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Abstract—Several techniques have been recently proposed to adapt
video codec H264 applications to existing many core platforms.
Among these techniques, the generation and automatic online of
DAG algorithm : GGEN methods have been proposed that learn how
to adapt at run-time the throughput and resources allocated to the
various video codec H264 tasks depending on dynamically changing
data video codec characteristics and the desired applications perfor-
mance (e.g., accuracy). However, most of state-of-the-art techniques
consider only one single Motion Estimation ”ME” block input in
its application model input and assume that the system knows the
amount of resources to allocate to each task to achieve a desired
performance. To address these limitations, in this paper we propose
a new automatic and efficient methodology and associated algorithms
for online directed acyclic graph-efficient scheduling of ME block ap-
plications with multiple streams on many core systems with resource
constraints. Moreover, our scheduler is able to detect overlapping of
the tasks, the communications problems between the tasks and to
smoothly adapt the scheduling strategy. Our experiments realized on
a chain of tasks modeling ME block application demonstrate that
our scheduler is able to learn the scheduling policy and to adapt
it such that it minimizes the targeted Time To Market TTM as the
ME block characteristics in video codec are dynamically changing
in Multi-Processor System on Chip ”MPSoC” and System on Chip
”SoC” system.

Keywords—BMA; ME block; Video Codec application; Embdedd
system; SoC; MPSoC; partitioning and scheduling tasks; GGEN;
DAG.

I. INTRODUCTION

Video codec H264 are now widely used in several domains
such as social media analysis, military image and video, video
annotation, surveillance and medical applications, systems
of intelligent transport. These applications are characterized
with stringent delay constraints, the execution time for tasks,
increasing parallel computation requirement and a highly
variable stochastic input data stream which have direct impact
on the application complexity and the Time To Market ”TTM”.
Moreover, they need to adapt to dynamically changing ME
block in video codec characteristics and require dynamic data-
driven topology graphs of tasks in order to efficiently process
them [1], [6], as well as high throughput efficiency which
may require parallel tasks processing. For instance, video
codec applications, one of the main ME block computing
applications, are used to classify a high input of tasks and
in general modeled using GGEN algorithm. Different types of
tasks in ME block are collected from various MPSoC or SoC
and multiple types of classifiers are applied on these tasks to
data to uncover hidden instruction or tasks and video codec

applications. In order to adapt to the MPSoC or SoC platform
of the ME block, each stage may integrate different type
of classifiers or quality levels and a selection of the GGEN
algorithm is realized at run-time with respect to the tasks type
of ME block. The complexity of each task in each stage of the
ME block in chain video codec may change at run-time with
respect to the type of processed input data which is unknown
by the application. Numerous hardware ”HW” and software
”SW” solutions have been proposed in order to cope with the
increasing complexity and computation requirement of video
codec applications. At the hardware, several core architectures
[1], [7] have been developed to increase the parallelization
level and to support the video codec application model. At
the software, several platforms MPSoC and SoC based ARM
Cortex A9MP in OVP are implemented DAG and GGEN
algorithm scheduling adapted with ME block in H264 video
codec.

A. Related Work
1) Generate the DAG algorithm: In table I, we summarize

the different application methods considered by existing DAG
analyzers and we compare them to the DAG approaches of
our solution.

TABLE I
THE COMPARAISON OUR SOLUTION WITH DIFFERENT APPROACHS

SCHEDULING TASKS.

DAG solution Types of deadlines Types of DAG Analysis
[11] Independent Periodic Offline

[6], [7] Independent Periodic Offline
[14] Dependent H264 Online

Our sollution Dependent General Online
[13] Dependent General Online
[1] Independent Periodic Offline

Existing static approaches [1], [6], [7] model the application
as the DAG with periodic and dependence tasks as present
in figure 1. The solution propose limits to the problem of
NP−Complet (No Complet) from scheduling and partitioning.
Hence, these approaches are unsuitable in multimedia and
telecommunication applications with the dynamic DAG. In
fact, this solution of a periodic DAG limits the applicability
of static approaches. Proposing to apply the pipelining is
not possible, especially for multimedia and telecommunica-
tion applications. Moreover, for the H264 video codec, the
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pipelining technique buffers delays which are proportional to
the Group of Pictures (GoP) size. Finally, static approaches
rely on worst-case (granularity), estimation for the execution
time. A scheduler is an algorithm allocating a set of tasks
resources (processors, machinery, etc), with the objective of
optimizing one or more performance criteria. Imagine that you
come to develop a new scheduling algorithm.

T11 T12 T13 T14

T130 T131

P1 P2, P3, P4 P1 P2, P3, P4

Tnm-1

T129 T120 T122Scheduling tasks

SW in Code C

T180

Level 1

DAG

Level 2

Level 3

Level 8 Tnm

di di+1 di+n

Dependency between

2 deadlines tasks set
Dependency inside a
deadline tasks set

Fig. 1. Dependence tasks in Ggen to TPG-DAG.

To have qualitative information about your algorithm and
compare it to others works. This scheduler has given many
performances in the characteristics video processing. Then, it
limits the problem in dependencies tasks in the same processor
or different ones. Hence, this scheduler makes the tracking
and monitoring tasks in the different level in TPG graph.
The figure 2 present this methodology of scheduling and
partitioning tasks, and the dependency from the tasks with
different deadline times.
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Mapping
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Temps
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Fig. 2. The blocks of Ggen in TPG-DAG with dependencies tasks.

2) H264 encoder-energy deadlines miss rate and over-
head: For many application multimedia and telecommuni-
cation benchmark, we have used the code ”HM” in codec
HEVC/H265 [9], [12]. Then, other researches used software
joint ”JM” of an H264 codec video [1], [4], [8], [10]. Our
application in video codec H264 is ME blocks. Hence, we
propose the scheduling and partitioning algorithm tasks (TPG-
DAG) and the deadlines configuration, we consider the ME
blocks in our application as similar to the one shown in 3 3

with different tasks in two frames, 8 slices per frame and 25
frames per second. For scheduling and partitioning tasks in
MPSoC systems, we give 4 sequences S1, S2, S3, S4. These
sequences are illustrated in figure 3. We selected 4 deadlines
t1, t2, t3, t4.

For scheduling and partitioning tasks in MPSoC systems,
we give 4 sequences S1, S2, S3, S4 as illustrated in figure 4.
We selected 4 deadlines th1, th2, th3 and th4. So, there is the
waiting time of tasks and the processing time of the tasks.
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Fig. 3. Scheduling task sequences of ME algorithm.

If the tasks in sequence S1 depends on tasks in sequence
S3, we have other deadlines time. So, there is the waiting time
of tasks and the treatment time of the tasks. We have other
parameter values: cost communication from the parent node
ni, i and child node ni, j. It is applicable to other tasks in
both sequences S2, S4.

S1

S2

S3

S4

T Odd Odd T Odd Even T Even Odd T Even Even

t1 t2 t3 t4

T11 T99 T12 T90 T21 T109 T22

9 tasks

T13 T91’
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Fig. 4. Sequences tasks of ME algorithm from Akiyo-qcif.

There are many reasons to generate the DAG model. Firstly,
the tracking and monitoring deadlines time from the tasks in
sequences in the MPSoC systems. Secondly, this methodology
limits the problem NP-hard in scheduling and partitioning
tasks with buffers in memory platform MPSoC. Finally, this
technique improves the granularity from the tasks in different
levels in TPG-DAG. Figure 5 describes the time deadline in
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sequences tasks of ME algorithm from Akiyo-qcif. These time
deadlines depends on tasks in the same CPU1, and tasks in
other CPU(2, 3, 4). Hence, we receive many parameters and
notations which are defined in table II.

T11 T12

T21 T22

T13

T23

T14

T24

T16T15

T25 T26

T17 T18

T27 T28

T19 T10

T29

t t+1 t+2 t+3

t+4 t+5 t+6

Fig. 5. Time deadlines in sequences tasks of ME algorithm from Akiyo-qcif.

TABLE II
THE SIMULATIONS PARAMETERS OF VIDEO SEQUENCE TEST ”AKIYO”.

Symbols Explanations
s Site, imply also pixel with (x,y) coordinate

Frame current It
Frame It+1
MB(t) Macro-block at t

MB(t+1) Macroblock at t+1
E The set of the frame sites

∆(t) Deadline time at t
∆(t+ 1) Deadline time at t+1

W Length
H Height

B. Parameters setting in Ggen
a) Definition and Goal: : Definition 1 : we have a ”n”

number of vertices, the G(n; p) method generates graph where
each element of the possible edges and tasks are presented with
independent probability ”p”.

b) The G(n;M) method: : Hence, this model can be
considered as the most appropriate method for generating
random graphs with a number of edges and number of tasks.

Definition 2: for a given number of nodes n and a given
number of edges ”M”, the G(n;M) method is as the method
that constructs the graph by choosing uniformly ”M” edges
from the list of edges of the complete DAG on ”n” vertices.
This is equivalent to say that the method chooses uniformly a
graph from the list of all possible DAGs with ”M” edges and
”n” nodes.

Notations

C. Multiprocessor scheduling
We first consider the problem of scheduling n jobs in-

dependent (J1, ..., Jn), m identical machines M1, ...,Mm.

TABLE III
THE SETTING CO-SIMULATION OF VIDEO SEQUENCE TEST ”AKIYO”.

Symbols Explanations
Nbr CPU 1, 2, 4, 8

Frequency set ”F” 25, 50, 125, 166, 250, 500 MHz
Sequence Akiyo (300 frames), Silent (100 frames)
Resolution QCIF (144x176)
GOP Structure ”IBPB”

Frame rate 25 frames per second
Time slot duration 1/90 s

No. current frame sets 12
No. slices per frame 8

Each job Jj , j = 1, ..., n should be treated exactly on a
machine, and requires processing time pj. A schedule is such
an assignment of each task on a machine. For scheduling, load
Mi is the requirement of total processing jobs assigned, and
the scheduling length is the load on the machine busiest. We
wish to find a minimum length schedule. While working with a
particular case of this problem in which there are two machines
[6], [11]. There are then three distinct approaches to these
scheduling problems: scheduling networks theory of queues,
deterministic scheduling and scheduling software engineering.

c) Jobs by Flux: : An endless stream of jobs arrive
at time 0 <= A1 <= A2 <= ...An. We suppose that
A1, A2, ...An, from a Poisson process with rate lambda. This
assumption mean that the arrival times are unpredictable, and
no information on hours preceding arrival can prepare for the
next arrival. All we know is that it will happen in time planned
1/λ. Where it will take place in the next interval △ some time
with a probability of λ×△ [6]. The jobs that arrive necessitate
processing time (X1, X2, ...). We suppose that identical are
independent based on the length of processing distribution
F with average m1. Another parameter for F is B given by
equation 1 [6], [7]:

B = supx : F (x) < 1 (1)

B is the longest time jobs from F are never likely. With
partial information on the average waiting time. This formula
is based on arguments of heavy traffic and that ρ− > 1,
when the average number of job queue processor for years
the average waiting time is very large. The exact formulas for
all 0 < ρ < 1 are derived in Miller (1968), but they are less
easy to interpret. The following formula has heavy traffic 2
[1], [6]:

E(waitingtime|SPT )÷E(waitingtime|FiFo) = m1÷B
(2)

D. Scheduling parallel machines

For j jobs, the makspan or time cost of communication is
presented by the following equation:

Cmax = max(Cj) (3)

• theorem.2:
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If the processing time jobs are random variables then
stochastic and comparable Sept. It minimizes the flow
time schedule [6].

How we choose the order of M-Machine?
The order is very important in the task scheduling and

partitioning between different working machine according to
our need in our application. In an M−machines, for j jobs
requires M stages of processing, with processing time Xij ,
i = 1, ....,M . Given a batch of n tasks, we must then to do
well for order to minimize waiting times [1], [6], [7].

• theorem.3:
Joint distributions of arrivals and departures
P (a1, ..., an|d1, ..., dn|c1, ..., cn) are independent in
the order of machine [6].

E. Training of GGEN from DAG algorithm

Because of the method for DAG algorithm is semi-
automatic, this method give a many problems and done more
Time To Market (TTM) for our application. The training
method considered here give a solution for this problems.
The code generic generation automatic from DAG algorithm
is optimal. To prepare the list of DAG nodes to compute (that
is, the list for which code is to be emitted), start at the root of
the right-most subtree. Put this node on the list , and continue
by adding a left-most node to the list after all its parents are
already on the list. Then generate code for the nodes in by
starting at the end of and proceeding to the beginning.

II. OPTIMIZATION RESULTS OF THE GGEN GENERIC CODE

In this section, we chose to optimize the various parameters
of our application and task scheduling algorithm. The task
graph of this approach with both techniques (interpolation and
padding) is shown in figure 6.

P1

P2

P3

P4

T11

T13

T31

T33

Temps

0 1 2 3

T15 T19

T17 T11’

T35 T39

T37 T31’

3635

T122’

T120

T102’

T100

Fig. 6. The task graph of the single-level EM block with 4 CPU via the
GGEN algorithm.

We do it is a simulator that will add deadlines between
parent nodes and child nodes, later between high and low tasks
in the task graph DAG-TPG or the GGEN task graph. In this
part, we give the GGEN scheduler to do this automatically. We
have two modes of operation in line (beta = 1) where well off-
line (beta = 0). Any mathematical formalism and modeling via
the DAG-TPG algorithm of the video coding EM algorithm
will be adapted to the GGEN algorithm. Our work will be
compared with the programmer developer ”Perarnau Swann”

with a student working with the same video coding application
but the H264 standard. The ME block in H264 video codec
will be classified as an internship with the automatic compiler,
we present the task graph in the figure 7.

Stage 1 Stage 2 Stage 3 Stage N

t(0-1)

t(1-1)

t(n-1)

t(0-2)

t(1-2)

t(n-2)

Multiple tasks with multiple choice in the internship processing of the ME block

Fig. 7. The stage classification graph of the EM block via the GGEN
algorithm.

In our simulations with the GGEN scheduler, we will
change the number of processors (4; 8; 16; 32; ...;N) each
time to increase the performance of the processed application,
which will validate the optimality of the algorithms of ordering
and partitioning tasks called PYRROS in [6]. We do the work
of the EM block with the different levels and with only one
level via the two interpolation and padding techniques, to show
that our works give more reliable, robust, optimal and fast
performances. The complete task graph for the 8 levels of the
H264 video codec EM block is shown in figure 8.
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Fig. 8. The 8 ME block task graph with 4 CPU via the GGEN algorithm.

Despite, we illustrate the complete flow of the algorithm
offers in figure9. First, a state is observed and then an initial
action is selected in depending on the scheduling policy or
intensive method if the state is unknown.

The initial action could then be adjusted during the explo-
ration phase according to the observed DAG and the dynamics
of the environment. The scheduling tasks is updated when
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a concept drift is detected. This section explains this task
sequence flow, and the tasks of the test video sequence.

Application

multi-media and

Industry Application

Application

Application modeling

With DAG-TPG and GGEN

telecommunication

Embdedd System (Software(ME and

Scheduler of tasks

Offline and Online

HARDWARE

Environnement

delays

communication Memory Archi

and CPU

Multi

Co-processor

Video Codec H264/
H265

DAG/GGEN this step is with adaptation ))

Embdedd

System

in our

platforms

Fig. 9. Diagram of abstraction layers of the complete system.

To summarize, this figure resumes the different abstraction
layers of the system (the application, the operating system,
and the hardware layers) and their interaction with the external
environment. Most of the existing optimizations for running
modern broadcast applications were implemented in the layer
application that is often unaware of the system architecture,
the resources of the system available or the execution time
is minimized. In addition, optimizations implemented at the
hardware layer of the target, a specific set of tasks with
a specific type of input data. So, it is essential that the
system layer operating (instead of the application layer or the
hardware layer), responsible mapping of the application on the
platform, integrates a new planning solutions to bridge the gap
between layers and exploit the features and comments received
from both the application layer and the hardware layer in order
to trade online throughput, quality and energy consumption.
The results of modeling of the different sequences of tests in
automatic and generic scheduling via the GGEN algorithm are
illustrated in the tables IV, IX, VI.

From the results presented by the table IV, we notice that
this automatic method gives satisfactory results for the test
sequences. However, the method is complex to implement and
adapt with the EM algorithm especially in the online operating
state. This can be explained by the complexity of the sequence
of tasks scheduled and partitioned on the scheduler and the
complexity of the test video sequence (change of lighting,
change of background and shooting). According to the table
IX, we notice that the number of tasks is increased when
working on the different pixel precision levels in the EM block,
so the number of instructions will be increased as well. The
code takes more time in execution, hence the importance of
two techniques used in the results of prototyping and modeling
with DAG-TPG (interpolation and padding).

When we implemented and adapted the DAG algorithm to
the H264 video codec ME block, comparing to the GGEN

TABLE IV
MODELING TEST SEQUENCES USING THE DAG ALGORITHM.

Sequence Format Nbr Nbr
Frame Tasks/F

Akiyo qcif(176 ∗ 144) → 300 826
-qcif (192 ∗ 192)

MissA qcif(176 ∗ 144) → 150 826
cif (192 ∗ 192) 150 826

Forman qcif(352 ∗ 288) → 300 3304
(384 ∗ 384) 300 3304

Mobile Sif(352 ∗ 240)→ 112 3304
(384 ∗ 384)

Bus1 Cif(352 ∗ 240)→ 100 3304
(384 ∗ 384) 100 3304

skin1 Sif(352 ∗ 240)→ 900 3304
(384 ∗ 384) 900 3304

claire qcif(176 ∗ 144)→ 494 826
(192 ∗ 192)

HD- (1080 ∗ 1920)→ 24 93982
seq[1] (2048 ∗ 2048)
HD- (1080 ∗ 1920)→ 24 93982

seq[2] (2048 ∗ 2048)

TABLE V
MODELING TEST SEQUENCES WITH DAG.

Seq Nbr L L(P2,4) TE TE
tasks/CPU (P1,3) (P1,3) (P2,4)

Akiyo- 144 144 144 3600 3600
qcif +c +c

claire 144 144 144 3600 3600
+c 144 +c

missA 144 144 144 3600 3600
+c +c

Forman 576 576 576 8400 8400
+c +c 8400

Mobile 576 576 576 8400 8400
+c +c

Bus1 576 576+c 576 8400+c 8400
skin1 576 576+c 576 8400+c 8400
HD- 16384 16384 16384 409600 409600

seq[1] +c +c
HD- 16384 16384 16384 1409600 409600

seq[2] +c +c

automatic scheduler, the number of tasks will be increased to
increase the number of choices. So each task will be done in
two deadlines, between two tasks we add tasks, instructions
and nodes. For example, the task 1 (T1) will be performed
on two deadlines at time t0 and time t0 + delta1. So for
the different tasks of the image or at the level of the video
sequence, until we finish the different strings of the task
sequence with 4 CPU can any platform used VI.

We simulated in ”C/C++” and in virtual prototype OVP,
the two previous algorithms (ME and DAG) using different
task graphs generated with GGen in OVP. Using the different
sequence test video, we used these algorithms to solve the NP-
hard problem known as (”Pj—pi = 1”; ”P1+j—Cmax”). In
other case, we want to schedule a set of tasks in ME algorithm
with unit size and arbitrary precedence constraints through a
set of parallel identical machines in order to minimize the
completion time of the last task to finish. Each algorithm was
executed against graphs produced by each generation method
available in GGen. We experimentally evaluated both GGEN
and DAG approaches with the video coding EM algorithm for
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TABLE VI
MODELING TEST SEQUENCES WITH GGEN.

Sequence Nbr-tasks L(P1,3) L TE(P/I) Cmin(P1,3)
/CPU (P2,4) (P1,3) Cmax(P2,4)

Akiyo 414 414 414 10738 414/
-qcif +c +c/10738 414+c
claire 414 414+c 414 10738 414/

+c +c/10738 414+c
missA 414 414+c 414 10738+c 414/

+c /10738 414+c
Forman 1656 1656 1656 43132 1656

+c +c/43132 /1656+c
Mobile 1656 1656 1656 43132 1656

+c +c/43132 /1656+c
Bus1 1656 1656 1656 43132 1656

+c +c/43132 /1656+c
skin1 1656 1656 1656 43132 1656

+c 43132+c /1656+c
HD- 48024 48024 48024 192096 48024

seq[1] +c +c/192096 /48024+c
HD- 48024 48024 48024 192096 48024

seq[2] +c +c/192096 /48024+c

the different test sequences. We will use in our work the term
TTM and video sequence complexity as evaluation criteria
since they are easy to interpret and can be applied for all
the two methods of scheduling GGEN and DAG tasks used.
The table IX shows the results of simulation in ”C/C++” and
”OVP” using the same platforms (three platforms based on
ARM-Cortex A9 MP) with use of the ME block threads in only
level. We present the execution time (TE) in seconds, the final
execution times of each platform in virtual prototyping via the
three platforms that were used in the DAG-TPG algorithm.

TABLE VII
RESULTS OF EXECUTION TIME WITH GGEN ALGORITHM OF TEST

SEQUENCES.

Sequence TE(C/C++ en s) TEf(P1 (s)) TEf(P2) TEf(P3)
Akiyo-qcif 8.7 7.6 5.43 4.23

missA 7.3 6.4 4.67 3.34
Salmen 8.9 7.4 5.56 4.67
Claire 33.8 32.15 30.6 29.23

Forman 8.3 7.23 5.21 4.12
Mobile 27.7 26.4 24.31 23.78
Bus1 15.2 14.43 12.62 11.76
Skin1 50.5 49.45 46.5 43.43

HD-seq[1] 5.4 4.23 3.14 2.12
HD-seq[2] 5.6 4.34 3.21 2.25

In this part, we make a comparison to show that we have
reached our goals. We evaluate our work with researchers
working on minimization execution time for the EM block on
SoC and MPSoC platforms, this comparison is shown in Table
VIII, given that the results obtained correspond the different
sequence video test. So, SA is Semi-Automatic and A is
Automatic. We can resume in this comparison, the optimality
and precision in GGEN algorithm.

The table shows that run time results are optimized in
C/C++ simulation and in co-simulation with the three SoC
and MPSoC platforms, which are based on ARM-Cortex A9
MP. These results from the GGEN algorithm of the ME block
in H264 video coding show that the execution time decreases

TABLE VIII
COMPARISON OF EXECUTION TIMES.

Sequence TE(C/C++ TEf(P1 TEf(P2 TEf(P3
in s(SA/A)) (s)SA)) (SA/A)) (SA/A))

Akiyo-qcif 10.1/8.7 9.5/7.6 8.8/5.43 7.9/4.23
miss-A 8.6/7.3 7.1/6.4 5.6/4.67 4.9/3.34
Salmen 10.6/8.9 8.4/7.4 6.25/5.56 5.8/4.67
Forman 8.8/8.3 5.9/7.23 6.12/5.21 4.66/4.12

HD-seq[1] 5.4/6.5 5.1/4.23 4.4/3.14 3.6/2.12

in simulation and co-simulation, ie with and without task
scheduling. But we note that these times become smaller when
scheduling tasks, it shows that the scheduler is optimal.

d) Comparison with other work results and evaluation
environment: In this section, we presented GGen, a unified
and standard implementation of random task graph generation
methods used in the scheduling and partitioning tasks for ME
algorithm of video codec H264 in OVP platform. So, we
compare our solution with other work in literature. The three
platform are based in ARM-Cortex-A9MP, this table resume
the performance in our platform (SoC and MPSoC) in OVP.

TABLE IX
EVALUATION FOR ENVIRONMENT IN OVP OF TEST SEQUENCES.

Processor/ P1 P2 P3
(SoC) (MPSoC) (MPSoC)

Architecture ARM-Cortex-A9MP same Platform same Platform
Nbr core 4Co-processor 4 processor 4 processor

Performance High-Performance High-P High-P
Memory 2 DDR 8 DDR 8 DDR

STREAM performance 22 Frame/s 20 Frame/s 20 Frame/s

III. CONCLUSION

In this paper, we presented the optimization algorithm and
automatic generation of GGEN task scheduling: definitions,
different algorithms that are studied by Perarnau Swann and
his team, the different modules and sub-modules of the al-
gorithms used in this automatic approach of task scheduling,
modeling of various platforms SoC and MPSoC. Since the
blocks and sub-blocks processed in our H264 video codec
application implemented and scheduled on real and virtual
prototyping platforms, we have shown the complexity and
computational capacity of the blocks processed in the applica-
tion. We decide another phase of optimization and automatic
generation of the scheduling approach, this is the step of
using an automatic and generic scheduler, which works in
two modes of operation online or offline. This new scheduling
approach is programmable and robust. Since there is no change
in the mathematical model when changing the sequence, it has
been characterized, automated and generated. A parametric
modeling was then proposed from the results of simulation
and co-simulation, proving the optimization of the various
parameters, the processing time and the execution time. In
a future work, we will try to minimize other metrics in the
H264 video codec. We will use an automatic scheduling and
partitioning algorithm DAG. We will also implement this work
in a real target, based on the ARM Cortex A9MP, which is
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composed of 4 processors and named Embest SABRE Lite,
Target from Development SABRE Lite-i.MX6Quad.
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