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Abstract—In this paper, we discuss a simple and efficient symbolic
method to find the Green’s function of a two-point boundary value
problem for linear ordinary differential equations with inhomoge-
neous Stieltjes boundary conditions. The proposed method is also
applicable to find an approximate solution of a two-point boundary
value problem for non-linear differential equations. Certain examples
are presented to illustrate the proposed method. The method is easy
to implement the manual calculations in commercial mathematical
softwares, such as Maple, Mathematica, Singular, SCIlab etc. Imple-
mentation of the proposed algorithm in Maple is also discussed and
sample computations are shown using the Maple implementation.

Keywords—Boundary value problem, Initial value problem,
Green’s function, Interpolation, Symbolic method.

I. INTRODUCTION

Symbolic computation is playing important role in the
scientific field to solve the mathematical equations, especially
the problems involving differential equations. The science
and technology had a very swift progress in various fields,
for example, in computing. One of the biggest success in
the research of symbolic computation is the development of
significant software systems. Many researchers and engineers
have vigorously studied the boundary value problems and its
applications, for example, the models of electrical circuits,
multi-body systems, diffusion processes, robotic modelling
and mechanical systems, nuclear reactors, dissipative oper-
ators, vibrating wires in magnetic fields etc. and developed
several methods, see for example [16], [14], [20], [13], [10],
[21], [17], [7], [9], [15], [22] for various symbolic algorithms
and implementations. Also there exist a variety of numerical
methods for approximating solutions of two-point boundary
value problems [18], [19], [23], [11], [12], [8]. A Green’s
function, in general, is an integral kernel which represents
the analytic solutions of the initial/boundary value problems.
Green’s function allows us to view the visual interpretation
as a result of the actions associated to a source of force or
to a charge concentrated at a point [6]. Many scientists and
engineers have been studied various types of boundary value
problems. Most of them have considered ordinary boundary
conditions, i.e., boundary conditions at point evaluation. In
this paper, we consider the boundary value problems with
Stieltjes boundary conditions, the combination of ordinary
conditions, differential conditions and integral conditions. Our
focus on this paper is to find the Green’s function of a given
boundary value problem (BVP) for linear ordinary differential
equations with inhomogeneous Stieltjes boundary conditions
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over algebras. The key steps to compute the Green’s function
are the computation of solution of a given initial value problem
and the interpolation technique. In [7], [17], [21], [20], authors
discussed the initial value problems for higher-order linear dif-
ferential systems over integro-differential algebra, and in [10],
[13], [16], [15] authors discussed a symbolic method of
interpolation with different conditions. Using these techniques,
we develop a simple and efficient symbolic method for BVP.
The proposed method is also applicable to the BVP for non-
linear differential equations. In case of non-linear differential
equation, one can use a well-known method for initial value
problems to obtain an approximate solution. For example, one
can use Picard’s iterative method or Eluer’s method or Runge-
kutta method to obtain an approximate solution of the given
initial value problem.

Following is the plan of the paper: In Section II, we
propose a new symbolic algorithm to solve BVP; and Sec-
tion III presents the certain numerical examples to illustrate
the proposed method. We present Maple implementation of the
proposed algorithm in Section IV and sample computations are
presented using the Maple implementation.

II. A NEW SYMBOLIC ALGORITHM

To work with BVPs in symbolic computation, we need
an algebraic structure having differentiation along with inte-
gration, so-called integro-differential algebra, see for exam-
ple, [7], [9], [17] for more details. An example of integro-
differential algebra is (F ,D,A), where F = C∞[a, b], [a, b] ⊂
R, Df = df

dx and Af =
∫ x
a
fdx, for a fixed a ∈ R.

In this paper, we consider the regular BVPs of the following
type.

Tu = f,

Bau = ca, Bbu = cb,
(1)

where u ∈ F is unknown function to be determine, T =
f2D2 + f1D + f0 ∈ F [D] is linear differential operator with
coefficient functions fi ∈ F ; Ba, Bb are boundary operators;
and ca, cb ∈ R are constants. Given a forcing function f ∈ F
and the constants ca, cb ∈ R, we want to solve (1) for u.
Since the BVP (1) is in the form of operators, proposed
method works on the level of operator, i.e. we get the desired
Green’s function of (1) by performing calculations on various
operators related to it. We can also translate the operator
problem into a functional setting using the standard methods
(see, for example, [3, pp. 188–190]).

In this paper, we focus on the regular BVPs. One can check
the regularity of a BVP algorithmically: suppose {u1, u2}
is a fundamental system for T and {Ba, Bb} is linearly
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independent set of boundary operators, then the BVP (1) is
regular if and only if the matrix

R =

(
Ba(u1) Ba(u2)
Bb(u1) Bb(u2)

)
is regular, i.e. non-singular. This matrix R is called the
evaluation matrix.

Definition 1. The monic differential operator T = D2 +
pD + q ∈ F [D], where p, q ∈ F , is called regular differential
operator if {u1, u2} is linearly independent.

The key step for obtaining the desired Green’s function is
to solve the initial value problem underlaying the given BVP.

A. Initial Value Problems

If f is continuous and locally Lipschitz then by the Picard-
Lindelöf theorem, for any α ∈ R the initial value problem

d2

dx2
u(x) + p(x)

d

dx
u(x) + q(x)u(x) = f(x),

u(a) = ca,

(
d

dx
u(x)

)
x=a

= α,
(2)

will have a unique solution on some interval about x = a,
where a ∈ R is a fixed initial value and p(x), q(x) ∈ F . If
we denote Ea as evaluation operator at a, i.e., Eaf = f(a)
for fixed initial value a ∈ R, then the operator notations of
IVP (2) is

Tu = f,

Eau = ca,EaDu = α,
(3)

where T = D2+pD+q ∈ F [D] is a monic differential operator,
p, q ∈ F . Now the evaluation matrix and Wronskian matrix
are

R =

(
Eau1 Eau2
EaDu1 EaDu2

)
, W =

(
u1 u2
Du1 Du2

)
,

where {u1, u2} is a fundamental system for T . Using variation
of parameters, we can solve the IVP (3) uniquely as given in
the following theorem.

Theorem 2. [7], [9], [2] Let (F ,D,A) be an ordinary integro-
differential algebra. Given a regular differential operator T =
D2 + pD + q and a independent set of fundamental system
{u1, u2}, the initial value problem

Tu = f,

Eau = ca,EaDu = α,

has the unique solution

u = ca + (x− a)α+ T ?f, (4)

where T ?f = 1
det(W ) (u2Au1 f − u1Au2 f), A is integral

operator and W is the Wronskian matrix of {u1, u2}.

Proof: See, for example, [2, p. 87].
The following section presents an algorithm to compute the

desired Green’s function of the given BVP (1).

B. Boundary Value Problems

Recall the BVP given by (1),

Tu = f,

Bau = ca, Bbu = cb,
(5)

The BVP (5) will have a solution if and only if there exists
α ∈ R such that (i) the maximal interval of existence of the
unique solution of IVP (3) contains the interval [a, b], and (ii)
the unique solution u of IVP (3) satisfies Bbu = cb. Since we
are focused on regular BVP, the condition Bbu = cb must be
satisfied by the solution (4). We have

Bbu = ca +Bb(x− a)α+BbT
?f or

α =
cb − ca −BbT ?f

Bb(x− a)
, (6)

where BbT ?f = 1
det(W ) (u2BbAu1 f −u1BbAu2 f). Now the

required Green’s function of a given BVP (5) is obtained from
the equations (4) and (6) as follows

u = ca +
cb − ca −BbT ?f

Bb(x− a)
(x− a) + T ?f.

In particular, if Ba = Ea, Bb = Eb then we have

α =
cb − ca − EbT ?f

b− a
,

where EbT ?f = 1
det(W ) (u2EbAu1 f − u1EbAu2 f) and

EbAu1 =
∫ b
a
u1 dx, EbAu2 =

∫ b
a
u2 dx. Now the Green’s

function is

u = ca +
cb − ca − EbT ?f

b− a
(x− a) + T ?f.

We generalize the above formulation in the following theo-
rem.

Theorem 3. Let (F ,D,A) be an ordinary integro-differential
algebra. Given a regular differential operator T = D2 + pD+
q and independent sets of fundamental system {u1, u2} and
boundary operators {Ba, Bb}, the boundary value problem

Tu = f,

Bau = ca, Bbu = cb,

has the unique solution

u = ca +
cb − ca −BbT ?f

Bb(x− a)
(x− a) + T ?f, (7)

where T ?f = 1
det(W ) (u2Au1 f − u1Au2 f), A is integral

operator and W is the Wronskian matrix of {u1, u2}.

Algorithm 1. To find the solution of a given boundary value
problem of the type (5), compute the function on [a, b] defined
by (7).

If the BVP (1) has no solution then for any solution u
of the ordinary differential equation in BVP (1) that satisfies
Bau = ca and exists on [a, b] the number on the right hand
side of (7), hence the value of α specified by (6), exists,
but will not be equal to the originally determined value of
EaDu. Symbolic iterative algorithm for singular BVPs of
the type (1) with evaluation boundary operators have been
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discussed by H. Semiyari and D. S. Shafer in [4] similar to
the algorithm presented in Theorem 3 using a Picard iteration
scheme for system of first order equations. We recall the
algorithm presented in [4], for sake of simplicity.

Consider the following system of first order differential
equations

u′ = v, Eau = ca,

v′ = f, Eav = α,

which is equivalent to the IVP

u′′ = f(x, u, u′), Eau = ca, EaD = α.

Now the algorithm for approximating solutions BVP is

u[0](x) ≡ ca,

v[0](x) ≡ cb − ca
b− a

(8)

and

α[k+1] =
1

b− a

(
cb − ca − EbA(b− x)f(x, u[k], v[k])

)
,

u[k+1](x) = ca + Av[k],

v[k+1](x) = α[k+1] + Af(x, u[k], v[k]).
(9)

Algorithm 2. [4] To approximate the solution of the bound-
ary value problem u′′ = f(x, u, u′), Eau = ca, EaD = α
iteratively compute the sequence of functions on [a, b] defined
by (8) and (9).

III. EXAMPLES

Example 1. (A simple classical example) Consider one of
the classical examples that are most often used for introducing
the concepts of ordinary linear BVPs [5, p. 42].

u′′ = f,

u(0) = α, u(1) = β.
(10)

It can be interpreted as describing one-dimensional steady
heat conduction in a homogeneous rod. In its functional
formulation, we have to solve the BVP (10) for the temperature
u ∈ C∞[0, 1] with a given heat source f ∈ C∞[0, 1].

The operator representation of (10) is

Tu = f,

Bau = ca, Bbu = cb,

where T = D2, Ba = E0, Bb = E1 and ca = α, cb = β.
Following the proposed algorithm, we have

T ? = xAf − Axf.

Using Green’s function (7), we have

u = α+
β − α− E1T

?

1− 0
(x− 0) + T ?

= α+ xβ − xα− xE1T
? + T ?

= (1− x)α+ xβ − xE1T
? + T ?

= (1− x)α+ xβ − xE1xAf + xE1Axf + xAf − Axf

= (1− x)α+ xβ − xE1Af + xE1Axf + xAf − Axf
(∵ E1xAf = E1xE1Af = E1Af)

Translation of the Green’s function in functional setting is
given by

u = (1− x)α+ xβ − x
∫ 1

0

f(x) dx+ x

∫ 1

0

xf(x) dx

+ x

∫ x

0

f(x) dx−
∫ x

0

xf(x) dx.

Example 2. (Damped oscillations) Consider the following
BVP

u′′ + 2u′ + u = f,

u(0) = α, u(π) = β.
(11)

The operator representation of (10) is

Tu = f,

Bau = ca, Bbu = cb,

where T = D2+2D+1, Ba = E0, Bb = Eπ and ca = α, cb =
β. Following the proposed algorithm, we have

T ? = e−xxAexf − e−xAxexf.

Using Green’s function (7), we have

u =
1

π
(πxe−x

∫ x

0

exf(x) dx− πxe−π
∫ π

0

exf(x) dx

+ xe−π
∫ π

0

xexf(x) dx− πxe−x
∫ x

0

xexf(x) dx

+ απ − αx+ βx)

Example 3. Consider a non-linear boundary value problem
similar to the Example 4.2 of [4],

u′′ − 1

4
uu′ = 16 + (3− 2x)3,

u(0) =
43

3
, u(1) = 17.

(12)

The exact solution of the BVP (12) is u = (3 − 2x) +
16(3 − 2x)−1. Now we are going to apply the Algorithm 2
to find an approximate solution of the given BVP. Using the
equations (8)-(9), we have

u[0](x) ≡ 43

3
,

v[0](x) ≡ 8

3

and

α[k+1] =
8

3
−
(∫ 1

0

(1− s)f(s, u[k](s), v[k](s)) ds
)
,

u[k+1](x) =
43

3
+

∫ x

0

v[k](s) ds,

v[k+1](x) = α[k+1] +

∫ x

0

f(s, u[k](s), v[k](s) ds.

(13)
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Now an approximate solution is obtained iteratively for k =
0, 1, 2, . . . in (13). The first two iterations are given below

α[1] =
8

3
−
(∫ 1

0

(1− s)f(s, u[0](s), v[0](s)) ds
)

= −1549

90

u[1] =
43

3
+

∫ x

0

v[0](s) ds =
43

3
+

8

3
x

v[1] = α[1] +

∫ x

0

f(s, u[0](s), v[0](s) ds

= −1549

90
+

473

9
x− 2x4 + 12x3 − 27x2.

and

α[2] = −16273

2268

u[2] =
43

3
− 1549

90
x+

473

18
x2 − 9x3 + 3x4 − 2

5
x5

v[2] = −16273

2268
− 20167

1080
x+

2457

40
x2

− 2777

324
x3 +

17

4
x4 +

1

6
x5 − 2

9
x6.

At x = 1, after sixth iteration, we have |u−u[6]| = 1.0×10−11.
One can easily observe that the iterates converge to the exact
solution.

IV. MAPLE IMPLEMENTATION

In this section, we discuss Maple implementation of the
proposed algorithm by creating different data types with help
of the Maple package IntDiffOp implemented by Anja
Korporal et al. [1]. The data type DiffOperator(p,q,r)
is created to generate the differential operator T of a given
BVP, where p,q and r are the coefficients of a given
differential equation.

DiffOperator := proc (p, q, r)
local diffop;
diffop := DIFFOP(r, q, p);
return diffop;
end proc

The function BVPsolution(diffop, fun, b1,
b2, a, b, ini_point) produces the exact solution of a
given regular BVP, where diffop is the differential operator
T , fun is a forcing function f(x), b1,b2 are boundary
operators, i.e. b1 = Ba, b2 = Bb, a,b are boundary data, i.e.
a = ca, b = cb, ini_point is initial point.

BVPsolution := proc (diffop, fun, b1, b2,
a, b, ini_point)
local fund_right_inv_diffop, ivp_solution,
ivp_sol_1, ivp_sol_2, eval_matrix,
fund_sys, bvp_solution, funMat, evlMat;
fund_right_inv_diffop :=
FundamentalRightInverse(diffop);
fund_sys := FundamentalSystem(diffop);
ivp_sol_1 := ApplyOperator
(fund_right_inv_diffop, fun);
eval_matrix := EvaluationMatrix(fund_sys,

BC(b1, b2));
funMat := convert(fund_sys, Matrix);
evlMat := convert(eval_matrix, Matrix);
ivp_sol_2 := funMat.(1/evlMat).Matrix([[a],
[b]]);
ivp_solution := simplify
(ivp_sol_1+ivp_sol_2[1, 1]);
bvp_solution := simplify
(a+(b-a-ApplyOperator(MultiplyOperator
(b2, fund_right_inv_diffop), fun))

*(x-ini_point)/ApplyOperator(b2,
x-ini_point)+ivp_sol_1);
return bvp_solution
end proc

Using the following procedure RegularTest(diffop,
b1, b2), one can check the regularity of a given BVP.

RegularTest := proc (diffop, b1, b2)
local fund_sys, eval_matrix, detment;
fund_sys := FundamentalSystem(diffop);
eval_matrix := EvaluationMatrix(fund_sys,
BC(b1, b2));
if abs(eval_matrix) = 0 then
print(Singular BVP)
else print(Regular BVP) end if
end proc

Recall the BVP (11) presented in Example 2 for sample
computations using the maple implementation of the proposed
algorithm.

T := DiffOperator(1,2,1);

1 + 2.D +D2

B1 := BOUNDOP(EVOP(0, EVDIFFOP(1),
EVINTOP()));
B2 := BOUNDOP(EVOP(π, EVDIFFOP(1),
EVINTOP()));

E[0]

E[π]

RegularTest(T,B1,B2);

Regular BV P

BVPSolution(T,f(x),B1,B2,α, β,0);

1

π
(πxe−x

∫ x

0

exf(x) dx− πxe−π
∫ π

0

exf(x) dx

+ xe−π
∫ π

0

xexf(x) dx− πxe−x
∫ x

0

xexf(x) dx

+ απ − αx+ βx)
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V. CONCLUSION

In this paper, we presented a simple and efficient symbolic
method to solve a two-point boundary value problem with
inhomogeneous Stieltjes boundary conditions. we also recalled
a similar algorithm to find an approximate solution of a
two-point boundary value problem for non-linear differential
equations. Certain examples are discussed to illustrate the pro-
posed method and the Maple implementation of the proposed
algorithm is also discussed and presented sample computations
using the implementation.
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