j=i
j#i

1
E = E(Xyy, X1, X31, -

Note that each Z; component consists of a set of other
components.

The derivatives with respect to the coordinates of atoms is
a vector with the components:
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OXyy OXyp OXgy . axll 8X2| aXSI

The matrix of second derivatives has components:

2
aiE , |, n= _’]_,3,
aX|maan

To calculate the Hessian of a function E the need of
smoothing of the function fc(r) appears. It is proposed to

replace the function f_(r) with the following:

mp=11.

0, r>R",
1 r<R”
f(r)= ’ ’
o) C-(f.)", R<r<R*,
C-(Zf*—(f*)"’”)) R<r<R,
where  f, = exp(~1.5), C=1/(21.),
2t 2t
p() =& wyn)=_ " o
( -R- Rcut) (r_R"‘Rcut)

>

The derivative of function f_(r) with respect to r is
calculated by the formula:

0, r>R",
df.(r) 0, r<Rr-,
dr c-(£.)’"In(f.)-@(r) R<r<R*,
7

—C-(f.)In(f.)-@(r) R <r<R,

where
~ ~2R2 ~ ~2R?
plr)- 2R (). PR
(r_R_Rcut) (r_R+Rcut)
We introduce the following notation: Z; , Z, ,..., Z;7 and
Z, 17, oy 217, Where
o gk B
Z, ={zs”k A s=18,
OXim
. . azij
Z, =17):7) =—¢, s=917,
OXim
= siik . =i 02z -
7, =707k =5 L s_1g,
OXy;m 0%
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a2l
Z, = Zs” Zs” —s s=917.
OXym OXpp
The above-indicated values are ilculated by the formulas
(forall 1 =1,2,3; 1, j,k,m=11):
X — X .
Ak m=i k=m
"
aoot™ I x o —x, .
2'1|Jk= 1 _ Imijm I|1 m=Kk,i=zm
Xy Z; .
0, in other cases;
Xim ~ Xik i
o, m=j,k#m
..k 22
_ 073 Xim = Xji :
M Z, _
0, in other cases;

uk ij 5 ijksijk
2'2

ik (5ii B i i]( uk)z ik
ik _ Z (213) Z+253\70 ) 7, L1 113y
o=

2(213) (Zluk )2

ijk uk( k)2 ij (ij )3 ijk u( uk)z ijk
— 2V 2 + 2 (2 Pzl - (2 2 + 2 (2 f 2

228 (& f

0 2 >R
Z{jk i (f )go(Z{“‘o)’/( ijk + B Zlukijf iy ’+
11 (1. 2% _R°f, R<z* <R,
0l (f,,)"’(zi"k)/(z”k RJ, R<zk<R
where 1 =2CR> In(f.) 2%

ik _ ~ 2(“8 )2 (ulo -z ) A0
ke — ;

7% =3(zll — 2% J (2 - %),
75 = (u)° expl(u; 2 e

z-ljk z—ljkzljkzljk+lekz-ljkzljk+lekzljkz-ijk;
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Zz—ljk

k;tl j

7 =173 -Ug;

Z)=2 Us( 0) ;

2= (112)” a *1(2uy):

X — Xp; o
m_ 2 m=i, j=m
3
i 13
0z X — Xy ..
713_ 13 _ ) %lm I|1 m=j,izm
Xy Zi3 _
0, in other cases;

Q:—ua/ﬂ-z& A
b=—ug 2/, -2 qj

0, Z13 >R",
il _ 0, 25 <R Ry,
i - )i R T Redl <R
—A 13) /(2 , R< Zj3 < R™,
4 213 /( ) , R<zl <R,
where A =2C - RCZut In(f.) z%:
)=z .2 7). 2) 2 27 -
7).z g g
OE(z(u LI
Thus, M = Z 271”7 :
Nm i =i
J#l

In order to write the formulas for the second derivatives of
the total atoms' system energy with respect to the coordinates
of the atoms, we introduce a number of notations:

L gk B
7l =z gk =7 s=18,
OXpp

i i 07
2y =z 2 = s=917
OX
np
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as the derivatives Z; ,Z, ,..., Z;7, only here the index |
changesto N, and the index M to p .
For more effective calculation of the above mentioned

gradient, the Fast Automatic Differentiation technique may be
used (see [5]).

The second derivatives of the variables Z; ,Z,,..., Z;7
with respect to the coordinates of the atoms (for all

Ibn=123; i,j,k=L1; m,p=11) are calculated
by the formulas:
?ijk:azlijk: azzijk _
0y X%
ik \2 2
(lej)(_<p)j(kn;3_xnk)l m=i; n=I: p=m; m =Kk,
Z;
—(Zlmjp)z-i-(xnm—an)z, m=i: n=I: p:k; m=k,
(& f
(Zlijp)z_(xnp_xni)2 m=k: n=I p=m; m=i
wy
_ (5 pim _ 2
(Zl ) +.(:n3p X”m) ) m:k; n=|, p=r mii’
= (lej )
(X'k_x('mzix%p_x"k), m=i; n=l; p=m; m=zk,
Z
(le_x(tn)mf:;;_xnp)' m=i; n=l; p=k; m=k,
1
(X|i_x|(m)-(x)r;p_xnm)’ m=k; n=l; p=i; m=i,
ZiJP
(le_z(lip)j(X;;_xnp), m=k: n=zl p=m; m#i,
Z m
' 0, in other cases;
" o7k 5271k
le 2 _ 2
OXpp X O%pp

~ii 2 s
AN (z”"zIJ (z’”"(zl"s,) 7} +
+ Zzuk u 7 rlj ( ) Zukzr
( ljk)2 ijk Zru + 22 ijk Z —z-ljk uk Ijk( ijk )2 Z
13 1 13

2(lek rijk IJkZ +Z|szljk7ukzrlj+Zujkzljk7ukzlj +

rijk

Zi2jk Ijk uk ) 3(lek) Z
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+ 22Kz ikl uk( uk) 7 +7”k( )Z'”

(e -l e e

+Z:{ (lek) ijk ZZ”k IJ |sz-|Jk

- Pzl + (e f 2 -
—(2113) 7" + 2! (z"k) ))/(2(21”k )2 (21”3 )2 );
0, 2% >R,
0 2 <R,
-H-C- (f ) (“k)x
L ReY
. ZH (@ —R-Ry J(z* -R*f = R<z¥<R",
S |
H-C. (f ) (Jk)x
+zfl"k( ik —R+Rcm)/( kR ) -
— 3]k /(zlIJk - R’)4],
where H = 2R02ut In(f*);
Fik _ _Z(US)Z((ul ng 3 Z”szuk X(Ug) (ulo_zgk )2)_
5 (Ug _Zé]k 2)3
) 8(u8) (Ulo _ Zuk) 2k ik ;
((ug) "'(Ulo Z”k) )3
lek ( |]k XZII] rljk X Ijk )
+3(Zi lek) (Zru Zrljk )’

Ijk (U7) exp((u7)32uk X(u7)3 !Ijk Ijk +7”k)
Fijk _ sijk,ijk uk ijk  rijk Ijk ijk 5 ijk !Ijk
78 Z Z + Z Z + 7 Z +

|sz_|Jk Ijk+zlljkz—ljk Ijk Ijk Ijkzljk

+ Zrljkzljkz—ljk + lek-z—ljkzrljk + lekzrljkzljk :
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ZJ ZJk Z”c):%' ‘U

b

S 1 Ly (1 L,
2'1’2:_2u5 7'111(1+zf]) 215 {2u+1j<1+2“) zlIJ

23]

5

~i 07
ZIJ — 13 _
B ox

2,ij
_ Oz

OXimO%np

np
= 2, ] 22l 2
eyl

0,

Zh=—u 2/, {2

ij +
z5>2R",

0 2 <R,

—H-C .(f*)¢(zijs)x
x[—H 7)) /(zl”'g—R+
+ (713(213 -R") -

f

ij +
R<z;<R",

?1?3: ,., )/(Z )4]
H.C.(f*)'/’(zijs)x
x|-H-2]37, /(Z )6+ R <7 <R:
+ (713(213 - R_)—
“agizty R Y]

T =08ty + 0g 7l -T2y 2k + 20
bz gl gk 7
R L TR I B
et RS AR S R A R LR 4

Formulas for calculating derivatives Z)* and Z'X are

written in the same way as the formula for Z¥"

Finally, the components of the Hessian of function E are
calculated by the formula:
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>>7) @)

i=1j=i
J#i

OXim O

In the case when a two-dimensional material model is
considered, the indices | and n take only the values 1 and 2.

I1l. CALCULATION THE HESSIAN OF THE ENERGY FOR A TWO-

DIMENSIONAL MATERIAL MODEL WITH THE UNLOADED
CONDITION

The two-dimensional model of a multilayer piecewise-
homogeneous material proposed in [2] and [3] is considered.
In this model the material is represented as a periodic
piecewise homogeneous multilayer structure in which the
types of atoms in different layers may be different. This model
imposes the following constraints on the structure of the
layers:

1. Each layer consists of identical atoms, but different
layers may consist of different atoms.

2. The distances between adjacent atoms in the same level
are identical, but they may be different in different layers.

3. There is a group of K parallel layers that are
periodically repeated in the direction of the axis Y .

4. The number of atoms in each layer and the total number
of layers are potentially unbounded.

Figure 1 gives an example of the model in which a group
of three layers is repeated. Each layer consists of atoms of a
specific type.

¥

OOOOOOOO;C

Fig. 1. Two-dimensional model of substance.

In this model, the position of the atoms is determined by
the following parameters:

h.,k =1,...,K - the distance between the layer with the
number K and the previous layer;
d,, k=1,...,K - the displacement of the first atom in the

layer k with a positive abscissa relative to the zero mark;
Sk’ k :1,..., K

The parameters of the optimization problem are the
variables X = (h,,d,,s,,...,n,d,, s, ) that make up the
vector, which has dimension n = 3K .

— the interatomic distance in the layer K .

Let X; be the first coordinate of the i -th atom of a two-

dimensional structure; Y; - its second coordinate. If the i-th

atom is an atom with a sequence number j onthe K -th layer,
then:

ISSN: 1998-0159
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k
y; =0, if k=1  y,=Xh, if k=2..,K
m=2
The first and second derivatives of the energy of atoms'
system with the respect to parameters of the optimization

problem are calculated by formulas:

OE(z) Zc’)E(z) oy 0E(z) ZaE(z) X
8hk 8}/' 8hk 8dk i-1 6Xi 6dk
0E(2) ZaE(z) oXj
68k 1 6Xi 8Sk
62E(z)_'z iazE(z)ayp o
ohoh i p=10Y;0Y oh, ahk’
82E(Z)_ZI: 'ZﬁzE(Z) OXp | O%;
od,od, 5| pmoxox, od, Jed,
aZE(z): ! 'ZaZE(z)éxp R
0508 i\ pa O%iOXp O |0y
aZE(z):'Z 'ZaZE(z)axp R
8d|8sk i=1 p:]_axiaxp 8d| aSk ’
O°E(z) _o; O%E(z)
6h|6dk 8h|65k B
2 2
The second derivatives 6E7(Z) and 8E7(Z) which
OX;OX, Y0y,

are used here, are calculated by the formula (1).

As the carried out calculations have shown, the use of the
proposed formulas for calculation the second derivatives leads
to a noticeable acceleration of the convergence of methods for
solving the optimization problem.
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